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a b s t r a c t 

A class of semantic theories defines concepts in terms of statistical distributions of lexical items, basing meaning 

on vectors of word co-occurrence frequencies. A different approach emphasizes abstract hierarchical taxonomic 

relationships among concepts. However, the functional relevance of these different accounts and how they capture 

information-encoding of lexical meaning in the brain still remains elusive. 

We investigated to what extent distributional and taxonomic models explained word-elicited neural responses 

using cross-validated representational similarity analysis (RSA) of functional magnetic resonance imaging (fMRI) 

and model comparisons. 

Our findings show that the brain encodes both types of semantic information, but in distinct cortical regions. 

Posterior middle temporal regions reflected lexical-semantic similarity based on hierarchical taxonomies, in co- 

herence with the action-relatedness of specific semantic word categories. In contrast, distributional semantics 

best predicted the representational patterns in left inferior frontal gyrus (LIFG, BA 47). Both representations 

coexisted in the angular gyrus supporting semantic binding and integration. These results reveal that neuronal 

networks with distinct cortical distributions across higher-order association cortex encode different representa- 

tional properties of word meanings. Taxonomy may shape long-term lexical-semantic representations in memory 

consistently with the sensorimotor details of semantic categories, whilst distributional knowledge in the LIFG 

(BA 47) may enable semantic combinatorics in the context of language use. 

Our approach helps to elucidate the nature of semantic representations essential for understanding human lan- 

guage. 
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. Introduction 

Human language arises from the combination of meaningful building

locks: words. A range of cortical regions becomes active when human

ubjects process word meanings and, therefore, semantic comprehen-

ion has been linked to widespread brain systems ( Pulvermüller, 1999 ;

inder et al., 2009 ; Binder and Desai, 2011 ). Still, there is disagreement

bout the specific roles of these regions in representing lexical meaning.

Hub-and-spokes ” models posit a single semantic “hub ” region in ante-
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ior temporal lobe (aTL; Patterson et al., 2007 ; Lambon Ralph, 2017 ),

o integrate motor, auditory and visual semantic features into coher-

nt multimodal semantic representations of concepts. Different accounts

iew several regions in multimodal association cortex (henceforth mul-

imodal regions) as bases of integrated representations derived from

ultiple low-level sensory and motor representations ( Damasio, 1989 a,

amasio, 1989 b; Damasio et al., 1996 ; Martin et al., 2007 ; Meyer and

amasio, 2009 ; Binder and Desai 2011 ; Pulvermüller, 2013 ). Further-

ore, a role of modality-preferential visual and motor cortex has been
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eptember 2020 
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ighlighted in the context of semantic grounding for specific cate-

ories of object and action words ( Barsalou, 2008 ; Kiefer and Pul-

ermüller, 2012 ; Martin, 2016 ; Carota et al., 2012 , 2017 ). For exam-

le, recent TMS results reinforced the view of a causal contribution

f the motor systems in lexical-semantic encoding, bringing evidence

or category-specific motor processes also when action words are learnt

 Vukovic and Shtyrov, 2019 ). 

To determine the regions of semantic representation, neuroimaging

xperiments measuring brain spatial-averaged activations to meaning-

ul stimuli are insufficient, because they reveal “where ” words make

ense in the brain, but not the types of computations performed in spe-

ific areas, i.e. how the brain represents information to achieve the

emantic interpretation of words and concepts. The brain represents

oncepts by patterns of activity across populations of neurons. Mul-

ivariate pattern-information analyses offer a powerful tool to reveal

he information these population codes carry by measuring the varia-

ion of activity across multiple neighbouring neuronal units (e.g., neu-

ons or voxels) (e.g., Haxby et al., 2001 ; Hanson et al., 2004 ; 2004

riegeskorte et al., 2006 ; Mitchell et al., 2004 ; Polyn et al., 2005 ;

iani et al., 2007 ). Recent multivariate imaging studies have demon-

trated that the brain encodes the semantic similarity between con-

epts in terms of similarity (e.g., correlation distance) between these

ctivation patterns (e.g., Kriegeskorte et al., 2008 ; Mahon and Cara-

azza, 2010 ; Devereux et al., 2013 ; Carlson et al., 2014 ; Carota et al.,

017 ; Mitchell and Cusack, 2016 ), thus opening new perspectives for

apping brain semantic content (see Barsalou, 2017 for discussion). 

In this context, a critical factor influencing multivariate semantic

rain mapping results could be the way conceptual similarity is mea-

ured. Distributional theories define the meaning of a word on the basis

f the other words it frequently co-occurs with in the actual context

f language use ( Harris, 1954 ; Firth, 1957 ). However, an entirely dif-

erent approach, which is immanent to some psycholinguistic models

 Shiffrin, 1970 ; Miller, 1970 ; Fellbaum, 1998 ) and is elaborated in the

ordNet lexical database, exploits abstract hierarchical-taxonomic rela-

ions to capture the semantic similarity between two words (e.g., snake

nd moose ) based on their common feature of representing animals (e.g.,

oth animals are vertebrates, but one is a reptile whereas the other is a

ammal) ( Quillian, 1968 ). As these models use different criteria, it is

ot surprising that related imaging results about the brain substrates of

emantic similarity differ. 

Importantly, these different accounts tap into key organisational

rinciples of semantic knowledge, structuring the relationships among

he concepts which words refer to. In particular, hierarchical structure

eflects word referential meaning, the “word-world ” links between word

orms and the objects, actions and entities in the extralinguistic world

de Saussure, 1916). In contrast, distributional statistics capture “word-

ord ” relations as induced by language contexts (e.g., texts, media,

iscourse), which are an essential source of semantic learning and un-

erstanding, since words that have not been learnt in the actual pres-

nce of an object or action (e.g., “peach ” in the physical context of a

each) can still be understood by inferring their meaning from the al-

eady known words they co-occur with ( Landauer and Dumais, 1997 ;

lso see Carota et al., 2017 ). Although distributional approaches cap-

ure an important aspect of semantic information, it is still possible that

hey do not reflect the neural representation of conceptual knowledge

 Glenberg and Mehta, 2008 ) and that distributional/contextual and hi-

rarchical models focus on different semantic computations ( Maki and

uchanan, 2008 ). Therefore, comparing these two types of models can

e particularly insightful for investigating cortical information process-

ng of words. 

Earlier studies using multi-voxel pattern analyses (MVPA) reported

vidence of semantic similarity among words and concepts based on

ierarchical/taxonomic relations in higher-level visual cortex (e.g.,

airhall and Caramazza, 2013 ; Mitchell and Cusack, 2016 ), where other

revious MVPA work suggested that distributional models may ex-
lain the representational patterns even better than taxonomic ones

 Carlson et al., 2014 ). Recent neuroimaging results have also sug-

ested distinct brain correlates of hierarchical and distributional rela-

ions in the aTL and the inferior parietal cortex, respectively ( Xu et al.,

018 ). Furthermore, a different set of results has shown that distribu-

ional links could be mapped onto distributed regions, including vi-

ual and motor cortex ( Mitchell et al., 2008 ), and left inferior frontal

ortex (e.g., Carota et al., 2017 ), thus encompassing both multimodal

ronto-temporal cortex and modality-preferential motor regions (e.g.,

ereira et al., 2018 ). In sum, these previous advances in identifying the

eural bases of semantic comprehension did not clarify how these quali-

atively different semantic dimensions relate to word representations in

he semantic systems. 

In the present study, we asked whether one approach is better suited

han the other for interpreting the semantic information carried by brain

esponse patterns. If both map brain indices of semantic similarity, a sec-

nd question is whether partly distinct, possibly complementary brain

egions contribute to the semantic aspects captured by these models

 Carota et al., 2016 ; 2017 ). To address these questions, we investigated

nd systematically compared the brain representations of individual

ord meanings captured by these different semantic models through-

ut the cortex. 

Since distributional metrics capture the statistical probability of

ords to co-occur in language usage regardless of their semantic word

ategory, we hypothesized that distributional semantics would relate

ith activity in neuronal assemblies distributed across multimodal se-

antic regions ( Pulvermüller, 2013 ), encompassing more anterior sec-

ions of the left inferior frontal gyrus (LIFG BA 45-47) ( Carota et al.,

017 ; Pulvermüller, 2013 ; Sachs et al., 2011 ), the aTL ( Patterson et al.,

007 ; Lambon Ralph et al., 2017 ), middle temporal gyrus (MTG,

urken and Dronkers, 2011 ) and inferior parietal cortex (particularly

ngular gyrus, AG, BA 39: Binder et al., 2009 ). 

In contrast, we expected that the taxonomic relationships among

ords from similar semantic categories yielded correlations with the

imilarity patterns in category-preferential regions in posterior middle

nd inferior temporal gyrus (pMTG, pITG) and motor cortex, in which

he sensory and motor features of the corresponding referential mean-

ngs are grounded ( Barsalou, 2008 ; Pulvermüller, 2013 ). Consequently,

e expected that, in these same posterior temporal and motor regions,

he neural patterns reflecting hierarchical/taxonomic relations would

lso conform to the action-specific motor properties of our set of action-

elated words, as assessed by behavioural ratings. 

To test these hypotheses, we presented 96 words in a functional

agnetic resonance imaging (fMRI) experiment and used representa-

ional similarity analysis (RSA) searchlights and novel model compar-

sons ( Kriegeskorte et al., 2008 ; Nili et al., 2014 ), to relate the word-

licited multivoxel fMRI patterns to distributional semantic, as quanti-

ed by a state-of-the-art vector-embedding language model (Word2Vec,

ikolov, et al., 2013 ), and hierarchical semantic models as captured by

ordNet. 

. Materials and methods 

.1. Participants 

Twenty-three healthy volunteers participated in the study. All par-

icipants were right-handed (laterality quotient of 90, standard error

SE) = 3.1), monolingual English native speakers (mean age 29 years,

E = 2.8). Participants had no history of neurological or psychiatric dis-

rders. They had normal or corrected-to-normal vision. All participants

ave their informed consent to take part in the study and were remuner-

ted for their time. Ethical approval was obtained from the Cambridge

sychology Research Ethics Committee. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796920/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796920/


F. Carota, H. Nili, F. Pulvermüller et al. NeuroImage 224 (2021) 117408 

Table 1 

Psycholinguistic properties and semantic ratings are shown for each word category. 

Arm verbs Leg verbs Face verbs Animal nouns Food nouns Tool nouns Main effect of word-type (F) 

Length 4.73 (.16) 4.6 (.15) 4.53 (.12) 4.73 (.15) 4.60 (.12) 4.53 (.15) .533 (p = .75) 

Bigram freq. 

Trigram freq. 

31248.6 

(3138.6) 

2475.5 

(283.6) 

32472.14 

(4035.5) 

2673.85 

(367.8) 

29029.4 

(11551.4) 

2535 

(301.52) 

31538.82 

(2985.33) 

2601.56 

(1598.1) 

32699.44 

(3939.16 

2825.27 

(1199.01) 

30550.2 

(3422.14) 

2209.2 

(1200.5) 

.155 (p = .98) 

.401 (p = .85) 

No. of neighbours 5.2 (.9) 5.06 (.6) 5.437 (0.84) 5.2 (.76) 4.8 (.78) 5.25(.84) .071 (p = .99) 

No. of meanings 1.06 (.06) 1.125 (.34) 1.125 (.08) 1.125 (.08) 1.11 (.06) 1.187 (.10) .333 (p = .89) 

Log. word freq. .66 (.11) .58 (.08) .57 (.12) .61 (.15) .60 (.12) .71 (.15) .289 (p = .91) 

Imageability 4.47 (0.17) 4.43 (0.29) 3.97 (0.26) 6.32 (0.09) 5.48 (0.27) 5.35 (0.35) 11.85 (p < .0001) 

Concreteness 

Action-relatedness 

Face-relatedness 

Arm-relatedness 

Body Sensation 

4.14 (0.16) 

4.83 (0.23) 

1.56 (0.01) 

5.68 (0.13) 

3.74 (0.29) 

3.59 (0.19) 

4.88 (0.26) 

1.39 (0.09) 

1.81 (0.14) 

3.49 (0.23) 

3.62 (0.19) 

5.31 (0.25) 

5.75 (0.23) 

1.33 (0.09) 

3.92 (0.31) 

6.60 (0.08) 

1.60 (0.10) 

1.20 (0.07) 

1.11 (0.05) 

1.16 (0.07) 

6.21 (0.19) 

2.02 (0.29) 

2.06 (0.26) 

1.37 (0.12) 

1.35 (0.11) 

5.73 (0.21) 

3.22 (0.41) 

1.27 (0.10) 

2.85 (0.36) 

1.40 (0.16) 

60.67 (p < .0001) 

34.18 (p < .0001) 

122.02 (p < .0001) 

94.88 (p < .0001) 

39.65 (p < .0001) 

Valence 

Arousal 

Familiarity 

3.45 (0.27) 

3.25 (0.27) 

4.52 (0.17) 

4.05 (0.21) 

3.01 (0.21) 

4.27 (0.14) 

3.66 (0.31) 

2.60 (0.28) 

4.59 (0.25) 

3.52 (0.09) 

1.30 (0.21) 

4.83 ((0.22) 

4.08 (0.13) 

1.44 (0.16) 

5.28 (0.33) 

3.85 (0.14) 

1.65 (0.19) 

5.02 (0.26) 

1.67 (p = 0.14) 

14.45 (p < .0001) 

2.42 (p = .04) 
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.2. Stimuli 

Ninety-six words, sixteen from each individual category of leg-,

rm-, face-related actions and tool-, animal-, food-related objects, were

elected based on established semantic ratings ( Pulvermüller et al.,

999 , Carota et al., 2012 ). Stimulus word groups were matched for a

ange of psycholinguistic properties, including word length (counted

n number of letters), letter bigram and trigram frequency, logarith-

ic word frequency, number of orthographic neighbors, and standard-

zed lexical frequency, while differing in imageability, concreteness,

nd action-relatedness (see Table 1 ). We obtained relevant values from

he CELEX database (Baayen et al. 1993) and the WordSmyth Website

 www.wordsmyth.net/ ). 21% of the action words were lexically unam-

iguous verbs and the lexically ambiguous ones which could be used

s nouns and verbs were in the average 14 times more frequently used

s verbs than as nouns (according to the CELEX database: Baayen et al.

993; SE 4.2). 58% of the object words were lexically unambiguous

ouns and the lexically ambiguous ones which could be used as nouns

nd verbs were in the average 6 times more frequently used as nouns

han as verbs (SE 2). Strings of meaningless hash marks matched in

ength to the stimulus words were used as low-level baseline stimuli

uring 120 trials. Null events were presented during 60 trials. Sixty tri-

ls consisting of misspelled words to be detected by the participants

hroughout the experimental task were presented. These “typo ” trials

e.g., feele instead of feel, heate instead of heat, branc instead of branch,

umch instead of lunch) did not include words from any of the semantic

ategories from which the 96 target words were taken - so as to avoid a

ias towards one of these categories -and were discarded from the analy-

is. After the fMRI experiment, participants completed an unannounced

ord recognition test containing both novel distractor and experimental

ords, to further confirm that they had attended to the word reading

ask. They performed above chance (average hit rate: 80% [STD: 8.3%]),

ndicating their attention to the words and compliance with the task. 

.3. Experimental design 

We adopted a rapid, periodic single trial, event-related paradigm.

timulus duration was 100 msec. A fixation cross was presented at the

entre of the screen between two consecutive stimuli. The stimulus onset

synchrony (SOA) was jittered ~3.5-4 s. The 96 stimulus words were

resented in a different pseudo-random order in each of the 6 runs.

ach stimulus occurred once per run. Stimuli were visually presented

y E-Prime software (Psychology Software Tools, Inc., Sharpsburg, PA)

hrough a back-projection screen positioned in front of the scanner and

iewed on a mirror placed on the head coil. 
.4. Task 

Participants were engaged in an attentive reading task with occa-

ional typo-detection (~7% of trials). They received the instruction to

ttend to all stimuli, to silently read the words and to understand their

eanings. In addition, we instructed the participants to press a but-

on with their left hand if a misspelled word appeared at the centre of

he screen. We chose attentive reading with no semantic task in order

o avoid semantic processing strategies confounding the processes this

tudy aims at, namely the semantic understanding of the target words

see Discussion). We included in the task the occasional typo-detection

o maintain subject alertness and we specifically chose it for being or-

hogonal to the main task and not interfering with semantic comprehen-

ion. 

.5. Imaging methods 

Participants were scanned in a Siemens 3T Tim Trio using a head coil

12 channels to receive). Echo-planar imaging (EPI) sequence parame-

ers were TR = 2000 msec, TE = 30msec, and flip angle = 78 degrees.

he functional images consisted of 32 slices covering the whole brain

slice thickness 3mm, in-plane resolution 3mm x 3mm, inter-slice dis-

ance 0.75mm). 

.6. Data analysis 

Imaging data were analysed using SPM12 software (Wellcome De-

artment of Imaging Neuroscience, London, UK). Images were corrected

or slice timing and re-aligned to the first image using sinc interpolation.

he EPI images were co-registered to the structural T1 images using a

utual coregistration procedure ( Maes et al., 1997 ). The structural MRI

as normalised to the 152-subject T1 template of the Montreal Neuro-

ogical Institute (MNI). The resulting transformation parameters were

pplied to the co-registered EPI images. 

.7. Representational similarity analysis 

For multivariate RSA ( Kriegeskorte et al., 2008 ; Nili et al., 2014 ), the

nalysis was carried out in participant native space, using realigned, un-

moothed and non-normalised functional data, which were co-registered

ith MPRAGE of each subject. Data were analysed using the general lin-

ar model. Response-amplitude was estimated for each voxel and for

ach of the 96 stimuli by performing single univariate linear model

t. Runs were concatenated along the temporal dimension. A separate

emodynamic predictor was included for each of the 96 stimulus words.

http://www.wordsmyth.net/
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he time course of the predictors was determined based on the event se-

uence and a linear model of the hemodynamic response ( Boynton et al.,

996 ). For each run, the design matrix was composed of the stimulus-

esponse predictors with six head motion parameter time courses and a

onfound-mean predictor. The response-amplitude (beta) estimate map

ssociated with each stimulus was converted into a t map by contrast-

ng them against the implicit baseline in order to compute the RDMs

 Kriegeskorte et al., 2008 ; Nili et al., 2014 ). 

.8. fMRI data analyses 

.8.1. Whole-brain searchlights RSA 

Data were extracted for each participant individually using a

sphere of information ” searchlight approach ( Kriegeskorte et al., 2008 ;

ili et al., 2014 ). A roaming spherical searchlight with 10 mm radius

as moved throughout the grey matter to extract continuous, voxel-

y-voxel maps of word-elicited activation values. To achieve maximal

ensitivity to our experimental manipulations, this analysis was based

n single items, with each experimental word modeled as a condi-

ion and associated with a separate hemodynamic predictor. The cor-

elation distances (1-Pearson’s correlation) between the response pat-

erns for each word paired with every other word were expressed

s representational dissimilarity matrices (RDMs), which are symmet-

ic about a diagonal of zeros ( Kriegeskorte et al., 2008 ). These brain

ata RDMs were then correlated with theoretical model RDMs (us-

ng Spearman’s rank correlation) at each brain location. The result-

ng maps of r values for each participant and model were normalised

nto the MNI template and entered into a group-level random-effects

RFX) analysis using permutation-based non-parametric statistics in

NPM ( http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-

esearch/nichols/software/snpm ), to test for positive correlations be-

ween the model RDMs and brain data RDMs and thus determine the

rain regions where the models best explained the brain activity. FDR

orrection at 0.05 for multiple comparisons across voxels and number

f models was applied. 10,000 permutations were used in the analysis.

n order to ensure that the searchlight maps we reported did not suf-

er from distortion due to either the searchlight size or the detection of

ewer informative voxels, we applied small volume correction testing for

ctivation in spherical ROIs created around the activation peaks for the

oxel clusters specific to the taxonomic and distributional model (see

tzel et al. 2013 ). Three spherical ROIs were centred at coordinates:

54 -61 -1 (pMTG), -39 -66 36 (AG); -33 23 -9 (LIFG, BA 47). Please

ote that the ROI analyses for model comparisons we report in the main

ethod and results were based on anatomical ROIs, which were inde-

endently selected (as described below) to avoid circularity. The method

onfirmed that the activated voxels we identified with searchlight anal-

ses carried local information related to our effects of interest. 

.8.2. Data cross-validation 

To further estimate predictive performance and adjudicate between

ultiple models, searchlight results were cross-validated using LDC

cross-validated Mahalanobis distance) on split data ( Walther et al.,

015 ). In this approach, for each of k folds, k-1 of k independent subsets

f the data (training set) are used to fit the parameters of each model

nd the left-out subset (test-set) is used to estimate predictive perfor-

ance. Cross-validated LDC distances provide almost unbiased and con-

ervative estimates of pattern dissimilarity. FDR correction at 0.05 for

ultiple comparisons across voxels and number of models was applied.

0,000 permutations were used in the analysis. 

.8.3. Statistical model comparisons 

For each subject, non-parametric Spearman ̓s rank correlations be-

ween model and brain activity RDMs were computed in 4 selected

OIs. These included the “semantic ” aspect the inferior frontal cortex

 Poldrack et al., 1999 ; Hagoort, 2013 ), i.e. the pars orbitalis of the LIFG
BA47), the aTL, the pMTG, and the AG. We automatically defined the

OIs using the standard Wake Forest University (WFU) Pickatlas tool-

ox, which generates ROI masks in standard MNI space based on the

utomated Anatomical Labelling (AAL) parcellation. In order to carry

ut multivariate analysis within individual-subject native space, all ROI-

asks were back-projected in each subject’s native space by inverting

he spatial normalisation applied during GLM analysis. The two models

ere compared by subtracting the r-value of the correlation between the

econd model and the fMRI RDM from the r-value of the correlation be-

ween the first model and the fMRI RDM. The difference in r-value across

ll subjects was then tested against the null hypothesis of the value 0,

o test for a difference in correlation, using a 2-sided Wilcoxon signed-

ank test. P-values surviving FDR correction for multiple comparisons

re reported (Benjamini and Hochberg 1995). 

.9. Specification of the linguistic models 

.9.1. Taxonomic model 

A first model aimed at identifying the brain regions representing tax-

nomic structure, and was based on WordNet ( Fellbaum et al., 1998 ).

he organizing criterion of this database is the semantic relation of syn-

nymy. Synonyms - words denoting the same concept - are grouped

nto unordered sets called synsets, which reach the number of about

17.000 units. Each synset is linked to hierarchies of words overarched

y a distinct conceptual node and is linked to other synsets by means of

onceptual relations. Here we focused on the “is a ” conceptual relation

f hypernymy (Y is a hypernym of X if every X is a kind of Y), which

efines the link between a more general synset like { furniture } to more

pecific ones like { bed }. For each two words, the number of edges be-

ween the first sense of the target word in the ’is-a’ hierarchy was taken

o define the distance between two words (see Supplementary Materi-

ls for alternative encoding type). The edge count denotes the minimal

umber of edges needed to traverse from one word to the other in the

ordNet hypernym hierarchy, that is: from the first word, via the closest

ncestor node common to both words, to the second word. For instance,

nake and frog have an edge distance of 5: snake > diapsid > reptile >

ertebrate, frog < amphibian < vertebrate. 

Because in WordNet each word may contain more than one synset, to

void bias in the selection criterion, we followed a reviewer’s suggestion

o invite a group of participants for a rating study motivating the sense

hoice. Fifteen British English native speakers participated in a rating

tudy, in which the stimulus words were presented in random order.

hey were asked to read the word, keep the meaning that it evokes in

ind, and select that meaning from a randomly ordered list of multiple

eanings associated with that word in WordNet. For 75% of the items,

here was unanimous agreement (90% of the participants), whilst for

he remaining 25% there was no clear dominant meaning assigned. To

eflect the distribution of meaning assignments, we therefore weighted

he synsets accordingly, calculating the similarity between two words as

he average of the distances between any assigned meaning for one word

ith any assigned meaning for the other word (see Inline Supplemen-

ary Materials). The values of the corresponding taxonomic similarity

or each word pair were expressed as RDMs, as shown in Fig. 1 displays

he arrangement of the experimental words based on the taxonomic

odel using multidimensional scaling (MDS). As shown in Fig. 1 , one

eature of our resulting rated WordNet model was that it expressed cross-

ategory relations among concepts of actions and objects. For example,

he model incorporated within-category conceptual relations between

arp and drum , as well as so-called weak (or thematic) associations, like

each and knife , and peel and knife . Because of these characteristics, the

resent model captures both within-category conceptual relatedness and

hematic similarity among concepts over and above categorical borders.

e consider the implications of this structure for evaluating our results

n the discussion. 

http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm
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Fig. 1. Top panel: The representational dissimilarity matrices (RDMs: 1 = dissimilarity — in yellow -, 0 = similarity, in blue) displaying the distributional (on the 

left) and the taxonomic similarities (on the right) among the 96 stimulus words. Bottom panel: arrangement of the experimental stimulus words by multidimensional 

scaling (MDS), reflecting the distributional semantic distances between all words for the distributional model (on the left) and the taxonomic model (on the right). 

Visual inspection of both RDMs and MDS revealed that the Action words that were related to arm (grey), face (red), and leg (blue) formed a widely interwoven 

cluster, which also contained the set of object words related to tools (cyan). Object words related to foods (in pink) and animals (in green) formed two separate 

distributional clusters, which reflected category boundaries only to some degree. Note that words along the semantic categories of animals, tools, foods, and arm, leg, 

and face actions did not form well distinct clusters. On the right: MDS reflecting the distributional semantic distances between all words for the taxonomic model. 

Similar to the RDM visualization of the distributional model, the arrangement by MDS showed that action words, which related to arm (grey), face (red), and leg 

(blue), formed an interwoven cluster, which was separate from the set of object words. Words related to tools (cyan), foods (in pink) and animals (in green) formed 

well distinct clusters, suggesting a category-based structure of the similarities expressed by the taxonomic model. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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.9.2. Distributional model 

To test for the effects of associative semantic relationships on the rep-

esentation of single word meanings as a function of their statistical dis-

ributions, we constructed a computational linguistic model coding for

heir co-occurrence frequency in texts. Following current state-of-the-

rt vector-embedding language models, which elaborate classical Latent

emantic Analysis (LSA, Landauer and Dumais, 1997 ), we constructed

uch model based on Word2Vec ( Mikolov, et al., 2013 ), based on recent

vidence supporting Word2Vec as a reliable model of human semantic

epresentation, allowing to make predictions about behavioural results

r human annotations of data ( Pereira et al., 2016 ). Similar to LSA,

he model assumes that words have similar meaning if they tend to oc-

ur, beyond the same textual span, in similar contexts. Therefore, our

istributional model indexes the semantic relationships between both

ords which co-occur in the same texts and paragraphs (first-order co-
ccurrence: for example, words linked to a common event or function,

.g., peach and knife, peach and to peel, harp and to play ), and, most im-

ortantly, words which do not appear in the same text, but can co-occur

n similar contexts (second order co-occurrence). For instance, although

lay and drum may not appear in the same text, they may separately

o-occur with words like music hall, sound or hands . Thus, the distri-

utional model captures abstract, second-order semantic information

bout word meanings, reflecting the statistical knowledge about their

ctual usage in language. We applied Word2Vec to the British National

orpus (BNC), which includes 4096 texts with samples of written and

poken English from a wide range of sources and a variety of genres for a

otal of 100 million words. Semantic similarity between words for each

ondition was then measured as the cosine between two-word vectors:

he smaller the cosine, the greater the similarity between word stimuli

airs. Fig. 1 (top left panel) displays the semantic similarity values based
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Fig. 2. The representational dissimilarity matrices (RDMs: 1 = dissimilarity, in yellow -, 0 = similarity, in blue) for the models expressing Action-relatedness (left 

panel) and Familiarity (right panel). Note the difference in the representational geometries predicted by the two models. In the Action-relatedness model, words 

related to arm (grey), face (red), and leg (blue) were represented as being similar (left top blue square of the RDM). Object words were coded as being similar to 

each other (right bottom blue square of the RDM), but differed from action words, with the exception of the tools, which, in turn, were represented as being similar 

to actions. In contrast, the Familiarity model did not exhibit any neat categorical structure. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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n Word2Vec in the form of RDMs. The corresponding arrangement of

he experimental words was also visualised using MDS graphs ( Fig. 1

eft bottom panel). 

.9.3. Action-relatedness model 

For a more precise interpretation of the link between the action se-

antics inherent in the nature of our stimulus words and the word-

licited response patterns on the neurocognitive level, we included a

odel coding for rated action-relatedness. This model was based on the

ehavioural data from an independent rating study (see Table 1 and

ig. 3 , left panel). We hypothesized that the “action-relatedness ” model

xplained the brain activity patterns in category-preferential regions

upporting action semantics, especially in pMTG and motor cortex (e.g.,

auk et al., 2008 ; Carota et al., 2017 ), which were also expected to

ndex taxonomic similarities (see Introduction). 

.9.4. Control model 

An additional model accounted for the familiarity of the words, a

ariable which is highly correlated with word frequency (controlled

n the present study), and can affect word-elicited brain response pat-

erns in frontal and temporal regions during word recognition (e.g.,

auk et al., 2008 ). The model was expected to correlate with similarity

atterns in regions which were also expected to reflect co-occurrence

requency of the words, such as the LIFG. The model was constructed

sing behavioural ratings of familiarity (see Table 1 ). The corresponding

DM is shown in Fig. 2 (right panel). 

. Results 

.1. Results from whole-brain searchlights: taxonomic and distributional 

odels were reflected in distinct fronto-temporal regions 

Results from whole-brain searchlights showed that the distributional

odel correlated with activity patterns in a network of fronto-temporal

nd inferior parietal regions, which have been found to be relevant to

emantic comprehension across studies and tasks (e.g., Binder et al.,

009 ; see discussion). As depicted in Table 2 and Fig. 4 (top panel),
he Word2Vec model matched the similarity of fMRI patterns in pars

rbitalis of the IFG (BA 47) and SMG/AG bilaterally. All effects survived

ross-validation. 

In contrast, the taxonomy-based model triggered a focused effect in

eft posterior temporal cortex, peaking in pMTG, a region important for

he storage of lexico-semantic representations in long-term memory, as

onsistently shown across different MVPA studies ( Fairhall and Cara-

azza 2013 ; Devereux et al. 2013 ; Clarke and Tyler, 2014 ; Carota et al.,

017 ) (see Table 3 and Fig. 4 , bottom panel, and Table 2 and Fig. 1 in In-

ine Supplementary Materials). Additional model correlations were seen

n the pars opercularis of the LIFG (BA 44) and precentral gyrus (hence-

orth PG) of the motor cortex. 

Turning to the effects of rated action-relatedness, we found that the

ction model correlated with the similarity structure of the response pat-

erns in left pMTG, LIFG (BA 44) and adjacent PG, and AG (see Table 4 ).

s displayed in Fig. 4 , the taxonomic model triggered correlations with

he response patterns in these same regions; in left pMTG and motor

egions, these patterns also overlapped with the one specific to the ex-

ended action category model. 

As for the ratings of familiarity, the corresponding model correlated

ignificantly with the neural patterns in the LIFG (BA 44), insula, lingual

yrus, and right MTG. None of these effects overlapped with the ones

hat were specific to the distributional and taxonomic semantic models

see Table 5 and Inline Supplementary Fig 2). 

.2. Results from model comparisons: taxonomic and distributional 

epresentations were predominant in distinct fronto-temporal regions 

Direct statistical comparisons between the distributional and taxo-

omic model in pre-selected ROIs revealed a statistically robust differen-

iation between the underlying representations in two focused regions.

he distributional model (Word2Vec) showed significantly stronger cor-

elations (FDR = 0.05) than the taxonomic model (WordNet) with the

atterns in the pars orbitalis of the LIFG (BA 47). Reversely, we found

 better performance of the taxonomic model relative to the distribu-

ional one (FDR = 0.05) in the left pMTG. These results indicate signif-

cant model specificity for these two regions, further confirming the
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Fig. 3. Significant effects in RSA searchlights ( p FWE < 0.05), following cross-validation. Top panel: results from whole-brain searchlight RSA showing the significant 

correlations of the distributional model with the similarity patterns in the pars orbitalis of the LIFG (BA 47) and in the AG. Bottom panel: results from whole-brain 

searchlight RSA showing the significant correlations ( p FWE < 0.05) of the taxonomic model in left posterior middle temporal and inferior parietal regions, and motor 

cortex. 

Table 2 

Results from RSA searchlights for the distributional model. Table of coordinates and significance voxel-level peak values (p) in each activation 

cluster that was correlated with the Word2Vec model. Regions for which the activation patterns survived the LDC cross-validation are marked in 

bold. 

Coordinates 

Regions Cluster Extent Voxel-level P Pseudo T x y z 

Word2Vec-modelLeft Inferior Frontal Gyrus 

Orbitalis (BA 47) Left Superior Frontal Gyrus Left 

Angular Gyrus (BA 39) Left Supramarginal Gyrus 

(BA 40) 

Right Insula 

Right Inferior Frontal Gyrus Orbitalis (BA 

47) Right Superior Temporal Pole Right 

Supramarginal GyrusRight Superior Parietal 

Cortex Right Superior Frontal GyrusRight 

Supplementary Motor AreaRight Middle Frontal 

GyrusRight Superior Frontal GyrusRight Middle 

Frontal Gyrus 

350 

122 

120 

54 

970 

660 

137 

42 

0.0044 

0.0055 

0.0090 

0.0073 

0.0044 

0.0044 

0.0044 

0.0044 

0.0044 

0.0055 

0.0073 

0.0073 

0.0055 

0.0080 

5.21 

5.05 

3.90 

4.32 

5.84 

5.31 

5.31 

5.11 

4.89 

3.93 

3.87 

3.69 

3.83 

3.23 

− 33 

− 24 

− 39 

− 57 

29 

34 

51 

51 

21 

21 

6 

27 

30 

42 

23 

17 

− 66 

− 40 

20 

23 

17 

− 28 

− 58 

14 

29 

20 

− 7 
− 7 

− 9 
55 

36 

29 

− 9 
− 12 

− 20 

44 

55 

55 

− 20 

48 

59 

55 

s  

m

3

 

s  

a  

4  

s

 

p  

f  

(

earchlight data (see Fig. 5 ). The AG showed fair fits with both semantic

odels. 

.3. Results from data cross-validation 

Cross-validated results from LDC searchlights suggested that the dis-

imilarity patterns related to the semantic models were highly stable
nd reliable in two regions, namely the pars orbitalis of the LIFG (BA

7) and the left pMTG, which respectively survived data cross-validation

pecific to co-occurrence ( Table 2 ) and taxonomy ( Table 3 ). 

Additional patterns surviving cross-validation were seen in the

MTG and motor cortex for action-relatedness (see Table 4 ). In turn,

amiliarity correlated with the neural patterns in left insula and LIFG

BA 44), and occipital cortex ( Table 5 ). 
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Table 3 

Results from RSA searchlights for the taxonomic model. Table of coordinates and significance voxel-level peak values (p) in each activation 

cluster that was correlated with similarity in rated WordNet synsets. Regions for which the activation patterns survived the LDC cross- 

validation are marked in bold. 

Coordinates 

Regions Cluster Extent Voxel − level P Pseudo T x y z 

Behaviourally validated WordNet 

Left Inferior Frontal Gyrus Opercularis 

(BA 44) 

Left Insula 

Left Precentral Gyrus 

Left Supramarginal Gyrus (BA 40) 

Left Angular Gyrus (BA 39) 

Left Middle Temporal Gyrus 

Left Supplementary Motor Area 

Left Supplementary Motor Area 

Right Superior Medial Frontal Gyrus 

Left Anterior Cingulate Cortex 

Right Precentral Gyrus 

Right Postcentral Gyrus 

Right Superior Frontal Gyrus 

Right Middle Occipital Gyrus 

65 

380 

490 

190 

185 

174 

133 

27 

0.0091 

0.0147 

0.0109 

0.0098 

0.0098 

0.0031 

0.0073 

0.0073 

0.0079 

0.0079 

0.0080 

0.0080 

0.0080 

0.0080 

4.29 

3.73 

3.16 

4.28 

3.91 

4.44 

4.81 

4.32 

4.57 

3.96 

4.65 

4.44 

4.97 

4.33 

− 51 

− 33 

− 36 

− 48 

− 37 

− 54 

− 3 
− 6 
3 

− 6 
51 

54 

24 

42 

8 

17 

5 

− 46 

− 60 

− 61 

8 

17 

50 

50 

− 10 

− 25 

17 

− 76 

14 

10 

36 

25 

36 

− 1 
66 

62 

32 

14 

51 

48 

55 

21 

Fig. 4. Significant effects in RSA searchlights for action-relatedness (in red), distributional semantics (in blue), and taxonomy (in green). The neural overlap between 

the three models in the AG is shown in purple. The activation patterns for action-relatedness overlapped with the pattern specific to taxonomy only in the left pMTG 

(overlap is in dark yellow). Results are shown at a threshold of p < 0.001, with cluster-level correction for FDR = 0.05. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Results from RSA searchlights for the Action − relatedness model. Table of coordinates and significance voxel − level peak values (p) in each 

activation cluster that was correlated with rated action − related similarity among the test words. Regions for which the activation patterns 

survived the LDC cross − validation are marked in bold. 

Coordinates 

Regions Cluster Extent Voxel − level P Pseudo T x y z 

Action-relatedness 

Left Supplementary Motor Area 

Left Precentral Gyrus 

Left Supramarginal Gyrus 

Left Middle Temporal Gyrus 

Right Inferior Frontal Gyrus (BA 45) 

Right Superior Frontal Gyrus 

Right Precentral Gyrus 

Right Supplementary Motor Area 

500 

180 

140 

90 

150 

340 

600 

400 

0.0036 

0.0081 

0.0064 

0.0087 

0.0055 

0.0025 

0.0010 

0.0088 

0.0010 

2.95 

2.75 

2.57 

2.44 

3.05 

3.51 

3.50 

2.75 

3.31 

− 3 
− 42 

− 57 

− 48 

51 

51 

24 

51 

3 

20 

2 

− 43 

− 61 

29 

8 

17 

− 10 

47 

48 

51 

29 

− 1 
14 

29 

55 

48 

40 
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Table 5 

Results from RSA searchlights for familiarity. Table of coordinates and significance voxel − level peak values (p) in each activation cluster that was correlated 

with the familiarity model. Regions for which the activation patterns survived the LDC cross − validation are marked in bold. 

Coordinates 

Regions Cluster Extent Voxel − level P Pseudo T x y z 

Familiarity 

Left Inferior Frontal Gyrus Opercularis (BA 44) 

Left Inferior Frontal Gyrus Triangularis (A 45) 

Left Insula 

Left Ant Cingulate 

Left Middle Occipital Gyrus 

Right Inferior Frontal Gyrus (BA 47) 

Right Inferior Frontal Gyrus (BA 44) 

Right Insula 

Right Middle Temporal Gyrus 

Right Middle Occipital Gyrus 

55 

156 

106 

189 

360 

360 

263 

47 

620 

0.001 

0.001 

0.001 

0.001 

0.001 

0.001 

0.015 

0.020 

0.001 

5.4 

5.34 

4.53 

4.23 

4.55 

6.63 

5.47 

3.80 

6.68 

− 54 

− 30 

− 6 
− 42 

48 

51 

33 

63 

39 

5 

20 

41 

− 70 

38 

11 

23 

− 19 

− 70 

18 

− 1 
14 

11 

− 9 
29 

6 

− 9 
29 

Fig. 5. Results from model comparisons. The bar graph depicts the averaged model-fMRI pattern correlations for each of the key variables under examination. In each 

panel, the blue bar indicates the distributional model, the green bar the taxonomic model and the red bar the action-related model. Spearman’s rank correlations 

were calculated to assess the relatedness between brain activity and model RDMs and statistical inference was applied on the single subject correlations using a 

one-sided signed-rank test across subjects, testing whether the resulting correlation coefficients were significantly greater than zero. Below each bar, the significance 

value for the test is reported, corrected for multiple testing across brain regions by applying the FDR procedure; the expected FDR was less than 5% (Benjamini and 

Hochberg 1995). The horizontal bars in black indicate significant differences from model comparisons after FDR correction across models (FDR = 0.05). Left panel: 

Effects specific to the LIFG (BA 47), where the distributional model differed significantly from both taxonomy and action-relatedness. Middle panel: Effects specific 

to the left pMTG. There was a significant difference (FDR = 0.05) between the effects of the taxonomic model and the ones triggered by the distributional model, 

whilst no difference with action-relatedness was seen. Right panel: effects of the distributional, taxonomic, and action-relatedness in the AG. Note that all models 

were equally represented in this region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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. Discussion 

In the present study, we adopted a word reading non-semantic task

o explore how distributional and hierarchical/taxonomic links among

oncepts relate to the semantic content of the language system. We

ested the hypothesis that the distributional models would correlate

ith the neural patterns in inferior frontal and inferior parietal re-

ions supporting combinatorial semantic processes, whilst the hierar-

hical/taxonomic model would fit the neural patterns in posterior mid-

le/inferior temporal regions relevant for the comprehension of action

ords and action-related object words, such as tools and foods. A related

ypothesis was that the hierarchical/taxonomic relations would become

anifest in posterior temporal and motor regions that were also sensi-

ive to action-relatedness. Therefore, we also expected that the encoding

f hierarchical/taxonomic relations would be consistent with the action-

pecific motor detail of our set of action-related words, as predicted by

 model of behaviourally rated action-relatedness of the words in these

ategory-specific fronto-temporal and motor regions. 

Converging cross-validated results from combined RSA searchlights

nd ROI-based statistical model comparisons suggested that models of

he different semantic relationships, the taxonomic model employing

onceptual hierarchies and the distributional model built from word

o-occurrences in texts, explained the similarity structure of region-
pecific fMRI response patterns elicited by word reading. We found

hat the taxonomic model correlated with activity patterns in poste-

ior middle temporal regions (pMTG) important for semantic memory

e.g., Fuster, 1997 ; Hagoort, 2013 ). In contrast, the distributional se-

antic model correlated with activity in the pars orbitalis of the LIFG

BA 47), a region thought to be particularly relevant for semantic se-

ection ( Thompson-Schill et al., 1997 ), and combinatorial semantic pro-

esses ( Pulvermüller 2013 ; 2018 ). Confirming our initial hypotheses,

n the same left posterior temporal regions which reflected taxonomy -

ut not in the LIFG (BA 47) -, the similarity patterns also conformed to

he similarity expressed by the behaviourally rated action-relatedness of

he words. In a third semantic region, the AG, the fMRI patterns equally

eflected the distributional, taxonomic, and action-related models. It is

orth noticing that the neural patterns in the LIFG (BA 47), pMTG, and

G, which correlated with the distributional and taxonomic models, did

ot relate to familiarity (as a particular aspect of word frequency, which

as controlled for in the present study). These results suggest that the

rain responses to lexical meaning reflect qualitatively distinct types

f semantic relations among concepts within a distributed network of

rain regions with different cortical distributions. These findings sug-

est a joint role of these regions in orchestrating the representational

ontent of lexical meanings and their relationships, in line with their

pecific contributions to efficient semantic comprehension, as discussed



F. Carota, H. Nili, F. Pulvermüller et al. NeuroImage 224 (2021) 117408 

i  

e  

n

4

p

 

h  

p  

c  

L  

t  

p  

p  

k  

p  

i  

h  

c  

m  

c  

r  

w  

p  

s  

l  

f  

t  

d  

p  

t  

(  

1  

“  

d  

m  

(

 

i  

s  

t  

h  

t  

s  

c  

M  

2  

H  

L  

r  

a  

2  

i  

2  

w  

t  

t  

t  

c  

K

 

p  

t  

o  

d

4

 

(  

e  

b  

p  

P  

r  

(  

t  

2

 

b  

(  

r  

i  

a  

t  

o  

t  

a  

m  

m  

p  

r  

i  

i  

c  

H

 

a  

c  

L  

H  

i  

(  

d  

f  

r  

e  

p  

t  

i  

l  

l  

t  

n

 

w  

s  

c  

B  

c  

t  

p  

t  

r  

i  

l  

s  

o  

r  

l  

s  

s  
n the next paragraphs. Although the effects we observed were to some

xtent bilaterally distributed, the next section will discuss the compo-

ents identified in the left hemisphere more in detail. 

.1. Neural overlaps between taxonomic and action-related similarities in 

MTG and motor regions 

A major finding of the present study highlights the importance of

ierarchical/taxonomic knowledge for representing lexical semantics in

osterior middle temporal regions. These regions are thought to be a

ritical site for representation and processing of lexical meaning (e.g.,

au et al., 2008 ; Hickock, 2014 ), and play a fundamental role in dis-

ributed memory circuits supporting both language comprehension and

roduction (e.g., Hagoort, 2013 , 2019 ). It is well established that the

MTG is responsible for long-term storage and activation of semantic

nowledge in memory (e.g., Fuster, 1997 ; 2009 ; Hagoort, 2019 ), with a

ossible role in controlled semantic retrieval requiring the extraction of

nformation appropriate for a given context. For example, recent results

ave shown that semantic judgements about global relations between

oncepts like “apple ” and “worm ”, also called weak semantic or the-

atic associations, activate the pMTG more strongly than judgments

omparing the size of two objects ( Davey et al., 2015 b). Earlier neu-

opsychological findings also reported that lesions to this region cause

eak semantic associative errors in aphasia ( Schwartz et al., 2011 ). Our

resent results corroborate a role of the pMTG in this type of relational

emantics, as the taxonomic model captured cross-category referential

inks between action and action-related object words (e.g., tools), by

urther specifying the nature of the underlying information patterns and

heir representational geometries. It is noteworthy that, in the present

ata, the similarity structure of the hierarchical/taxonomic model in

MTG incorporated both within-category similarities between concep-

ually related pairs like “plum ” and “peach ” and thematically linkable

i.e. weak, or global semantically associated; Cramer, 1968 ; Qullian,

968 ) word pairs from different semantic categories, like “peach ” and

bite ”. Given such cross-category relations in the taxonomic model, our

ata line up with previous evidence that the pMTG encodes weak se-

antic associations, also labelled as thematic relations by earlier work

 Schwartz et al., 2011 ). 

A related finding was indeed the congruency between the similar-

ty in action-relatedness and the representational geometries of the re-

ponse patterns in the pMTG. This effect was seen in the same pos-

erior middle temporal regions, for which seminal univariate results

ave reported correlation of BOLD activation to action words with

heir rated action-relatedness ( Hauk et al., 2008 ). Our present re-

ults then reinforce the well-established view that the pMTG supports

ategory-preferential representations of action semantics ( Chao and

artin, 1999 ; Kiefer and Pulvermüller 2012 ; Beauchamp and Martin

006 ; Noppeney et al. 2005 ; Saygin et al., 2009 ; Tranel et al., 2008 ;

oenig et al. 2011 ; Kemmerer et al. 2012 ; Davey et al., 2015 a).

ikewise, the similarity in action-relatedness correlated with the rep-

esentational geometries in left PG, a seat for action semantic mech-

nisms ( Tranel et al., 2008 ; Hauk et al., 2004 ; Carota et al., 2012 ,

017 ; Pulvermüller, 2013 ; Vukovic and Shtyrov, 2019 ), as well as

n adjacent dorsal aspect of the LIFG (BA 44) ( Bak and Chandran

012 ; Kemmerer et al., 2012 ; Kemmerer, 2015 ; Dreyer et al. 2015 ),

hich earlier MVPA results suggested to reflect the semantic struc-

ure of action word categories ( Carota et al., 2017 ). This indicates

hat the encoding of taxonomic similarities conforms, not surprisingly,

o the grounded action-related information supported by action pro-

essing systems (e.g., Barsalou, 2008 ; Pulvermüller and Fadiga, 2010 ;

emmerer, 2015 ; Pulvermüller, 2018 ). 

The taxonomic format of semantic representations stored in the

MTG along with its grounded sensorimotor specifications may be re-

rieved and made available for semantic processes taking place in the

ther language regions, such as the LIFG and inferior parietal cortex, as

iscussed in the next section. 
.2. Distributional-specific cortical mapping in LIFG and AG 

Consistent with our initial hypothesis and earlier findings

 Carota et al., 2016 ; 2017 ), the pars orbitalis of the LIFG (BA 47)

merged as a privileged region for representing semantic similarities

ased on statistical co-occurrence knowledge. This was not unex-

ected, since this area is thought to support lexical semantics (e.g.,

oldrack et al., 1999 ), particularly in relation to the selection of the

elevant semantic properties from competing semantic alternatives

 Thompson-Schill, 1997 ), and plays a cross-linguistically validated func-

ion in semantic comprehension (e.g., Bozic et al., 2010 ; Carota et al.,

016 ). 

The LIFG has been proposed to support category-general links

etween word meanings from all semantic types and word forms

 Pulvermüller, 2013 ; Pulvermüller, 2018 ). In line with such proposal, a

emarkable property of the representational patterns of the LIFG (BA 47)

n the present results was the lack of any reflection of category-specific

ction-related structure. Note that these patterns were dissociable from

he category-specific effects of action-relatedness in the pars opercularis

f the LIFG (BA 44). In the LIFG (BA 47), the distributional representa-

ions seemed to rely on genuinely semantic processes on a higher level of

bstraction. In particular, the representation of abstract semantic infor-

ation about the likelihood of words to co-occur in language contexts

ay be a prerequisite for the semantic combinatoric mechanisms taking

lace in this region. Availability of the context-sensitive semantic rep-

esentations that can fit similar semantic contexts may be particularly

mportant for unification mechanisms which aim at assembling semantic

nformation into larger structured units of coherent sentences and dis-

ourse and culminate in left inferior frontal cortex (e.g., Hagoort, 2005 ;

agoort and Indefrey, 2014 ). 

The present results thus confirm a joint contribution of the pMTG

nd more anterior aspect of the LIFG for activation, maintenance and

ontrol of retrieved lexical meanings in language comprehension (e.g.,

au et al., 2008 ; Snijders et al., 2009 ; Turken and Dronkers, 2011 ;

ickock, 2014 ). In the context of sentence comprehension, for instance,

t has been shown that increased ambiguity of word-category sequences

relative to unambiguous sequences: Snijders et al., 2009 , 2010 ) pro-

uces more sustained activation of long-term representations of lexical

rame information in the pMTG, controlled top-down by inferior frontal

egions ( Fuster 2001 ; Miller and D’Esposito, 2005 ). Furthermore, rel-

vant neurophysiological results obtained with methods with a more

recise temporal resolution than what fMRI provides have pointed out

hat the MTG may give input to the critical language regions, such as

nferior frontal cortex (BA 45-47), and inferior parietal cortex, particu-

arly the AG (e.g., Lau et al., 2008 ), thus enabling access to activated

exical-semantic representations. Our results further elucidate the na-

ure and distribution of lexical-semantic representations in this cortical

etwork. 

We can now turn to a third major effect of semantic similarities,

hich arose indeed in the AG, an associative convergence region es-

ential for the multimodal semantic integration of unimodal inputs re-

eived from unimodal sensorimotor systems (e.g., Binder et al., 2009 ;

inder and Desai, 2011 ; Geschwind, 1965 ; Catani et al., 2005 ). Re-

ent evidence has shown that the AG supports combinatorial seman-

ics ( Molinaro et al., 2015 ), and the comprehension of contextually ap-

ropriate complex concepts (e.g., plaid jacket) based on simple concep-

ual units (e.g., jacket and plaid) ( Price et al., 2015 ). Lesions to this

egion impair association-based representations in aphasic patients, as

ndexed by associative naming errors ( Schwartz et al., 2011 ). Also, ear-

ier metabolic studies have demonstrated that, in the AG, conceptual

imilarities may arise from the multimodal integration and abstraction

f sensorimotor attributes ( Fernandino et al., 2015 ). Whilst our present

esults fit this previous literature well, confirming a role of the AG in re-

ational semantics, they reveal a threefold format of the representational

imilarities in this region, reflecting hierarchical/taxonomic, context-

ensitive distributional, and action-related representations. A plausible
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xplanation is that the AG binds together the referential knowledge in-

erent to the taxonomic similarity and the statistical information about

ord co-occurrence in coherence with the appropriate sensorimotor de-

ail. The reflection of rated action-relatedness in the AG, also spanning to

he more posterior sections of the SMG, reflects, once more, the action-

elated nature of our stimulus words (action words and action-related

anipulable foods and tools), consistent with earlier findings on the

ole of these regions in action semantics (e.g., Davey et al., 2015 b), and

n the representation of manipulable objects (e.g., Cubelli et al. 2000 ;

uxbaum and Saffran 2002 ; Mahon et al. 2007 ; Martin et al. 2015 ). 

A last observation concerns the absence of effects of categorical rep-

esentations in the AG. In earlier work, we investigated the categorical

emantic structure of the neural patterns elicited by specific semantic

ord categories ( Carota et al., 2017 ), and found that pMTG, motor and

nferior frontal regions were important to encode lexical-semantic simi-

arities, but observed no effects in the AG. We therefore raised the possi-

ility that this region may be more sensitive to gradual representational

ifferences among individual word meanings, rather than categorical

epresentations, and therefore be specifically linked to category-general

ncoding of finer-grained semantic representations of individual word

inks. Indeed, the use of sensitive item-by-item RSA analyses licenses

his idea. 

.3. Semantic specificity vs. task specificity of semantic similarity mapping 

To evaluate the cognitive implications of our present results for cur-

ent theories of lexical-semantic processing, it is worth noticing that

ask-specific processing demands may have differently modulated the

eural activity in the network of cortical regions we identified here,

eading to increased interactions with additional semantic regions, such

s the aTL, which was not detected in the present study. This may

xplain discrepancies between the present findings and the recent re-

ults. For example, valuable RSA evidence suggested that overt similar-

ty judgments of taxonomic vs. thematic similarity relations triggered

issociable activation patterns in the left aTL and in the AG, respec-

ively, and that taxonomic knowledge may be a primary form of seman-

ic representation in the aTL ( Xu et al., 2018 ). 

One obvious reason for the lack of effects in the aTL across neu-

oimaging studies is the widely acknowledged fMRI signal dropout

nd distortion issues due to varying magnetic susceptibility (e.g.,

evlin et al., 2000 , Visser et al., 2010 ). In the present data though, the

nivariate subtractive contrast comparing all visually presented words

gainst the low-level visual baseline showed activation in a region lo-

ated in the aTL, which may however index different processes, rang-

ng from letter recognition to word form and phonological processing,

emantic comprehension and even processing of aspects of the syntac-

ic information associated with the words. Therefore, task specificity

eems to offer an appropriate methodological explanation here, as neu-

oimaging studies consistently show that BOLD activation in this region

ncreases for semantic tasks relative to non-semantic tasks (e.g., Visser

t al., 2010). This has also been confirmed across imaging modalities,

s previous electro-/magneto-encephalographic data have pointed to in-

reased activity in tasks involving semantic decision relative to silent

eading ( Chen et al., 2013 ). As mentioned above, we here employed

 non-semantic task, because it may tap into automatic processes of

ymbol meaning recognition, which are not required for task-dependent

erformance, and, therefore, allows to draw conclusions on language

omprehension mechanisms. In particular, models of word recognition

osit that activating a lexical representation is a necessary and suffi-

ient stepping stone for accessing its meaning ( Balota and Yap, 2006 ),

s, for instance, lexical identification is necessary for the execution of

ehavioural responses such as lexical decision. Therefore, activating

exical-semantic representations is a flexible process, which adapts to

ask requirements, and is modulated by attentional control and task-

ependent demands ( Balota and Yap, 2006 ). The present experiment

apped into such automatic and flexible activation of lexical semantic
epresentations taking place during word reading. That the attentive

eading of meaningful words yielded representational similarities re-

ecting both complexity and specificity of semantic components thus

onfirms semantic understanding of symbols despite the absence of a

emantic task, a finding consistent with earlier research (see, for exam-

le, Hauk et al., 2004 ; Carota et al., 2012 and, for reviews, Binder and

esai, 2011 ). Furthermore, the RSA manifestation of semantic similar-

ty in a network of regions that are critical for language comprehension

s evidence that word meaning was processed ( Carota et al., 2017 ). 

If the absence of a semantic task explains the general lack of specific

ultivariate effects of semantic similarities in anterior temporal regions

n the present study, it is plausible that, unlike automatic meaning pro-

essing, actively and overtly judging the similarity of words based on

axonomic relations may increase the load in processing demands in

avour of the corresponding information type in the aTL. Relatedly, a

ossibility is that the aTL is not engaged by semantic tasks which involve

emantic coding per se, but is required for connecting brain regions that

rimarily store lexical semantics (e.g., Damasio et al., 2004 ). 

In conclusion, the present results are not incompatible with the sug-

estion that the aTL may become representationally relevant for encod-

ng taxonomic and associative relations, depending on task requirements

hat may put into play different processing demands in the language net-

orks, and modulate the sensitivity of this region to a certain type of

emantic links. However, our findings did not bring evidence for a single

epresentational hub located in the aTL and, rather, point to distributed

epresentational systems across multiple fronto-temporal and parietal

egions (e.g., Binder et al., 2009 ; ; Martin, 2016 ; Pulvermüller, 2018 ;

ereira et al., 2018 ). 

.4. Neurocognitive relevance of the present findings for current models of 

emantic representations 

We outlined a neurobiological model of language comprehension

hich captures two substantial components of the representation of

exical meaning: 1) its relational nature and 2) the distribution of its

epresentations between key regions of the language systems. These in-

luded temporo-parietal regions (pMTG and AG) encoding taxonomic

imilarity consistent with the sensorimotor properties of the word se-

antic types, and the pars orbitalis of the LIFG (BA 47) encoding distri-

utional statistics relevant for semantic combinatorics and unification of

exical-sematic units into larger structures, as contextually appropriate.

his network also exhibited a gradient, from category-specific encoding

f action-related semantic information in pMTG to category-general ef-

ects in the AG and LIFG (BA 47), where the representational content of

ords became, respectively, more sensitive to individual concepts along

ith their action-related details and to general statistical word-word

elations than to category-specific representations of semantic word

tructure. The present results match well integrated theories that ac-

nowledge a task-sharing between multimodal modality-specific areas,

hereby multiple multimodal regions play a main role in binding refer-

ntial meanings (i.e., links between word forms and their referent con-

epts, e.g., actions and objects: de Saussure, 1916 ; see above and intro-

uction), grounded by neuronal assemblies in modality-specific cortex,

ith distributional semantic knowledge ( Barsalou, 2008 ; Harnad, 2012 ;

iefer and Pulvermüller, 2012 ; Pulvermüller et al., 2018 ; Carota et al.,

017 ). 

The distributed representations are well explained by widespread

etworks of interconnected cell assemblies (e.g., Hebb 1949 ), functional

nits of memory defined by neural relationships ( Fuster, 1997 ). These

ircuits carry semantic information with specific distributions and dis-

inct topographies depending on word types, and are scattered over both

ategory-general regions in supramodal associative cortex and category-

referential areas in modality-specific cortex (e.g., Pulvermüller, 2013 ,

018 ). 

While confirming the involvement of a left inferior frontal, and

emporo-parietal regions in word meaning comprehension, the current
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esults highlight both taxonomic and word distributional knowledge as

elevant representational coordinates for characterizing the underlying

emantic space. Taxonomy may provide a format for semantic represen-

ations stored in left pMTG, and might well be a primary representa-

ional frame structuring conceptual knowledge in memory. In contrast,

istributional knowledge could be stored in the LIFG (BA 47) as cached

nformation immediately available to increase efficiency of operations

ike access and selection of "what comes next" during online comprehen-

ion and usage of the human vocabulary. 

. Conclusions 

In conclusion, we have shown that both hierarchical/taxonomic and

istributional models of semantic similarities describe the representa-

ional space in a high-level network of inferior frontal and temporo-

arietal regions known to play a critical role in semantic memory. These

esults support integrative semantic brain models postulating not a sin-

le, but cooperating representational systems, in which distinct brain

egions may encode specific semantic properties of words to a different

egree. The present study also demonstrates that RSA of BOLD signals

ffers an accurate tool for identifying the fine-grained representations

f concepts and words. This and related methodological approaches

 Haxby et al., 2014 ) allow investigations of the types of information

hat is coded in specific brain regions. Adjudicating between alternative

epresentational models of word relationships combining standard RSA,

ross-validation methods and model comparisons, as performed here, is

 promising step to elucidate the nature of the semantic representations

ontributing to human language. 
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