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Abstract

Most connectivity metrics in neuroimaging research reduce multivariate activity patterns in

regions-of-interests (ROIs) to one dimension, which leads to a loss of information. Impor-

tantly, it prevents us from investigating the transformations between patterns in different

ROIs. Here, we applied linear estimation theory in order to robustly estimate the linear trans-

formations between multivariate fMRI patterns with a cross-validated ridge regression

approach. We used three functional connectivity metrics that describe different features of

these voxel-by-voxel mappings: goodness-of-fit, sparsity and pattern deformation. The

goodness-of-fit describes the degree to which the patterns in an input region can be

described as a linear transformation of patterns in an output region. The sparsity metric,

which relies on a Monte Carlo procedure, was introduced in order to test whether the trans-

formation mostly consists of one-to-one mappings between voxels in different regions.

Furthermore, we defined a metric for pattern deformation, i.e. the degree to which the trans-

formation rotates or rescales the input patterns. As a proof of concept, we applied these

metrics to an event-related fMRI data set consisting of four subjects that has been used in

previous studies. We focused on the transformations from early visual cortex (EVC) to infe-

rior temporal cortex (ITC), fusiform face area (FFA) and parahippocampal place area (PPA).

Our results suggest that the estimated linear mappings explain a significant amount of

response variance in the three output ROIs. The transformation from EVC to ITC shows the

highest goodness-of-fit, and those from EVC to FFA and PPA show the expected prefer-

ence for faces and places as well as animate and inanimate objects, respectively. The pat-

tern transformations are sparse, but sparsity is lower than would have been expected for

one-to-one mappings, thus suggesting the presence of one-to-few voxel mappings. The

mappings are also characterised by different levels of pattern deformations, thus indicating

that the transformations differentially amplify or dampen certain dimensions of the input pat-

terns. While our results are only based on a small number of subjects, they show that our

pattern transformation metrics can describe novel aspects of multivariate functional connec-

tivity in neuroimaging data.
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Introduction

Functional connectivity between brain regions is usually estimated by computing the correla-

tion or coherence between their time series. For this purpose, multivariate (MV) activity pat-

terns within regions of interest (ROIs) are commonly reduced to scalar time series, e.g. by

averaging across voxels or by selecting the directions which explain the highest variance

(PCA). This process leads to a loss of information and potentially to biased connectivity esti-

mates [1–5]. Importantly, it also makes it impossible to estimate the transformations between

patterns among different ROIs, and to describe functionally relevant features of those map-

pings. Here, we computed linear MV-pattern transformations between pairs of ROIs in fMRI

data, and used them to derive three MV-functional connectivity metrics, i.e. goodness-of-fit,

sparsity and pattern deformation.

Recent fMRI studies have explored MV-connectivity between brain regions. For instance,

Geerligs et al. applied multivariate distance correlation to resting-state data [2]. This method is

sensitive to linear and non-linear dependencies between pattern time courses in two regions of

interest. Anzellotti et al. reduced the dimensionality of their fMRI data per ROI using PCA

over time, projecting data for each ROI onto their dominant PCA components [3]. This

resulted in a much smaller number of time courses per region than the original number of vox-

els. Anzellotti et al. also applied linear (regression) and non-linear (neural network) transfor-

mations to the projected low-dimensional data for pairs of brain regions, and found that the

non-linear method explained more variance than the linear method [6]. However, dimension-

ality reduction via PCA leads to a possible loss of information. Indeed, the patterns of the

reduced data for different ROIs might not show the same relationships to each other as the

original voxel-by-voxel representations. For example, if two regions show a sparse interaction,

i.e. each voxel in the first ROI is functionally related only to few voxels in the other ROI, this

might not be the case for their corresponding projections on the dominant PCA components.

Thus, dimensionality reduction may remove important information about the pattern trans-

formations. Another approach is to ignore the temporal dimension of ROI data and use “rep-

resentational connectivity”, i.e. compare dissimilarity matrices between two regions [7]. A

dissimilarity matrix describes the intercorrelation of activity patterns for all pairs of stimuli

within one region. In this approach, one can test whether the representational structure

between two regions is similar or not. However, one cannot test whether the activity patterns

of one region are transformations of another, possibly changing the representational structure

in a systematic way. Other recent multivariate connectivity approaches also explicitly exploit

the presence of functional mappings between regions without characterising the features of

these transformations (e.g. [8,9]).

In the current study, we estimated and analysed the linear transformations between the

original voxel-by-voxel patterns. Although it is well-established that transformations of rep-

resentations between brain areas are non-linear [10–13], linear methods can capture a signif-

icant amount of the response variance [6]. Linear transformations are also easy to compute,

to visualise, and can be analysed using the vast toolbox of linear algebra. Moreover, our work

on linear transformations can serve as a basis for further investigations on MV-connectivity

using non-linear transformations. Linear transformations in the case of multivariate connec-

tivity can be described as matrices that are multiplied by patterns of an “input ROI” in order

to yield the patterns of an “output ROI”. We can therefore use concepts from linear algebra

to describe aspects that are relevant to the functional interpretation of the transformation

matrices.

The first concept, similar to the performance metric used in [6], is that of goodness-of-

fit. The degree to which activity patterns in the output region can be explained as a linear

Analysing linear multivariate pattern transformations in neuroimaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0223660 October 15, 2019 2 / 23

2022 initiative of the Italian Ministry of Education,

University and Research for the Department of

Neuroscience, Imaging and Clinical Sciences

(DNISC) of the University of Chieti-Pescara. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0223660


transformation of the patterns in the input region is a measure of the strength of functional

connectivity between the two regions. The second concept is that of sparsity, i.e. the degree to

which a transformation can be described as a one-to-one voxel mapping between input and

output regions (a one-to-one voxel correspondence is indeed associated with the highest and

non-trivial sparse mapping for each voxel). Topographic maps, in which neighbouring neu-

rons or voxels show similar response characteristics, are well established for sensory brain sys-

tems [14]. It has been suggested that these topographic maps are preserved in connectivity

between brain areas, even for higher-level areas [15,16]. Topography-preserving mappings

should result in sparser transformations than those that result in a “smearing” of topographies,

or that are random.

Third, we will introduce a measure for pattern deformation. Transformations between

brain areas are often assumed to yield different categorisations of stimuli, based on features

represented in the output region. The degree to which a transformation is sensitive to different

input patterns is reflected in its spectrum of singular values. In the extreme case, where the

transformation is only sensitive to one specific type of pattern of the input region but is insen-

sitive to all other orthogonal patterns, it contains only one non-zero singular value. In the

other extreme, a transformation which results in a rotation and scaling of all input patterns,

would have the maximum number of equal non-zero singular values.

We applied our approach to an existing event-related fMRI data set that has been used in

several previous publications to address different conceptual questions [7,17–20]. Four human

participants were presented with 96 photographic images of faces (24 images), places (8

images) and objects (64 images). We analysed regions that capture representations at different

stages of the ventral visual stream, and that were also the focus of the above-mentioned previ-

ous publications, namely early visual cortex (EVC), inferior temporal cortex (ITC), fusiform

face area (FFA) and parahippocampal place area (PPA). Specifically, we focused on the trans-

formation from EVC, a region involved at early stages of visual processing, to each of the three

other ROIs, which are higher-level regions showing a functional selectivity for the recognition

of intact objects (ITC), faces (FFA) and places (PPA) [21–23].

The aim of our study is to find linear transformations between patterns of beta-values in

pairs of ROIs, estimated for different types of stimuli from a general linear model. We here

ignored the temporal dimension of the data for two reasons: 1) in fMRI, temporal relation-

ships cannot easily be related to true connectivity unless an explicit biophysical model is

assumed; 2) even if such an assumption is made, it would be difficult to estimate a meaning-

ful temporal relationship at the single-trial level as required for this event-related analysis.

We therefore focused on spatial pattern information, which in the pre-processing step is esti-

mated from a general linear model. Using this approach, we addressed the following ques-

tions (see Fig 1):

1. To what degree can the functional mappings from EVC to ITC (EVC->ITC), EVC->FFA

and EVC->PPA be described as linear matrix transformations? For this purpose, we com-

puted the cross-validated goodness-of-fit of these transformations.

2. To what degree do these transformations represent “one-to-one” mappings between voxels,

indicating that they characterise topographical projections? For this purpose, we estimated

the sparsity of the transformations.

3. To what degree does a transformation amplify or suppress some MV-patterns more than

others? For this purpose, we investigated the degree of pattern deformation by analysing

the singular value spectra of the transformations.
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Methods

2.1 Estimating linear transformations using the ridge regression method

Let us suppose we consider two ROIs X and Y composed of NX and NY voxels, respectively.

For each of those two ROIs, we have Ns MV-patterns of beta values obtained from the general

linear models with respect to the Ns stimulus types. Let us call the corresponding matrices con-

taining all the MV-patterns X 2 RNX�Ns and Y 2 RNY�Ns . We also assume that X and Y are z-

normalised across voxels for each stimulus. We are interested in estimating the transformation

T from X to Y and in analysing the features of this transformation. Let us assume that the map-

ping from X to the pattern Y is linear, i.e.

Y ¼ TX þ E; ð1Þ

where T 2 RNY�NX is the transformation matrix and E 2 RNY�Ns is a residual/noise term. The

linearity assumption allows us to estimate T and to investigate its features, e.g. sparsity and

singular values. In order to obtain an estimate of the transformation T we use a ridge regres-

sion method [24]. Specifically, this method aims to find a suitable solution for T by minimising

the norm of the residuals as well as the norm of the transformation itself. According to this

method, the transformation is defined as the matrix

T̂λ ≔ argminMfkMX � Yk2

F þ λkMk2

Fg; ð2Þ

where the parameter λ is a positive number which controls the weight of the regularisation

Fig 1. The purpose of the current study is 1) to describe a computational approach for estimating linear transformations T
between MV-pattern matrices X and Y (each matrix column contains the beta-values associated with a different stimulus type)

of two ROIs, and 2) to derive three novel connectivity metrics describing relevant features of those functional mappings.

https://doi.org/10.1371/journal.pone.0223660.g001
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term, M denotes a matrix of the same size of T, and k�kF is the matrix Frobenius norm. A

unique solution for T̂ λ can be obtained using the Moore-Penrose pseudoinverse as

T̂λ ¼ YX0ðXX0 þ λIXÞ
� 1
; ð3Þ

where IX 2 RNX�NX is the identity matrix and ‘ denotes matrix transpose. Recently, ridge

regression has been successfully used for estimating the transformation of the representations

within (but not between) ROIs across different affine viewpoint changes of objects [25].

Whereas Ward and colleagues exploited a fixed value for the regularisation parameter λ, here

we estimate its value via a cross-validation approach.

2.1.1 Regularisation parameter estimation via cross-validation. Several approaches

can be used in order to select a suitable λ for ridge regression in Eq (2). These strategies

include different cross-validation methods, L-curve and restricted maximum likelihood.

Here, we exploit a leave-one-out cross-validation method, which is often used in fMRI stud-

ies as a reliable procedure both at stimulus and subject levels [26,27]. In our leave-one-stimu-

lus-out procedure, the regularisation parameter is defined as the one which minimises the

sum across stimuli of the ratio between the squared norm of the residual and of the (left out)

MV-pattern, i.e. as

λ≔ argminα

XNs

i¼1

kT̂�iα X
�i � Y �ik2

2

kY �ik2

2

( )

; ð4Þ

where X�i 2 RNX�1 and Y �i 2 RNY�1 are the MV-patterns (beta vectors) associated with the i-th

stimulus for the two ROIs and T̂�i
a
2 RNY�NX is the transformation matrix obtained by using

the MV-patterns of the Ns − 1 stimuli (all the stimuli except for the i-th), and with the regu-

larisation parameter α (this approach is nested within the across-sessions cross-validation

described in section 2.5.4).

The calculation of the optimal λ value would require, for each tested regularisation

parameter, the computation of Ns different transformations. However, the computation

time can be reduced by using two different observations. First, for demeaned and standard-

ised data, it holds that kY �ik2

2
¼ kY i � meanðY �iÞk2

2
¼ NY � varðY

�iÞ ¼ NY . We can thus

rewrite the previous formulation for λ without considering the denominator within the

sum, i.e. the value of λ can be now obtained by minimising the sum of squared residuals.

Secondly, as is shown in [28], the λ value obtained in such a way is equivalent to that

obtained by minimising the functional ΛðaÞ≔ kAðaÞðIX � HðaÞÞY 0k2

2
, where A(α) is the

diagonal matrix whose non-zero entries are equal to 1/(1 − hii(α)), being the hii(α) the ii-th

elements of H(α) ≔ X0(XX0 + αIX)−1 X. Using the two previous observations, we can finally

assess the value of λ as

λ≔ argminαfΛðαÞg: ð5Þ

This final formulation allows us to obtain the optimal value in a reduced computation time,

thus also facilitating the calculation of the goodness-of-fit metric (see below).

2.2 Characterisation of the goodness-of-fit

In order to assess the goodness-of-fit of the MV-pattern transformations between ROIs, we

compute the cross-validated percentage of pattern variance in the output region which can be

explained using a linear transformation of patterns in the input region, with an optimal regu-

larisation parameter λ obtained as above. Specifically, we define the percentage goodness-of-fit
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(GOF) as

GOF ≔ 100 1 �
ΛðλÞ
NYNs

� �

; ð6Þ

where Λ(�) is the functional which describes the sum of squared residuals (see section 2.1.1).

This metric can be considered as a method to quantify the (linear) statistical dependencies

among the MV-patterns by means of the explained output pattern variance. A GOF value

equal to 100 denotes a perfect linear mapping while low values suggest that either the mapping

does not exist or it is fully non-linear.

To assess the statistical significance of the observed GOF values, we exploit a permutation

test (with 10,000 permutations of the EVC patterns, in order to randomise the stimuli). We

compare the distribution consisting of the GOF values for the four subjects with the reference

distribution obtained from permutation, relying on the Kolmogorov-Smirnov (K-S) test. We

consider the observed GOF as significant when the p-value is lower than 0.05.

2.3 Characterisation of the transformation sparsity

A sparse matrix is defined as having the majority of its elements equal to 0 [29]. In the case of

MV-pattern transformations between ROIs, a sparse matrix could indicate a one-to-one map-

ping between voxels in the two ROIs. However, even in the presence of a perfect sparse linear

mapping, we cannot expect the elements of the estimated T̂ l to be exactly zero (Fig 2, panels

A and B), because the ridge regression method always leads to a smooth solution. However,

other approaches, such as the least absolute shrinkage and selection operator (LASSO, [30]),

may lead to the opposite problem, i.e. obtaining sparse solutions even in the presence of non-

sparse linear mappings (see S1 Fig). We therefore need to define a strategy to reliably estimate

the degree of sparsity of the transformation matrix.

The idea behind our approach is to take into account both the GOF value, taken as a mea-

sure of the level of noise (i.e. the higher the GOF value the lower the noise level), and the rate

of decay of the density curve. The density curve describes the fraction of the entries of the esti-

mated transformation which are larger than a threshold, as a function of this threshold. The

steepness of the decay of this curve increases with the increase of the degree of sparsity of the

original transformation, and it decreases with the increase of the level of noise in the model.

Let us take the normalised T̂ l obtained by dividing its elements by its maximum absolute

value. We define the density curve d as the function of the threshold P 2 [0, 1] which describes

the fraction of elements of T̂ l whose absolute value exceeds P. Specifically, d is defined as

d Pð Þ≔
PNX

i ¼ 1

PNY
j ¼ 1 1ðjðT̂λÞ ij j>PÞ

NXNY
; ð7Þ

where 1ðjðT̂ lÞ ijj>PÞ denotes the indicator function of the set fðT̂ lÞ ij : jðT̂ lÞ ijj > Pg, which is

equal to 1 if jðT̂ lÞ ijj > P holds, and 0 otherwise. The density curve d is a monotonically

decreasing function of P, with a value of 1 for P = 0 and of 0 for P = 1.

The analysis of the rate of decay of the density curve of T̂ l as a function of the threshold P
provides an estimate of the actual degree of sparsity of T. Higher degrees of sparsity are associ-

ated with steeper decay. For instance, panel C of Fig 2 shows the d curve for five different toy

cases in a noise free situation. For each case, we simulated 30 multivariate patterns X (of size

128 voxels x 96 stimuli) and 30 transformations T (128 voxels x 128 voxels) as following stan-

dard normal distributions. Each of the five cases in this toy example has a different true
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Fig 2. Estimation of the percentage of sparsity using a ridge regression method. A) An example of a simple sparse simulated

transformation: 90% of the entries are equal to 0, while the other 10% of the entries are equal to 1. B) Estimate of the transformation

in A obtained by using the ridge regression method. The lighter background indicates that the estimated elements are different from

zero even if in the original transformations they are exactly equal to zero. C) Density of the thresholded estimated transformations,

i.e. the percentage of matrix entries that exceed the threshold, as a function of the threshold. In this toy example, we generated 30

realisations for four simulated percentages of sparsity (0%, 50%, 80% and 90%). D) Density of the thresholded estimated

transformations associated with a degree of sparsity of 90% and different GOF values (i.e. different levels of noise in the model). E)

Scatter plots of the rate of decay of the density curves (RDD) shown in panel C against goodness-of-fit GOF for the 30 simulation

realisations of each of the four different cases. It is evident that simulated transformations of e.g. 90% sparsity are associated with a

Analysing linear multivariate pattern transformations in neuroimaging data
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percentage of sparsity, i.e. 0%, 50%, 80%, 90%, obtained by randomly setting to 0 the corre-

sponding percentage of elements of T. We then calculate the MV-pattern matrix Y as Y = TX.

The density curves (average and standard deviation across 30 realisations for each case are

denoted by solid lines and shaded areas) are clearly distinguishable from each other, thus

allowing us to disentangle the five cases.

However, the rate with which a density curve decays from 1 to 0 depends on the noise level

in the model. In particular, the steepness of the decay associated with a fixed degree of sparsity

decreases with the increase of the level of noise, i.e. with the decrease of the GOF value (panel

D, Fig 2). Thus, by only analysing the density curve it is not possible to distinguish two differ-

ent percentages of sparsity for which the noise levels are different, i.e. the curve d for a percent-

age of sparsity S1 with noise level L1 can be undistinguishable from the curve for a sparsity S2

with noise level L2. To overcome this problem, we take into account both the density curve d
and the goodness-of-fit GOF between the MV-patterns. As shown in the panel E of Fig 2, by

using 1) the rate of decay of the density curve (RDD), defined as the parameter b of an expo-

nential function aexp(bP) fitted to the d function with a non-linear least squares fitting

method, and 2) the value of GOF, it is possible to disentangle the simulated degree of sparsity

even if the noise levels are different. Let us now describe step by step the Monte Carlo based

approach that we use in order to estimate the degree of sparsity of the pattern transformations

in our data set. We consider the transformations EVC->ITC, EVC->FFA and EVC->PPA for

the set of stimuli composed of the 96 images of all stimulus types.

2.3.1 Monte Carlo approach to obtain the percentage of sparsity. Let us suppose we are

interested in estimating the degree of sparsity of the pattern transformation between EVC

(consisting of 224 voxels in our data) and ITC (316 voxels) by using the patterns obtained

from the full set of 96 stimuli. The other cases will be analogously treated. The strategy

described below can be considered as a Monte Carlo method. Specifically, we:

1. simulate, for each noise level and each percentage of sparsity, transformations T (size 256

voxels x 224 voxels), the non-zero entries of which follow a standard normal distribution

and the positions of the zero entries were randomly selected;

2. compute estimates T̂ l of each true T by using a ridge regression method on the original

EVC patterns X and the simulated ITC pattern ~Y ¼ ð1 � gÞTX=kTXkF þ gE=kEkF (all the

patterns were first demeaned and standardised), where E and γ denote the independent

Gaussian noise/residual signal and its relative strength. The estimated transformation is

given by

T̂ λ ¼
~YX0ðXX0 þ λIXÞ

� 1
; ð8Þ

where the λ value denotes the same regularisation parameter obtained on real data via the

cross-validation procedure described in section 2.1.1. Importantly, the characteristics of the

simulated data were chosen to resemble those of the real MV-patterns. The patterns in the

real data follow a standard normal distribution: none of the 3072 patterns (4 regions, 4 sub-

jects, 2 sessions and 96 stimuli) deviate significantly from normality as assessed by a one-

sample Kolmogorov-Smirnov test with the null hypothesis that the patterns follow a Gauss-

ian distribution with zero mean and a standard deviation equal to one (p> 0.05, Bonfer-

roni-corrected for multiple comparisons). In S2 Fig we provide, as an example, the

certain range of RDD and GOF values (red dots) which, at least for sufficiently large values of GOF, are different from those related to

transformations with 80% of sparsity (green dots).

https://doi.org/10.1371/journal.pone.0223660.g002
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histogram of the values of the actual (left panel) and simulated (right panel) MV-patterns of

the ITC for one subject.

3. calculate, for each T̂ l, the density curve d, its rate of decay RDD, and the goodness-of-fit

GOF;

4. calculate the average RDD and GOF across the simulation-realisations for each different

simulated percentage of sparsity and noise level. In such a way, we obtain, for each simu-

lated percentage of sparsity, a curve describing the mean RDD value as a function of the

GOF.

5. estimate the percentage of sparsity for the real data by looking at the point of coordinates

equal to the average (across subjects) RDD and GOF. For instance, if this point lies between

two curves representing the results for 50% and 60% of sparsity, the estimated sparsity of

the transformation EVC->ITC would be 50–60%.

We simulate six different percentages of sparsity, i.e. 50%, 60%, 70%, 80%, 90% and 99%.

An estimated percentage of sparsity lower than 50% indicates that the transformation is not

sparse (the majority of elements is different from 0) while a higher value in the simulated

range indicates the opposite. We use 10 different levels of noise strength: the γ value ranged

from 0 to 0.9 with a step of 0.1. For each different percentage of sparsity and noise level, the

number of simulations is 1000.

2.4 Characterisation of the induced pattern deformation

A MV-pattern of each ROI can be considered as a point belonging to a vector space whose

dimension is equal to the number of voxels in that region. A MV-pattern transformation thus

corresponds to the linear mapping T : RNX ! RNY between the two respective vector spaces.

The aim of this section is to: 1) explain why the singular values (SVs) of the transformation T̂ λ

are important features of this mapping, and 2) describe the computational strategy used to

understand how much the transformation deformed the original patterns, e.g. via asymmetric

amplifications or compressions along specific directions.

Let us assume for simplicity’s sake that NX is equal to NY, i.e. that the number of voxels in

the ROI X is equal to the number of voxels in the ROI Y. By means of the polar decomposition

theorem [31] we can consider the transformation T as the composition of an orthogonal

matrix R multiplied by a symmetric positive-semidefinite matrix P1 or as the composition of a

different symmetric positive-semidefinite matrix P2 followed by the same matrix R, i.e.

T ¼ P1R ¼ RP2: ð9Þ

This factorisation has a useful heuristic interpretation (panel A of Fig 3). It states that T can

be written in terms of simple rotation/reflection (i.e. the matrix R) and scaling pattern trans-

formations (i.e. the matrices P1 and P2). Furthermore, even if the square matrix T is not a full

rank matrix, P1 and c2 are unique and respectively equal to
ffiffiffiffiffiffiffiffi
TT0
p

and
ffiffiffiffiffiffiffiffi
T 0T
p

, where ‘ denotes

the transpose. It is also evident that the eigenvalues of P1 and P2, which indicate the scaling

deformation factors induced by T, are equal between the two and coincide with the SVs

of the pattern transformation T [31]. Although, for the sake of clarity, we discussed the geo-

metrical framework explicitly assuming the two ROIs to be composed of the same number

of voxels, a similar argument can be made for the general case. In other words, the singular val-

ues of the transformation are important features of the mapping that describe the “dampen-

ing” or “amplification” of different dimensions even if the sizes of the two ROIs are different.
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Fig 3. Estimation of the pattern deformation. A) A geometric interpretation of a linear pattern transformation between patterns of

equal dimension. Two MV-patterns of two ROIs, let us say EVC and ITC, can be seen as two points of two vector spaces, and the

matrix transformation T between them can be seen as a linear mapping between these two vector spaces. In this panel, a sphere

(representing for simplicity the MV-patterns of EVC for a set of stimuli) is transformed by T into the ellipsoid (representing the ITC

MV-patterns for the same set of stimuli). The singular values (SVs) of T are important features of this mapping. For example, if the

number of voxels is the same in both ROIs, the SVs (μ values in the Fig) describe how much the EVC pattern is deformed by the

transformation. For instance, constant values across all SVs can indicate an orthogonal transformation, that is, a linear mapping in

which the ITC pattern can be completely described as a rotation (or reflection) of the original EVC pattern. B) The curves of the SVs

(a monotonically non-increasing function with b as the rate of decay) of the estimated transformations for four different simulated

Analysing linear multivariate pattern transformations in neuroimaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0223660 October 15, 2019 10 / 23

https://doi.org/10.1371/journal.pone.0223660


In order to investigate the pattern deformations, we analysed the SVs of the estimated trans-

formation T̂ l (panel B of Fig 3 shows estimates of SVs for some simulated toy examples). For

this purpose, we defined a metric describing the average pattern deformation induced by the

transformation T. We computed the rate of decay of the SVs of the estimated transformation

T̂ l (RDSV), defined as the parameter b of an exponential function fitted to the curve composed

of all the SVs (as in 2.3 for the d curve). For instance, a value of 0 for RDSV corresponds to

constant values for the SVs, i.e. the mapping induces the same deformation between the MV-

patterns associated with each stimulus, while a larger RDSV value is associated with a larger

asymmetric deformation, i.e. the patterns are differently amplified/compressed before or after

rotation depending on the stimulus.

Additionally, the rate with which the SVs of T̂ l decay depends on the degree to which the

MV-patterns in the output region can be described by the linear mapping from the input

region (panel C, Fig 3). Therefore, as for the previously described strategy for characterising

the sparsity of the transformations, we also take into account the goodness-of-fit GOF between

the patterns as a measure of the level of noise in the model (panel D of Fig 3). In this way, we

can understand if two transformations induce a different deformation on the MV-patterns in

the presence of different levels of noise. The SVs of the estimated transformations can also be

exploited for investigating the pattern deformation in the general case in which there is a dif-

ferent number of voxels in the two ROIs. Let us now describe step by step the Monte Carlo

based approach that we use in order to estimate the average pattern deformation induced by

the transformations between EVC and the other three ROIs (i.e., EVC->ITC, EVC->FFA and

EVC->PPA).

2.4.1 Monte Carlo approach to obtain the rate of decay of singular values curve. Let us

suppose we are interested in investigating the pattern deformation for the same transformation

for which we assessed sparsity in 2.3.1, i.e. between EVC and ITC, using the MV-patterns

obtained from the full set of 96 stimuli. The other cases will be analogously treated. The Monte

Carlo approach that we use consists of the following steps:

1. we simulate, for each noise level and each rate of exponential decay of the SVs, transforma-

tions T. For each realisation of T:

T ≔ UΣbV; ð10Þ

where U and V are two orthogonal matrices obtained by applying a singular value decom-

position on a matrix whose entries follow standard Normal distributions, and Sb is a diago-

nal matrix whose non-zero entries follow an exponential decay with parameter b;

2. as in the section 2.3.1, we compute the estimates T̂ l of the true T by using a ridge regres-

sion method on the original EVC patterns X and the simulated ITC pattern obtained as

~Y ¼ ð1 � gÞTX=kTXkF þ gE=kEkF (the patterns were first demeaned and standardised

for each stimulus);

3. we calculate the RDSV, i.e. the rate of decay of the SVs for the estimated transformation (we

only use the P largest values with P = min{rank(X), rank(Y))}, and the goodness-of-fit GOF;

rates of decay (b = 0, −0.01, −0.1, −1). C) The curves of the SVs of the estimated transformations associated with orthogonal

transformations (i.e., b = 0) and different GOF values (i.e. different levels of noise in the model). D) Scatter plot between goodness-

of-fit GOF and the rate of decay of singular values RDSV, i.e. the estimated decay obtained by fitting an exponential curve to the SVs

of the estimated transformation for the four different cases. By using both the RDSV and GOF, it is possible to characterise the

different induced pattern deformations, even if the level of noise is not equal to 0%.

https://doi.org/10.1371/journal.pone.0223660.g003
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4. we calculate the average RDSV and GOF across the simulation-realisations for each differ-

ent simulated decay of the SV-curve and noise level. In such a way, we obtain, for each sim-

ulated decay, a curve describing the mean RDSV value as a function of the GOF;

5. we estimate the pattern deformation for the real data by looking in the RDSV − GOF plane

at the point of coordinates equal to the average (across subjects) RDSV and GOF. For exam-

ple, if this point lies between two curves representing the results for the rates of decay of b =

−0.01 and b = 0, the estimated decay of the SVs curve would be (−0.01, 0).

We use four different simulated rates of exponential decay of the SVs, which indicate four

different orders of magnitude of the exponential decay: 0, −0.01, −0.1, −1. We also use 10 dif-

ferent levels of noise strength γ, which ranged from 0 to 0.9 with a step of 0.1. For each differ-

ent rate of exponential decay and level of noise, the number of simulations is 1000.

2.5 Real fMRI data

The fMRI data set has been used in previous publications [7,17–20]. Four healthy human vol-

unteers participated in the fMRI experiment (mean age 35 years; two females).

The stimuli were 96 colour photographs (175 x 175 pixels) of isolated real-world objects dis-

played on a gray background. The objects included natural and artificial inanimate objects as

well as faces (24 photographs), bodies of humans and nonhuman animals, and places (8 photo-

graphs). Stimuli were displayed at 2.9˚ of visual angle and presented using a rapid event-related

design (stimulus duration: 300 ms, interstimulus interval: 3700 ms) while subjects performed a

fixation-cross-colour detection task. Each of the 96 object images was presented once per run

in random order. Subjects participated in two sessions of six 9-min runs each. The sessions

were acquired on separate days.

Subjects participated in an independent block design experiment that was designed to

localise regions of interest (ROIs). The block-localiser experiment used the same fMRI

sequence as the 96 images experiment and a separate set of stimuli. Stimuli were grayscale

photos of faces, objects, and places, displayed at a width of 5.7˚ of visual angle, centered

with respect to a fixation cross. The photos were presented in 30 s category blocks (stimulus

duration: 700 ms, interstimulus interval: 300 ms), intermixed with 20 s fixation blocks, for

a total run time of 8 min. Subjects performed a one-back repetition detection task on the

images.

2.5.1 Acquisition and analysis. Acquisition: Blood oxygen level-dependent (BOLD)

fMRI measurements were performed at high spatial resolution (voxel volume: 1.95 × 1.95 ×
2mm3), using a 3 T General Electric HDx MRI scanner, and a custom-made 16-channel

head coil (Nova Medical). Single-shot gradient-recalled echo-planar imaging with sensitivity

encoding (matrix size: 128 × 96, TR: 2 s, TE: 30 ms, 272 volumes per run) was used to acquire

25 axial slices that covered inferior temporal cortex (ITC) and early visual cortex (EVC)

bilaterally.

Pre-processing: fMRI data preprocessing was performed using BrainVoyager QX 1.8

(Brain Innovation). All functional runs were subjected to slice-scan-time correction and 3D

motion correction. In addition, the localiser runs were high-pass filtered in the temporal

domain with a filter of two cycles per run (corresponding to a cutoff frequency of 0.004 Hz).

For the definition of FFA and PPA (see 2.5.2 below), data were spatially smoothed by convolu-

tion of a Gaussian kernel of 4 mm full-width at half-maximum. For definition of EVC and

ITC, unsmoothed data were used. Data were converted to percentage signal change. Analyses

were performed in native subject space (i.e., no Talairach transformation).
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Estimation of single-image patterns: Single-image BOLD fMRI activation was estimated

by univariate linear modeling. We concatenated the runs within a session along the temporal

dimension. For each ROI, data were extracted. We then performed univariate linear modelling

for each voxel in each ROI to obtain response-amplitude estimates for each of the 96 stimuli.

The model included a hemodynamic-response predictor for each of the 96 stimuli. The predic-

tor time courses were computed using a linear model of the hemodynamic response [32] and

assuming an instant-onset rectangular neuronal response during each condition of visual stim-

ulation. For each run, the design matrix included the stimulus-response predictors along with

six head-motion parameter time courses, a linear-trend predictor, a six-predictor Fourier basis

for nonlinear trends (sines and cosines of up to three cycles per run), and a confound-mean

predictor.

2.5.2 ROI definition. ROIs were defined based on visual responsiveness (for EVC and

ITC) and category-selective contrasts (for fusiform face area, FFA, and parahippocampal place

area, PPA) of voxels in the independent block-localiser task and restricted to a cortex mask

manually drawn on each subject’s fMRI slices [18].

The FFA was defined in each hemisphere as a cluster of contiguous face-selective voxels in

ITC cortex (number of voxels per hemisphere: 128). Face-selectivity was assessed by the con-

trast faces minus places and objects.

Clusters were obtained separately in the left and right hemisphere by selecting the peak

face-selective voxel in the fusiform gyrus, and then growing the region from this seed by an

iterative process. During this iterative process, the region is grown one voxel at a time, until an

a priori specified number of voxels is selected. The region is grown by repeatedly adding the

most face-selective voxel from the voxels that are directly adjacent to the current ROI in 3D

space, i.e., from those voxels that are on the “fringe” of the current ROI (the current ROI is

equivalent to the seed voxel during the first iteration).

The PPA was defined in an identical way but then using the contrast places minus faces and

objects, growing the region from the peak place-selective voxel in the parahippocampal cortex

in each hemisphere (number of voxels per hemisphere: 128).

The ITC ROI was defined by selecting the most visually responsive voxels within the

ITC portion of the cortex mask (number of voxels for the bilateral ITC region: 316). Visual

responsiveness was assessed by the contrast visual stimulation (face, object, place) minus

baseline.

In order to define EVC, we selected the most visually responsive voxels, as for ITC, but

within a manually defined anatomical region around the calcarine sulci within the bilateral

cortex mask (number of voxels: 224). For EVC and ITC, voxels were not constrained to be spa-

tially contiguous.

2.5.3 Ethics statement. Institutional Review Board of the National Institute of Mental

Health (Bethesda, Maryland, USA). NCT00001360. Written.

2.5.4 Metrics calculation on real data. In order to estimate and analyse the transforma-

tion between the input MV-patterns of EVC and the output MV-patterns of ITC, FFA and

PPA, we relied on an across-sessions approach. We first estimated the transformation T̂λ;12, as

well as the values of RDD12, RDSV12 and the cross-validated GOF12, from the input patterns of

session 1 and the output patterns of session 2. Second, we estimated T̂λ;21, and the values of the

three metrics, by using the input/output patterns of the session 2/1. Then, we averaged the

obtained values, i.e. we defined GOF≔ (GOF12 + GOF21)/2, RDD≔ (RDD12 + RDD21)/2 and

RDSV≔ (RDSV12 + RDSV21)/2. The application of an across-sessions approach improves the

interpretability of the measures by reducing possible confounds induced by stimulus-unrelated

intrinsic fluctuations shared between brain regions [33,34].
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Results

3.1 Goodness-of-fit, explained variance

The results obtained by analysing the goodness-of-fit (GOF, panel A, Fig 4) associated with the

transformations (S3 Fig show the estimated mappings for each subject and pair of ROIs as heat

maps) clearly show the presence of a linear statistical dependency between EVC and ITC, FFA

and PPA. The cross-validated average GOF value across the four subjects for each pair of ROIs

is statistically different from the GOF values obtained by permutation test (p< 0.05, K-S test).

The GOF value achieved by EVC in estimating the ITC patterns shows the largest value. The

EVC->ITC value is significantly larger (p = 0.001, paired t-test, Cohen’s d = 5.97) than the

value associated with EVC->PPA. No statistically significant difference can be observed

between EVC->ITC and EVC->FFA (p = 0.066, paired t-test, Cohen’s d = 1.41), as well as

between EVC->FFA and EVC->PPA (p = 0.069, paired t-test, Cohen’s d = 1.39). In order to

show the reliability of the GOF metric at a within subject level, we compared the session1-ses-

sion2 transformations to the session2-session1 mappings. We found that the goodness-of-fit

(GOF) shows similar values across sessions: 26.9 ± 6.4 and 27.8 ± 7.6 for EVC-ITC; 14.2 ± 3.7

and 16.8 ± 5.9 for EVC-FFA; 6.6 ± 4.3 and 8.8 ± 4.2 for EVC-PPA.

We then separately ran two analyses that, instead of considering all the 96 stimuli, only

considered the 24 face and 8 place stimuli (which are included in the set composed of the 96

original stimuli). Middle and right panels of Fig 4 show the results. For the subset of stimuli

composed of faces (panel B, Fig 4), the GOF value for EVC->ITC is significantly larger

(p< 0.001, paired t-test, Cohen’s d = 7.41) than the GOF value associated with EVC->PPA.

The percentage of variance of FFA explained by EVC (i.e. EVC->FFA) is significantly

(p = 0.007, paired t-test, Cohen’s d = 3.31) larger than that for EVC->PPA, while no statisti-

cally significant difference can be observed between EVC->ITC and EVC->FFA (p = 0.113,

paired t-test, Cohen’s d = 1.06). For the subset of 8 places stimuli (panel C, Fig 4), a significant

difference (p = 0.010, paired t-test, Cohen’s d = 2.95) can only be observed EVC->ITC and

EVC->FFA. No statistically significant differences can be observed between EVC->FFA and

EVC->PPA (p = 0.157, paired t-test, Cohen’s d = 0.94) and between EVC->ITC and EVC-

>PPA (p = 0.371, paired t-test, Cohen’s d = 0.52).

S4 Fig shows the GOF as a function of the stimulus. The first 48 stimuli are images of ani-

mate objects (including animal and human faces) while the last 48 stimuli are images of

Fig 4. The goodness-of-fit (GOF) values for all the subjects and sets of stimuli. A), B) and C) The percentages of

GOF by using the linear pattern transformations from EVC to the three output ROIs for all 96 stimuli, the 24 face

stimuli and the 8 place stimuli, respectively. The p-values for the paired t-tests are reported even if based on only four

subjects.

https://doi.org/10.1371/journal.pone.0223660.g004
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inanimate objects (including natural and artificial places). For ITC and FFA, the GOF is gener-

ally higher for the animate than inanimate objects, while the opposite is observed for PPA. For

39 of the 48 animate objects, the GOF for EVC->PPA is lower than the average GOF across

the 96 stimuli, while for 35 of the 48 inanimate objects, the GOF is higher (p<0.001, Fisher

exact test). Conversely, for 38 of the 48 animate objects, the GOF for EVC->FFA is higher

than the average GOF across the 96 stimuli, while for 36 of the 48 inanimate objects, the GOF
is lower (p<0.001, Fisher exact test). The results for EVC->ITC are similar to those for EVC-

>FFA: for 35 of the 48 animate objects, the GOF for EVC->ITC is higher than average, while

for 27 of the 48 inanimate objects, the GOF is lower (p<0.01, Fisher exact test).

As an alternative to explained variance (i.e. to GOF metric), it is possible to analyse the cor-

relation between the dissimilarity matrix associated with patterns Y and the matrix obtained

using the output patterns Ŷ ¼ T̂ lX. Let us call this approach as linearly predicted representa-

tional dissimilarity (LPRD). Fig 5 shows the dissimilarity matrices for real and estimated MV-

patterns. The average coefficients between the lower triangular portions of the matrices (i.e.

the LPRD values) are 0.19, 0.16 and 0.15 (respectively for ITC, FFA and PPA, all p<0.001).

Visual inspections show that some patterns of the real dissimilarity matrices are preserved in

the estimates (e.g. the patterns highlighted by the grey boxes for ITC and FFA).

Fig 5. Representational dissimilarity matrices for actual and estimated patterns. Left panels: percentile of the

dissimilarity (correlation distance) among the multivariate patterns of the actual ITC, FFA and PPA. Right panels:

percentile of the correlation distance among the estimated patterns from EVC. The estimates of the multivariate

patterns were obtained by using the pattern transformation between EVC and ITC, FFA and PPA. While some

information is lost, some characteristic patterns which are visible in the left panels (e.g. the patterns highlighted by the

grey boxes for ITC and FFA) are also visible in the right panels. The average correlation coefficients between the lower

triangular portions of the representational dissimilarity matrices (i.e. the linearly predicted representational

dissimilarity values) are 0.19, 0.16 and 0.15 (all p-values<0.001).

https://doi.org/10.1371/journal.pone.0223660.g005
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All the estimated regularization parameters λ lie within the range of [0.01, 10000], without

reaching the boundaries of the interval. In particular, for the analysis on the 96 stimuli, the

parameters for the transformations EVC-ITC were 1071.4±170.2, while for EVC-FFA and

EVC-PPA were equal to 1573.6±334.7 and 2673.1±942.7. It is evident that there exists an antic-

orrelation between the GOF and λ values (Pearson correlation coefficient of −0.86, p<0.001).

In particular, the higher the variance explained by the estimated transformation T̂l, the lower

the optimal value of the regularisation parameter λ.

Finally, we also investigated the GOF value of transformations obtained after the applica-

tion of a k-fold cross-validation (with k = 10), one other possible approach for defining the reg-

ularization parameter. The results were in accordance with those shown in Fig 4.

3.2 Sparsity

Fig 6 shows the results obtained for the rate of decay of the density curve (RDD) and the GOF
values (as described in the section 2.3.1), in order to characterise the sparsity of the MV-pat-

tern transformations. We found a generally high level of sparsity for the transformations EVC-

>ITC, EVC->FFA and EVC->PPA. All the transformations reach an estimated sparsity

>80% (Fig 6). The transformation EVC->PPA (right panel, Fig 6) shows the highest estimated

levels of sparsity (>90%), followed by the transformation EVC->FFA (middle panel, Fig 6)

and EVC->ITC (left panel, Fig 6) (both at 80–90%).

All estimates show large standard errors that, in some cases (see left panel, Fig 6), may

include curves associated with more than one percentage of sparsity. This suggests that an

accurate estimate of the sparsity for the pattern transformations may benefit from a larger

number of subjects and stimuli. Finally, the results in S5 Fig clearly show that the average val-

ues for the session1-session2 mappings are in accordance with those obtained by considering

the session2-session1 transformations, thus suggesting a within-subject stability of the metric.

3.3 Pattern deformation

Fig 7 shows the results for the pattern deformation metric, i.e. for the estimated rate of decay

of the SVs (RDSV) and the GOF values (see section 2.4.1), for the transformations EVC->ITC,

EVC->FFA and EVC->PPA. For the set of 96 stimuli, the transformations show different

rates of decay of the SV-curve among them.

The results associated with the transformation EVC->FFA cover the curves associated with

a deformation of -0.01 and 0 (these two curves practically coincide for low GOF values, middle

panel of Fig 7). This transformation is thus characterised by a more uniform deformation of

the EVC MV-patterns than the other two transformations, which do not uniformly deform the

patterns (the estimated parameter is approximately equal to or lower than -0.1 for EVC->ITC

and EVC->PPA, respectively).

Although the error bars (standard error of the mean) show small values along the y-axis,

the characterisation of the rate of decay of SV-curve would benefit from a larger number

of subjects and stimuli, as well as from a higher signal-to-noise ratio. Finally, similarly to the

sparsity metric, the results in S6 Fig show that the average values for the session1-session2

mappings are in accordance with those obtained by considering the session2-session1

transformations.

Discussion

In this study, we developed computational strategies for estimating and analysing linear trans-

formations between multivariate fMRI patterns in pairs of regions-of-interest (ROIs). We first

Analysing linear multivariate pattern transformations in neuroimaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0223660 October 15, 2019 16 / 23

https://doi.org/10.1371/journal.pone.0223660


described a cross-validated ridge regression approach for robustly estimating the linear pattern

transformation. Then, we described three metrics to characterise specific features of these

transformations, i.e. the goodness-of-fit, the sparsity of the transformation and the pattern

deformation. The first metric, goodness-of-fit, describes to what degree the transformations

can be represented as a matrix multiplication, thus estimating the linear statistical dependency

between two multi-voxel patterns. The second metric, sparsity, is closely related to the concept

of topographic projections, i.e. possible one-to-one connections between voxels. The higher

the percentage of sparsity, i.e. the higher the percentage of zero elements of the transformation,

Fig 7. Pattern deformation for each pair of ROIs. The three panels show the estimates of the rate of decay of SV-curve (RDSV),

denoting the pattern deformation, of EVC->ITC, EVC->FFA and EVC->PPA for the 96 stimuli. The dotted lines represent the

mean RDSV and GOF values across the simulation-realisations for each of the simulated rates of decay. Each area between two

dotted lines thus represents a fixed range for the rate of decay. The black squares (and their error bars) in the panels denote the mean

(and the standard error of the mean) estimate of RDSV and GOF across the four subjects.

https://doi.org/10.1371/journal.pone.0223660.g007

Fig 6. Estimated sparsity for the pattern transformation. The three panels show the estimates of the percentage of

sparsity for the pattern transformations EVC->ITC, EVC->FFA and EVC->PPA, respectively. The dotted lines

represent the mean RDD and GOF values across the simulation-realisations for each of the simulated percentages of

sparsity, i.e. 50%, 60%, 70%, 80%, 90% and 99%. Each area between two dotted lines thus represents a fixed range for

the percentage of sparsity, e.g. the area between the two curves associated with the blues and red squares denotes a

degree of sparsity between 80% and 90%. The black squares (and their error bars) in the panels denote the mean (and

the standard error of the mean) estimate of RDD and GOF across the four subjects. All estimates show a high

percentage of sparsity for all transformations (>80%). Slightly higher percentages are shown by the transformations

EVC->FFA and EVC->PPA.

https://doi.org/10.1371/journal.pone.0223660.g006
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the higher is the degree to which the transformation represents a "one-to-one" mapping

between voxels of the two ROIs. In order to estimate the percentage of sparsity, we relied on

a Monte Carlo procedure to overcome the confounds induced by noise. The third metric,

pattern deformation, is a measure of the degree to which the transformation amplifies or

suppresses certain patterns. For instance, a constant value for the SVs of the transformation

is associated with two multivariate patterns which can be seen as rotated versions of each

other, while a larger decay is associated with a larger deformation (all the MATLAB

functions and scripts for testing the metrics are freely available from https://github.com/

alessiobastineuroscience/Analysing-linear-MV-pattern-transformation). We applied the ridge

regression method, and the three different metrics, to an event-related fMRI data set consisting

of data from four human subjects [7].

The results obtained using the goodness-of-fit measure showed the presence of a statisti-

cally significant linear dependency between EVC and the other three ROIs. Among the regions

considered, ITC showed the highest linear dependency with EVC. Furthermore, in accordance

with the existing literature [18,22,23], FFA showed the expected preference for faces and ani-

mate objects, while PPA for places and inanimate objects (Fig 4 and S4 Fig). These findings

indicate that, even if the true pattern transformations between brain areas might be non-linear,

linear transformations can provide a good approximation. Importantly, while non-linear

methods (such as neural networks) may increase the goodness-of-fit compared to linear meth-

ods [6], linear methods allow the investigation of meaningful features of the transformation,

such as sparsity and pattern deformation.

Our Monte Carlo approach for analysing sparsity revealed that our estimated linear

transformations can be considered as sparse. Almost all the pattern transformations

showed an estimated percentage of sparsity higher than 80%. Nevertheless, although the

observed percentages suggest the presence of a one-to-few voxels mapping, they are lower

than those expected for a precise one-to-one voxel mapping. Such a mapping between

two ROIs, of e.g. 200 voxels each, would imply a percentage of sparsity higher than 99.5%.

Importantly, the sparsity estimates reflect the percentage of components of the transforma-

tions that are equal to zero. These percentages, as opposed to the absolute number of zeros

in the matrices, can be compared across connections (e.g. a percentage of sparsity of 80% in

the transformation EVC-ITC could coincide with a percentage of 80% in the transformation

EVC-FFA).

The results obtained by applying the pattern deformation metric showed that the transfor-

mations from EVC to ITC, FFA and PPA patterns are associated with different levels of defor-

mations. The average deformation induced by the transformation from EVC to FFA was the

one showing the most uniform amplification/compression, while the other two transforma-

tions are associated with higher degree of deformation. Thus, each of these transformations

amplifies certain MV-patterns while dampening others. It is possible that this metric is related

to the previous metric of sparsity. For example, sparser transformations may exhibit a lower

degree of pattern deformation. This could be studies in the future using simulations and

empirical data. However, both metrics still provide us with information on different types of

features of the transformation. Here, we preferred to rely on two simulations that are as inde-

pendent as possible.

Our results are based on data sets from only four subjects. This is not sufficient for a reliable

statistical analysis, and these results should therefore be seen mostly as a proof-of-concept of

our novel approach. However, the functional specificity of the patterns of goodness-of-fit and

the high degree of sparsity, which suggests the presence of one-to-few voxels mappings, are

promising hints that these methods will be useful for the characterisation of neural pattern

transformations in future studies.
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In this paper we directly focused on the linear mapping between voxel spaces associated

with two ROIs, as opposed to other methods that estimate and exploit the transformation

between e.g. principal component spaces [3]. The reason is that changing the coordinate system

might lead to loss of functionally relevant information, since the reference to the original voxel

space is hidden by the change of coordinates. For instance, panel A of S7 Fig graphically shows

how spatial patterns in the voxel-by-voxel transformation may not be evident in the transfor-

mation between the lower-dimensional principal component spaces. Furthermore, a sparse

voxel-by-voxel interaction may not be associated with equally sparse transformations between

PCs (panel B, S7 Fig).

A possible extension of our work is to combine the voxel spaces of all the subjects in order

to directly examine the features of the transformation in a common high-dimensional space

across subjects, e.g. exploiting a strategy similar to the hyperalignment technique developed

by Haxby et al. [35]. Several other variations and extensions of our approach are possible. In

order to estimate the pattern transformations, we relied on a ridge regression method [24].

This method aims at minimising the l2 norm of the residuals as well as the l2 norm of the trans-

formation itself. This is not the only approach that can be used as a regression analysis method.

For example, one can also apply the least absolute shrinkage and selection operator (LASSO,

[30]), which is a least-squares method with an l1 penalty term, or an elastic net approach,

which contains a combination of both l2 and l1 penalties [36]. However, these estimators may

lead to sparse solutions even in the presence of non-sparse linear mappings (by using an elastic

net approach all the estimated matrices show in our case a percentage higher than 90%, which

is probably due to the presence of noise). This issue may be mitigated by combining our

Monte Carlo method with those methodologies, reducing overestimates of sparsity by evaluat-

ing the transformations in settings that resemble the actual levels of noise in the data. Further-

more, classic algorithms [37] for solving these minimisation problems require the pattern

transformation to be vectorised, and the input pattern to be transformed into a matrix com-

posed of copies of the original pattern, thus requiring long computation times. Nevertheless,

future work should compare pattern transformations estimated using different regression

analyses or other techniques (such as approaches derived from canonical correlation analysis,

[38]) as well as using other classical methods for explaining the responses in one ROI in

terms of both connectivity and task-related parameters [39]. An advantage of our regression

approach is that it produces explicit transformations in the voxel space, from which we can

extract meaningful features. It remains to be seen whether this is also the case for non-linear

methods such as neural networks [6] or multivariate kernel methods [40].

We found a high degree of sparsity for our estimated transformations, which is consistent

with the presence of topographic mappings. In the future, one could define a metric for “pat-

tern divergence” using information about spatial proximity of voxels, in order to test whether

voxels that are close-by in the output region project to voxels that are also close-by in the input

region.

At the current stage, our methods require the selection of a priori input and output regions.

For instance, we here explicitly focused on the transformation from EVC to the other three

ROIs, i.e. on the feedforward process in the ventral visual stream; feedback projections are not

considered in this work. This limitation may be overcome by performing analyses that investi-

gate the directionality of functional interactions between ROIs using temporal information.

These analyses include Granger causality analysis ([41]; see [42] for a critique), which can be

performed on the full time series prior to computing our metrics, or analyses grounded in bio-

physical models (e.g. dynamic causal modelling; [43]).

Our method can also be applied to resting state data (where the transformation could be

estimated using multivariate regression of the time courses in different regions as in [3], or
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[9]). It would then be possible to apply our metrics to these transformations. Our approach

could also be generalized to the case of more than two ROIs. For instance, it would be possible

to compute the transformation from pairs of regions while partialling out the contributions of

other ROIs, thus leading to an estimate of the direct-transformation from the input to the out-

put region. Moreover, our method can be applied to other neuroimaging modalities, such as

electro- and magneto-encephalography (EEG and MEG). This opens up the possibility of

studying transformations across time, i.e. whether there are (non-)linear transformations that

relate a pattern in an output region to patterns in an input region at different time points.

While current approaches using RSA or decoding can test whether patterns or pattern similar-

ities are stable over time (e.g. [44]), our approach can potentially reveal whether there are sta-

ble or dynamic transformations among patterns of brain activity. In the linear case, this would

be related to multivariate auto-regressive (MVAR) modelling (e.g. [41,45]). So far, these meth-

ods have been used to detect the presence of significant connectivity among brain regions.

Future work should investigate whether we can use the actual transformations to characterise

the spatial structure of these connections in more detail. Our study demonstrates that linear

methods can be a powerful tool in this endeavour, and may pave the way for more biophysi-

cally informed approaches using non-linear methods. Finally, our methods have translational

potential. For example, they can be used to investigate whether the complexity of pattern trans-

formations is affected by brain diseases such as dementias or schizophrenia, or how these

transformations change across the life span.
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