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Distinct scientific theories can make similar predictions. To adju-
dicate between theories, we must design experiments for which
the theories make distinct predictions. Here we consider the prob-
lem of comparing deep neural networks as models of human
visual recognition. To efficiently compare models’ ability to pre-
dict human responses, we synthesize controversial stimuli: images
for which different models produce distinct responses. We applied
this approach to two visual recognition tasks, handwritten digits
(MNIST) and objects in small natural images (CIFAR-10). For each
task, we synthesized controversial stimuli to maximize the dis-
agreement among models which employed different architectures
and recognition algorithms. Human subjects viewed hundreds
of these stimuli, as well as natural examples, and judged the
probability of presence of each digit/object category in each
image. We quantified how accurately each model predicted the
human judgments. The best-performing models were a gener-
ative analysis-by-synthesis model (based on variational autoen-
coders) for MNIST and a hybrid discriminative–generative joint
energy model for CIFAR-10. These deep neural networks (DNNs),
which model the distribution of images, performed better than
purely discriminative DNNs, which learn only to map images
to labels. None of the candidate models fully explained the
human responses. Controversial stimuli generalize the concept of
adversarial examples, obviating the need to assume a ground-
truth model. Unlike natural images, controversial stimuli are
not constrained to the stimulus distribution models are trained
on, thus providing severe out-of-distribution tests that reveal
the models’ inductive biases. Controversial stimuli therefore pro-
vide powerful probes of discrepancies between models and
human perception.

visual object recognition | deep neural networks | optimal experimental
design | adversarial examples | generative modeling

Convolutional deep neural networks (DNNs) are currently
the best image-computable models of human visual object

recognition (1–3). To continue improving our computational
understanding of biological object recognition, we must effi-
ciently compare different DNN models in terms of their predic-
tions of neuronal and behavioral responses of human and nonhu-
man observers. Adjudicating among models requires stimuli for
which models make distinct predictions.

Here we consider the problem of adjudicating among mod-
els on the basis of their behavior: the classifications of
images. Finding stimuli over which high-parametric DNN mod-
els disagree is complicated by the flexibility of these models.
Given a sufficiently large sample of labeled training images,
a wide variety of high-parametric DNNs can learn to pre-
dict the human-assigned labels of out-of-sample images. By
definition, models with high test accuracy will mostly agree
with each other on the classification of test images sampled
from the same distribution the training images were sampled
from.

Even when there is a considerable difference in test accuracy
between two models, the more accurate model is not necessarily

more human-like in the features that its decisions are based on.
The more accurate model might use discriminative features not
used by human observers. DNNs may learn to exploit discrimi-
native features that are completely invisible to human observers
(4, 5). For example, consider a DNN that learns to exploit
camera-related artifacts to distinguish between pets and wild ani-
mals. Pets are likely to have been photographed by their owners
with cellphone cameras and wild animals by photographers with
professional cameras. A DNN that picked up on camera-related
features might be similar to humans in its classification behav-
ior on the training distribution (i.e., highly accurate), despite
being dissimilar in its mechanism. Another model that does
not exploit such features might have lower accuracy, despite
being more similar to humans in its mechanism. To reveal
the distinct mechanisms, we need to move beyond the training
distribution.

There is mounting evidence that even DNN models that
exhibit highly human-like responses when tested on in-
distribution stimuli often show dramatic deviations from human
responses when tested on out-of-distribution (OOD) stimuli (6).

Prominent examples include images from a different domain
[e.g., training a DNN on natural images and testing on silhou-
ettes (7, 8)], as well as images degraded by noise or distortions
(9–11), filtered (4), retextured (12), or adversarially perturbed to
bias a DNN’s classifications (13). Assessing a model’s ability to
predict human responses to OOD stimuli provides a severe test
of the model’s inductive bias, i.e., the explicit or implicit assump-
tions that allow it to generalize from training stimuli to novel
stimuli. To correctly predict human responses to novel stimuli,
a model has to have an inductive bias similar to that employed
by humans. Universal function approximation by itself is insuf-
ficient. Previous studies have formally compared the responses
of models and humans to distorted (9, 10) and adversarially per-
turbed images (14, 15), demonstrating the power of testing for
OOD generalization. However, such stimuli are not guaranteed
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to expose differences between different models, because they are
not designed to probe the portion of stimulus space where the
decisions of different models disagree.

Controversial Stimuli. Here we suggest testing and comparing
DNN models of vision on controversial stimuli. A controversial
stimulus is a sensory input (here, an image) that elicits clearly
distinct responses among two or more models. Collecting human
responses to stimuli that are controversial between two mod-
els gives us great power to adjudicate between the models. The
human responses are guaranteed to provide evidence against
at least one of the models, since they cannot agree with both
models.

Once we define a controversiality score, we can search for such
stimuli in large corpora or, more flexibly, synthesize them by opti-
mization (Fig. 1). Stimulus synthesis need not be limited to any
particular stimulus prior. If the candidate models differ mostly
in how they classify in-distribution examples, an appropriate syn-
thesis procedure, guided by the models’ responses, will push
the resulting controversial stimuli toward the training distribu-
tion. However, if out-of-distribution stimuli evoke considerably
different responses among the candidate models, then stimulus
synthesis can find them.

Controversial Stimuli vs. Adversarial Examples. Controversial stim-
uli generalize the notion of adversarial examples. An adversarial
example is a stimulus controversial between a model and an ora-
cle that defines the true label. A stimulus that is controversial
between two models must be an adversarial example for at least
one of them: Since the models disagree, at least one of them
must be incorrect (no matter how we choose to define correct-
ness). However, an adversarial example for one of two models
may not be controversial between them: Both models may be
similarly fooled (13, 16, 17). Controversial stimuli provide an
attractive alternative to adversarial examples for probing models

Fig. 1. Synthesizing a single controversial stimulus. Starting from an initial
noise image, one can gradually optimize an image so two (or more) object
recognition models disagree on its classification. Here, the resulting contro-
versial stimulus (Bottom Right) is classified as a 7 by model A and as a 3 by
model B. Testing such controversial stimuli on human observers allows us
to determine which of the models has decision boundaries that are more
consistent with the human decision boundaries. Often, “natural” examples
(here 50 randomly selected test MNIST examples) cause no or minimal con-
troversy among models and therefore lack the power to support efficient
comparison of models with respect to human perception. Model A here is
the Capsule Network reconstruction readout, and model B is small VGG−.
The stimulus synthesis optimization path (373 steps long) was sampled at
nine roughly equidistant points.

because they obviate the need for ground-truth labels during
stimulus optimization. When adversarially perturbing an image,
it is usually assumed that the perturbation will not also affect the
true label (in most cases, the class perceived by humans). This
assumption necessarily holds only if the perturbation is too small
to matter (e.g., as in ref. 13). When the bound on the perturba-
tion is large or absent, human observers and the targeted model
might actually agree on the content of the image (14), mak-
ing the image a valid example of another class. Such an image
does not constitute a successful adversarial attack. The validity
and power of a controversial stimulus, by contrast, are guar-
anteed given that the stimulus succeeds in making two models
disagree.

Previous Work. Our approach is conceptually related to maxi-
mum differentiation (MAD) competition (18). MAD competi-
tion perturbs a source image in four directions: increasing the
response of one model while keeping the response of the other
fixed, decreasing the response of one model while keeping the
response of the other fixed, and the converse pair. In contrast,
a single controversial stimulus manipulates two (or more) mod-
els in opposite directions. Yet crudely speaking, our approach
can be viewed as a generalization of MAD competition from
univariate response measures (e.g., perceived image quality) to
multivariate response measures (e.g., detected object categories)
and from local perturbation of natural images to unconstrained
search in image space.

Results
We demonstrate the approach of controversial stimuli on two
relatively simple visual recognition tasks: the classification of
hand-written digits [the MNIST dataset (19)] and the classifi-
cation of 10 basic-level categories in small natural images [the
CIFAR-10 dataset (20)]. From an engineering perspective, both
tasks are essentially solved, with multiple, qualitatively different
machine-learning models attaining near-perfect performance.
However, this near-perfect performance on in-distribution exam-
ples does not entail that any of the existing models solve MNIST
or CIFAR-10 the way humans do.

Synthesizing Controversial Stimuli. Consider a set of candidate
models. We want to define a controversiality score for an image
x . This score should be high if the models strongly disagree on
the contents of this image.

Ideally, we would take an optimal experimental-design
approach (21, 22) and estimate, for a given image, how much
seeing the response would reduce our uncertainty about which
model generated the data (assuming that one of the models
underlies the observed human responses). An image would be
preferred according to the expected reduction of the entropy of
our posterior belief. However, this statistically ideal approach
is difficult to implement in the context of high-level vision and
complex DNN models without relying on strong assumptions.

Here we use a simple heuristic approach. We consider one pair
of models (A and B) at a time. For a given pair of classes, ya and
yb (e.g., the digits 3 and 7, in the case of MNIST), an image is
assigned with a high controversiality score c

ya ,yb
A,B (x ) if it is rec-

ognized by model A as class ya and by model B as class yb . The
following function achieves this:

c
ya ,yb
A,B (x ) = min {p̂A(ya | x ), p̂B (yb | x )}, [1]

where p̂A(ya | x ) is the estimated conditional probability that
image x contains an object of class ya according to model A, and
min is the minimum function. However, this function assumes
that a model cannot simultaneously assign high probabilities to
both class ya and class yb in the same image. This assump-
tion is true for models with softmax readout. To make the
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controversiality score compatible also with less restricted (e.g.,
multilabel sigmoid) readout, we used the following function
instead:

c
ya ,yb
A,B (x ) = min {p̂A(ya | x ), 1− p̂A(yb | x ),

p̂B (yb | x ), 1− p̂B (ya | x )}.
[2]

If the models agree over the classification of image x , then
p̂A(ya | x ) and p̂B (ya | x ) will be either both high or both low,
so either p̂A(ya | x ) or 1− p̂B (ya | x ) will be a small number,
pushing the minimum down.

As in activation–maximization (23), we can use gradient ascent
to generate images. Here we maximize Eq. 2 by following its
gradient with respect to the image (estimated numerically for
experiment 1 and symbolically for experiment 2). To increase
the efficiency of the optimization and to avoid precision-related
issues, the optimization was done on Eq. 4 (Materials and Meth-
ods), a numerically favorable variant of Eq. 2. We initialized
images with uniform white noise and iteratively ascended their
controversiality gradient until convergence. A sufficiently contro-
versial resulting image (e.g., cya ,ybA,B (x )≥ 0.75) is not guaranteed.
A controversial stimulus cannot be found, for example, if both
models associate exactly the same regions of image space with
the two classes. However, if a controversial image is found, it is
guaranteed to provide a test stimulus for which at least one of
the models will make an incorrect prediction.

Experiment 1: Adjudicating among MNIST Models
Candidate MNIST Models. We assembled a set of nine candi-
date models, all trained on MNIST (SI Appendix, Table S1 and
section A). The nine models fall into five families: 1) discrim-
inative feedforward models, an adaptation of the VGG archi-
tecture (24) to MNIST, trained on either the standard MNIST
dataset (“small VGG”; SI Appendix, section A.1) or on a version
extended by nondigit images (“small VGG−”; SI Appendix, Fig.
S1); 2) discriminative recurrent models, the Capsule Network
(25) (“CapsuleNet”) and the Deep Predictive Coding Network
(26) (“Wen-PCN-E4”); 3) adversarially trained discriminative
models, DNNs trained on MNIST with either `∞ (“Madry
`∞”) or `2 (“Madry `2”) norm-bounded perturbations (27); 4)
a reconstruction-based readout of the Capsule Network (28)
(“CapsuleNet Recon”); and 5) class-conditional generative mod-
els, models classifying according to a likelihood estimate for each
class, obtained from either a class-specific, pixel-space Gaussian
kernel density estimator (“Gaussian KDE”) or a class-specific
variational autoencoder (VAE), the “Analysis by Synthesis”
model (29) (“Schott ABS”).

Many DNN models operate under the assumption that each
test image is paired with exactly one correct class (here, an
MNIST digit). In contrast, human observers may detect more
than one class in an image or, alternatively, detect none. To
capture this, the outputs of all of the models were evaluated
using multilabel readout, implemented with a sigmoid unit for
each class, instead of the usual softmax readout. This setup
handles the detection of each class as a binary classification
problem (30).

Another limitation of many DNN models is that they are typi-
cally too confident about their classifications (31). To address this
issue, we calibrated each model by applying an affine transforma-
tion to the preactivations of the sigmoid units (the logits) (31).
The slope and intercept parameters of this transformation were
shared across classes and were fitted to minimize the predictive
cross-entropy on MNIST test images. For pretrained models, this
calibration (as well as the usage of sigmoids instead of the soft-
max readout) affects only the models’ certainty and not their
classification accuracy (i.e., it does not change the most probable
class of each image).

Synthetic Controversial Stimuli Reveal Deviations between MNIST
Models and Human Perception. For each pair of models, we
formed 90 controversial stimuli, targeting all possible pairs of
classes. In experiment 1, the classes are the 10 digits. Fig. 2 shows
the results of this procedure for a particular digit pair across all
model pairs. Fig. 3 shows the results across all digit pairs for four
model pairs.

Viewing the resulting controversial stimuli, it is immediately
apparent that pairs of discriminative MNIST models can detect
incompatible digits in images that are meaningless to us, the
human observers. Images that are confidently classified by DNNs,
but unrecognizable to humans are a special type of an adversarial
example [described by various terms including “fooling images”
(32), “rubbish class examples” (16), and “distal adversarial exam-
ples” (29)]. However, instead of misleading one model (compared
to some standard of ground truth), our controversial stimuli elicit
disagreement between two models. For pairs of discriminatively
trained models (Fig. 3 A and B), human classifications are not
consistent with either model, providing evidence against both.

One may hypothesize that the poor behavior of discrimina-
tive models when presented with images falling into none of
the classes results from the lack of training on such examples.
However, the small VGG− model, trained with diverse nondigit
examples, still detected digits in controversial images that are
unrecognizable to us (Fig. 3A).

There were some qualitative differences among the stimuli
resulting from targeting pairs of discriminative models. Images
targeting one of the two discriminative recurrent DNN models,
the Capsule Network (25) and the Predictive Coding Network
(26), showed increased (yet largely humanly unrecognizable)
structure (e.g., Fig. 3B). When the discriminative models pit-
ted against each other included a DNN that had undergone
`2-bounded adversarial training (27), the resulting controver-
sial stimuli showed traces of human-recognizable digits (Fig. 2;
Madry `2). These digits’ human classifications tended to be
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Fig. 2. Synthetic controversial stimuli for one digit pair and all pairs of
MNIST models (experiment 1). All these images result from optimizing
images to be recognized as containing a 7 (but not a 3) by one model and
as containing a 3 (but not a 7) by the other model. Each image was syn-
thesized to target one particular model pair. For example, the bottom-left
image (seen as a 7 by us) was optimized so that a 7 will be detected with
high certainty by the generative ABS model and the discriminative small
VGG model will detect a 3. All images here achieved a controversiality score
(Eq. 2) greater than 0.75.
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A B

C D

Fig. 3. (A–D) Synthetic controversial stimuli for all digit pairs and four different MNIST model pairs (experiment 1). The rows and columns within each panel
indicate the targeted digits. For example, the top-right image in D was optimized so that a 9 (but not a 0) will be detected with high certainty by the Schott
ABS model and a 0 (but not a 9) will be detected with high certainty by the Gaussian KDE model. Since this image looks like a 9 to us, it provides evidence in
favor of Schott ABS over Gaussian KDE as a model of human digit recognition. Missing (crossed) cells are either along the diagonal (where the two models
would agree) or where our optimization procedure did not converge to a sufficiently controversial image (a controversiality score of at least 0.75). See SI
Appendix, Fig. S2 for all 36 model pairs.

consistent with the classifications of the adversarially trained dis-
criminative model (see ref. 33, for a discussion of `2 adversarial
training and perception).

And yet, when any of the discriminative models was pitted
against either the reconstruction-based readout of the Cap-
sule Network or either of the generative models (Gaussian
KDE or ABS), the controversial image was almost always
a human-recognizable digit consistent with the target of the
reconstruction-based or generative model (e.g., Fig. 3C). Finally,
synthesizing controversial stimuli to adjudicate between the
three reconstruction-based/generative models produced images
whose human classifications are most similar to the targets of the
ABS model (e.g., Fig. 3D).

The ABS model is unique in having one DNN per class, raising
the question of whether this, rather than its generative nature,
explains its performance. However, imitating this structure by
training 10 small VGG models as 10 binary classifiers did not
increase the human consistency of the small VGG model (SI
Appendix, Fig. S3). Another possibility is that a higher-capacity
discriminative model with more human-like visual training on
natural images might perform better. However, MNIST classi-
fication using visual features extracted from the hidden layers
of an Imagenet-trained VGG-16 did not outperform the ABS
model (SI Appendix, Fig. S4). Finally, the advantage of the
ABS model persisted also when the optimization was initialized
from MNIST test examples instead of random noise images (SI
Appendix, Fig. S5).

Human Psychophysics Can Formally Adjudicate among Models
and Reveal Their Limitations. Inspecting a matrix of contro-
versial stimuli synthesized to cause disagreement among two
models can provide a sense of which model is more simi-
lar to us in its decision boundaries. However, it does not
tell us how a third, untargeted model responds to these
images. Moreover, some of the resulting controversial stim-
uli are ambiguous to human observers. We therefore need
careful human behavioral experiments to adjudicate among
models.

We evaluated each model by comparing its judgments to those
of human subjects and compared the models in terms of how
well they could predict the human judgments. For experiment
1, we selected 720 controversial stimuli (20 per model-pair com-
parison; SI Appendix, section D) as well as 100 randomly selected
MNIST test images. We presented these 820 stimuli to 30 human
observers, in a different random order for each observer. For
each image, observers rated each digit’s probability of presence
from 0 to 100% on a five-point scale (SI Appendix, Fig. S6A).
The probabilities were not constrained to sum to 1, so subjects
could assign high probability to multiple digits or zero proba-
bility to all of them for a given image. There was no objective
reference for correctness of the judgments, and no feedback was
provided.

For each human subject si and model M , we estimated the
Pearson linear correlation coefficient between the human and
model responses across stimuli and classes,
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r(M , si) =

∑
x ,y

(
p̂si (y | x )− ¯̂psi

)(
p̂M (y | x )− ¯̂pM

)
√∑

x ,y

(
p̂si (y | x )− ¯̂psi

)
2
√∑

x ,y

(
p̂M (y | x )− ¯̂pM

)
2

,

[3]

where p̂si (y | x ) is the human-judged probability that image x
contains class y , p̂M (y | x ) is the model’s corresponding judg-
ment, ¯̂psi is the mean probability judgement of subject si , and
¯̂pM is the mean probability judgment of the model. The overall
score of each model was set to its mean correlation coefficient,
averaged across all subjects: r̄M = 1

n

∑
i

r(M , si), where n is the

number of subjects.
Given the intersubject variability and decision noise, the true

model (if it were included in our set) cannot perfectly predict the
human judgments. We estimated a lower bound and an upper
bound on the maximal attainable performance (the noise ceil-
ing; SI Appendix, section F). The lower bound of the noise ceiling
(“leave one subject out”; black bars in Fig. 4 A and B) was esti-
mated as the mean across subjects of the correlation between
each subject’s response pattern and the mean response pattern
of the other subjects (34). The upper bound of the noise ceil-
ing (“best possible model”; dashed lines in Fig. 4 A and B) is
the highest across-subject-mean correlation achievable by any
possible set of predictions.

The results of experiment 1 (Fig. 4A) largely corroborate the
qualitative impressions of the controversial stimuli, indicating
that the deep generative ABS model (29) is superior to the other
models in predicting the human responses to the stimulus set.
Its performance is followed by that of the Gaussian KDE, the
reconstruction-based readout of the Capsule Network, and the
`2 adversarially trained model. The other models (all discrimina-
tive) performed significantly worse. All models were significantly
below the lower bound of the noise ceiling (the black bar in
Fig. 4A), indicating that none of the models fully explained the
explainable variability in the data.

We also evaluated the models separately for controversial
stimuli and natural stimuli (i.e., MNIST test images; SI Appendix,

Fig. S8C). The ABS and Gaussian KDE models were not as good
as the discriminative models in predicting the human responses
to the natural MNIST test images, indicating that the discrimina-
tive models are better at achieving human-like responses within
the MNIST training distribution.

Experiment 2: Adjudicating among CIFAR-10 Models
The MNIST task has two obvious disadvantages as a test case:
1) its simplicity compared to visual object recognition in natu-
ral images and 2) the special status of handwritten characters,
which are generated through human movement. In experi-
ment 2, we applied the method of controversial stimuli to a
set of models designed to classify small natural images from
the CIFAR-10 image set. The purely generative ABS model is
reported to fail to scale up to CIFAR-10 (29). We therefore
included the Joint Energy Model (JEM) (35), which imple-
ments a hybrid discriminative–generative approach to CIFAR-10
classification.

Candidate CIFAR-10 Models. We assembled a set of seven CIFAR-
10 candidate models (SI Appendix, Table S2 and section B). The
seven models fall into five model families largely overlapping
with the model families tested in experiment 1: 1) discrim-
inative feedforward models, a VGG-16 (24) first trained on
ImageNet and then retrained on upscaled CIFAR-10 (“fine-
tuned VGG-16”) and a Wide-Resnet trained exclusively on
CIFAR-10 (36) (“Wide-Resnet”); 2) a discriminative recur-
rent model, a CIFAR-10 variant of the Deep Predictive Cod-
ing Network (26) (“Wen-PCN-A6”); 3) adversarially trained
discriminative models, Resnet-50 DNNs trained on CIFAR-
10 with either `∞ (“Engstrom `∞”) or `2 (“Engstrom `2”)
norm-bounded perturbations (37); 4) a class-conditional gener-
ative model, the pixel-space Gaussian kernel density estimator
(“Gaussian KDE”); and 5) a hybrid discriminative–generative
model, the Joint Energy Model (35) (“Grathwol JEM-20”).

The hybrid JEM has the same WRN-28-10 architecture (36) as
the discriminative Wide-Resnet model mentioned above, but its
training combines a discriminative training objective (minimizing

A B

Fig. 4. The performance of the candidate MNIST (A) and CIFAR-10 (B) models in predicting the human responses to the entire stimulus set. Each dot marks
the correlation coefficient between the responses of one individual human participant and one model (Eq. 3). The vertical bars mark across-subject means
(̄rM). The gray dots mark the correlation between each participant’s responses and the mean response pattern of the other participants. The mean of the
gray dots (a black bar) is the lower bound of the noise ceiling. The dashed line (“best possible model”) marks the highest across-subject mean correlation
achievable by any single model (upper bound of the noise ceiling). Significance indicators (A and B, Right): A solid dot connected to a set of open dots
indicates that the model aligned with the solid dot has significantly higher correlation than any of the models aligned with the open dots (P < 0.05, subject-
stimulus bootstrap). Testing controlled the familywise error rate at 0.05, accounting for the total number of model-pair comparisons (45 for experiment 1,
28 for experiment 2). For equivalent analyses with alternative measures of human-response prediction accuracy, see SI Appendix, Fig. S7. See SI Appendix,
Fig. S8 for the models’ prediction accuracy evaluated separately on controversial and natural stimuli and SI Appendix, Fig. S9 for an evaluation on different
ratios of controversial to natural stimuli. The deep generative model (ABS, experiment 1) and the deep hybrid model (JEM-20, experiment 2) (both in red)
explain human responses to the combined set of controversial and natural stimuli better than all of the other candidate models. And yet, none of the
models account for all explainable variance: Predicting each subject from the subject’s peers’ mean response pattern achieves significantly higher accuracy.
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the classification error) with a generative training objective. The
generative objective treats the LogSumExp of the DNN’s logits
as an unnormalized image likelihood estimate and encourages
high-likelihood assignments to in-distribution images. Including
the generative objective in the training improves the model’s
robustness to adversarial attacks (35). The model’s robustness
can be further improved by refining the input-layer representa-
tion during inference, nudging it to have higher likelihood. We
have tested the JEM model with 20 refinement steps (hence we
refer to it here as “JEM-20”).

As in experiment 1, we used sigmoid readout to allow for more
flexible responses, such as detecting multiple or none of the cat-
egories. Since the candidate models had a wide range of test
accuracies (SI Appendix, Table S2), the sigmoid readout was cal-
ibrated for each model such that negative examples would be
assigned a median probability of 0.1 and positive examples a
median probability of 0.9.

Synthetic Controversial Stimuli Reveal Deviations between CIFAR-10
Models and Human Perception. Examples of the resulting con-
troversial stimuli appear in Fig. 5 and SI Appendix, Fig. S10.
When DNNs trained with a nonadversarial discriminative objec-
tive (i.e., the finetuned VGG-16, the discriminatively trained
Wide-Resnet, and the Predictive Coding Network) are paired
with each other, the resulting controversial stimuli do not appear
to humans to contain objects of any of the categories. These
results bear strong resemblance to those in experiment 1. In
contrast to experiment 1, however, the target categories for the
Gaussian KDE were, by and large, not discernible to humans,
indicating that this shallow-generative model, which worked sur-
prisingly well on MNIST, does not scale up to CIFAR-10. Pitting
the Gaussian KDE against the JEM-20 model (SI Appendix, Fig.
S10C) produced almost naturally looking images, in which the
target categories of JEM-20 are discernible. In some of these
images, low-level features suggestive of the target category of
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Fig. 5. Synthetic controversial stimuli contrasting the seven different
CIFAR-10-classifying models. Each stimulus results from optimizing an image
to be detected as a cat (but not as a horse) by one model and as a horse (but
not as a cat) by another model. For example, the image at Bottom Left (seen
as a horse by us) was optimized so that the hybrid discriminative–generative
JEM-20 model will detect a horse and the discriminative, finetuned VGG-16
model will detect a cat. All images here achieved a controversiality score
(Eq. 2) greater than 0.75. The images are shown in upsampled format as
presented to the human subjects. See SI Appendix, Fig. S11 for all class
combinations.

the Gaussian KDE can also be recognized. Also, the target cate-
gories of the adversarially trained models were more discernible
than in experiment 1 (SI Appendix, Fig. S10 A and B). Finally,
pitting the JEM-20 model against one of the adversarially trained
models (SI Appendix, Fig. S10D) often produced images in which
the target category for JEM-20 was discernible. In some images,
however, the human-perceptible category was the target of the
adversarially trained DNN or both or neither of the categories
were perceptible. These ambiguities suggest deviations of both
JEM-20 and the adversarially trained DNNs from human per-
ception and emphasize the importance of quantitative behavioral
experiments.

We ran a behavioral experiment similar to experiment 1, pre-
senting 420 controversial stimuli (20 per model-pair comparison)
as well as 60 randomly selected CIFAR-10 test images. We ran
two replications of the experiment on 30 subjects each, using a
new, independent batch of controversial stimuli for each repli-
cation. The results pooled over both replications (60 subjects)
are presented in Fig. 4B, whereas the (virtually identical) results
of each individual replication are presented in SI Appendix,
Fig. S12.

On average across the stimulus set, JEM-20 was significantly
more accurate at predicting the human perceptual judgments
than all other models. Similarly to experiment 1, none of the
models reached the lower bound of the noise ceiling (the leave-
one-subject-out estimate). The two adversarially trained models
(trained on `∞ and `2 bounded perturbations) were second to
the JEM-20 model in their human-response prediction accuracy.
Next was the finetuned VGG-16 model and then the discrimina-
tively trained Wide-Resnet and the Predictive Coding Network.
The Gaussian KDE had the lowest human-response prediction
accuracy.

Measuring the human response-prediction accuracy sepa-
rately for controversial stimuli (SI Appendix, Fig. S8B) showed
no significant difference between the JEM-20 model and the
adversarially trained DNNs. For the natural images, however,
the JEM-20 model significantly outperformed the adversarially
trained DNNs (SI Appendix, Fig. S8D). The model that best
predicted the human responses to the natural images was the
finetuned ImageNet-trained VGG-16, indicating that no single
model in our candidate set was uniformly dominant, as would be
expected of the true model.

Discussion
In this paper, we introduce the method of synthetic controversial
stimuli, and we demonstrate its utility for adjudicating among
DNNs as models of human recognition in the context of two
simple visual recognition tasks, MNIST and CIFAR-10. Con-
troversial stimuli reveal model differences and empower us to
find failure modes, capitalizing on the fact that if two models
disagree, at least one of them must be wrong.

The method of controversial stimuli can be useful to two
groups of scientists. The first group is cognitive computational
neuroscientists interested in better understanding perceptual
processes, such as object recognition, by modeling them as arti-
ficial neural networks. The second group is computer scientists
interested in comparing the robustness of different DNN models
to adversarial attacks.

Controversial Stimuli Offer a Severe Test for DNNs as Brain-
Computational Models. Natural stimuli will always remain a nec-
essary benchmark for models of perception. Moreover, at the
moment it is still feasible to compare and reject DNNs as
models of human vision on the basis of their classifications of
natural, nonmodel-driven stimuli (e.g., refs. 38–42). As DNN
models become better at fitting the training distribution, such
informative errors on natural examples are expected to dimin-
ish. Scientists designing experiments comparing the human
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consistency of models can search for natural controversial stim-
uli to increase the power of model comparison. However, even
for the models we have today, natural stimuli (including contro-
versial ones) do not provide a severe test. In particular, a mech-
anistically incorrect model with many parameters that has been
trained on natural images can achieve high performance at pre-
dicting human-assigned labels of images sampled from the same
distribution. Synthetic controversial stimuli that are not limited
to the training distribution provide a severe test of a model’s
inductive bias because they require the model to generalize far
beyond the training distribution. Synthetic controversial stim-
uli ensure that we do not favor models that are higher-capacity
function approximators regardless of their functional consistency
with human perception. Here, the considerably different model
rank orders observed when considering synthetic controversial
stimuli and when considering natural stimuli (SI Appendix, Figs.
S8 and S9) indicate that these two benchmarks shed light on
complementary facets of model–human consistency.

Controversial Stimuli Generalize Adversarial Attacks. Engineers use
adversarial examples to test the robustness of models. Adver-
sarial examples can be viewed as a special case of controversial
stimuli. An ideal adversarial example is controversial between
the targeted model and ground truth. In principle, therefore,
adversarial examples require the evaluation of ground truth in
the optimization loop. However, the evaluation of ground truth
is often difficult, because it may be costly to compute or may
require human judgment. In practice, adversarial attacks usually
use a stand-in for ground truth, such as the assumption that the
true label of an image does not change within a pixel-space `p
ball of radius ε.

Controversial stimulus synthesis enables us to compare two
models in terms of their robustness without needing to eval-
uate or approximate the ground truth within the optimization
loop. We require only a single ground-truth evaluation once
the optimization is completed to determine which of the mod-
els responded incorrectly. Hence, controversial stimuli enable us
to use more costly and compelling evaluations of ground truth
(e.g., human judgments or a computationally complex evaluation
function), instead of relying on a surrogate measure.

The most common surrogate measure for ground truth is ε
robustness. A model is said to be ε robust if perturbations of the
image confined to some distance in image space (defined by an `p
norm) do not change the model’s classification. The notion of ε
robustness has led to analytical advances and enables adversarial
training (5, 27). However, since ε robustness is a simple surro-
gate for a more complicated ground truth, it does not preclude
the existence of adversarial examples and so does not guarantee
robustness in a more general sense. This is particularly evident
in the case of object recognition in images, where the ground
truth is usually human categorization: A model can be ε robust
for a large ε and yet show markedly human-inconsistent classi-
fications, as demonstrated by controversial stimuli (here), distal
adversaries (29), and “invariance attacks” (43), in which a human
subject manually changes the true class of an image by making
modifications confined to an `p ball in image space. The moti-
vating assumption of ε robustness is that the decision regions are
compact and their boundaries are far from the training examples.
This does not hold in general. Controversial stimuli allow us to
find failure modes in two or more models by studying differences
in their decision boundaries instead of relying on assumptions
about the decision boundaries.

Controversial Stimuli: Current Limitations and Future Directions.
Like most works using pretrained models (1, 2), this study oper-
ationalized each model as a single trained DNN instance. In this
setting, a model predicts a single response pattern, which should
be as similar as possible to the average human response. To

the extent that the training of a model results in instances that
make idiosyncratic predictions, the variability across instances
will reduce the model’s performance at predicting the human
responses. An alternative approach to evaluating models would
be to use multiple instances for each model (44), considering
each DNN instance as an equivalent of an individual human
brain. In this setting, each model predicts a distribution of
input–output mappings, which should be compared to the dis-
tribution of stimulus–response mappings across the human pop-
ulation. Instance-specific idiosyncrasies may then be found to be
consistent (or not) with human idiosyncratic responses.

Another limitation of our current approach is scaling up:
Synthesizing controversial stimuli for every pair of classes and
every pair of models is difficult for problems with a large num-
ber of classes or models. A natural solution to this problem
would be subsampling, where we do not synthesize the complete
cross-product of class pairs and model pairs.

Future research should also explore whether it is possible to
replace the controversiality index with an optimal experimental
design approach, jointly optimizing a stimulus set to reduce the
expected entropy of our posterior over the models. Finally, adap-
tive measurement between or within experimental sessions could
further increase the experimental efficiency.

Generative Models May Better Capture Human Object Recognition.
One interpretation of the advantage of the best-performing mod-
els (the VAE-based analysis by synthesis model in experiment
1 and the Joint Energy Model in experiment 2) is that, like
these two models, human object recognition includes elements
of generative inference. There has recently been considerable
progress with DNNs that can estimate complex image distribu-
tions (e.g., VAEs and normalizing-flow models). However, such
approaches are rarely used in object recognition models, which
are still almost always trained discriminatively to minimize clas-
sification error. Our direct testing of models against each other
suggests that DNN classifiers that attempt to learn the distri-
bution of images (in addition to being able to classify) provide
better models of human object recognition.

However, none of the tested models approached the noise ceil-
ing, and while the ABS and JEM models performed better than
all of the other models on average, they were worse than some
of the discriminative models when the natural examples were
considered in isolation (SI Appendix, Fig. S8 C and D). Each
of these two outcomes indicates that none of the models were
functionally equivalent to the process that generated the human
responses.

Generative models do not easily capture high-level, seman-
tic properties of images (45, 46). In particular, this problem
is evident in the tendency of various deep generative models
to assign high likelihood to out-of-distribution images that are
close to the mean low-level statistics of the in-distribution images
(45). Hybrid (discriminative–generative) approaches such as the
joint energy model (35) are a promising middle ground, yet the
particular hybrid model we tested (JEM-20) was still far from
predicting human responses accurately. An important challenge
is to construct a generative or hybrid model that 1) reaches the
noise ceiling in explaining human judgments, 2) scales up to real-
world vision (e.g., ImageNet), and 3) is biologically plausible in
both its architecture and training. The method of controversial
stimuli will enable us to severely test such future models and
resolve the question of whether human visual judgments indeed
employ a process of generative inference, as suggested by our
results here.

Materials and Methods
Further details on training/adaptation of candidate models, stimulus opti-
mization and selection, human testing, and noise-ceiling estimation appear
in SI Appendix.
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Controversial Stimuli Synthesis. Each controversial stimulus was initialized
as a randomly seeded, uniform noise image (x∼U (0, 1), where 0 and 1 are
the image intensity limits). To efficiently optimize the controversiality score
(Eq. 2), we ascended the gradient of a more numerically favorable version
of this quantity:

c̃
ya ,yb
A,B (x) = LSE−

α {lA(ya | x),−lA(yb | x), lB(yb | x),−lB(ya | x)}, [4]

where LSE−
α =− log

∑
i exp−αxi (an inverted LogSumExp, serving as a

smooth minimum), α is a hyperparameter that controls the LogSumExp
smoothness (initially set to 1), and lA(y | x) is the calibrated logit for class
y (the input to the sigmoid readout). Experiment-specific details on stimulus
optimization appear in SI Appendix, sections C.1 and C.2.

Human Subjects. Ninety participants took part in the online experiments and
were recruited through prolific.co. All participants provided informed con-
sent at the beginning of the study, and all procedures were approved by the
Columbia Morningside ethics board.

Statistical Inference. Differences between models with respect to their
human response prediction accuracy were tested by bootstrapping-based

hypothesis testing. For each bootstrap sample (100,000 resamples), sub-
jects and stimuli were both randomly resampled with replacement. Stimuli
resampling was stratified by stimuli conditions (one condition per model
pair, plus one condition of natural examples). For each pair of models M1

and M2, this bootstrapping procedure yielded an empirical sampling distri-
bution of r̄M1 − r̄M2 , the difference between the models’ prediction accuracy
levels. Percentages of bootstrapped accuracy differences below (or above)
zero were used as left-tail (or right-tail) P values. These P values were
Holm–Šı́dák corrected for multiple pairwise comparisons and for two-tailed
testing.

Data Availability. Optimization source code, synthesized images, and
anonymized, detailed behavioral testing results are available at GitHub,
https://github.com/kriegeskorte-lab/PNAS 2020 Controversial Stimuli.
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Supporting Information Text

A. Candidate MNIST models (Experiment 1). Most of the tested models (Table S1) were based on official pre-trained versions
(1–4), unmodified except for the readout layer. Here we describe the models we trained from scratch or more deeply altered.

A.1. Small VGG. Starting from the VGG-16 architecture (architecture D in Table 1 of reference 5), we downsized its input
to the 28×28 pixels MNIST format, removed the deepest three convolutional layers and replaced the three fully-connected
layers with a single, 512-unit fully-connected layer, feeding a ten-sigmoid readout layer. All weights were initialized using the
Glorot uniform initializer, as implemented in Keras. Batch normalization was applied between the convolution and the ReLU
operations in all convolutional layers. The model was trained with Adagrad (learning rate = 10−3, ε = 10−8, decay=0) for
20 epochs using a mini-batch size of 128. The epoch with best validation performance (evaluated on 5000 MNIST held-out
training examples) was used.

A.2. Reconstruction-based readout of the Capsule Network. In the training procedure of the original Capsule network (2), the
informativeness of the class-specific activation vectors (’DigitCaps’) is promoted by minimizing the reconstruction error of a
decoder that is trained to read out the input image from the vector activation related to each example’s correct class. (6, 7)
suggested using this reconstruction error during inference, flagging examples with high reconstruction error (conditioned on
their inferred class) as potentially adversarial. While rejecting suspicious images and avoiding their classification is a legitimate
engineering solution, for a vision model we require that class conditional probabilities (p̂(y | x)) will always be available. Hence,
instead of using the reconstruction error as a rejection criterion, we used it as a classification signal. We modified the same
official pre-trained Capsule Network (https://github.com/Sarasra/models/tree/master/research/capsules) used in our testing
of the original Capsule Network such that for each image during inference, the decoder network produced ten class-specific
input image reconstructions. The ten class-conditional mean squared reconstruction-errors were fed into ten sigmoids, whose
response was calibrated as described in the results section. To eliminate the bias of this error measure towards blank images,
we normalized the reconstruction error of each class by dividing it by the mean squared difference between the input image and
the average image of all MNIST training examples (averaged across classes).

A.3. Gaussian KDE. For each class y, we formed a Gaussian KDE model, p̂(x | y) = 1
nσy

∑n

i=1 K
( x−x

y
i

σy

)
where σy is a class-

specific bandwidth hyper-parameter, K(·) is a multivariate Gaussian likelihood with unit covariance, and {xy
i } are all MNIST

training examples labeled as class y. σy was chosen independently for each class from the range [10−2, .., 100] (100 logarithmic
steps) to maximize the likelihood of held-out 500 training examples. The ten resulting log-likelihoods were fed as penultimate
activations to a sigmoid readout layer, calibrated as described in the results section.

B. Candidate CIFAR-10 models (Experiment 2). As in Experiment 1, most of the tested CIFAR-10 models (Table S2) were
based on official pre-trained versions (1, 8), unmodified except for the readout layer. Models we trained from scratch or more
deeply altered are described below.

B.1. Finetuned VGG-16. We initiated this model from TorchVision’s (9) batch-normalized implementation of VGG-16 (5),
pretrained on ImageNet. We added a differentiable bilinear upsampling operation from 32 × 32 to 128 × 128 pixels before the
first layer, replaced the DNN’s final readout layer with ten sigmoids, one per CIFAR-10 class, and retrained the network on
the CIFAR-10 training dataset to minimize the cross-entropy loss between the sigmoid outputs and CIFAR-10 one-hot labels
for up to 100 epochs. We used stochastic gradient descent (PyTorch’s implementation) with a learning rate of 0.001 and a
momentum of 0.9. 5000 training examples (500 per class) were held out to serve as a validation dataset. We applied early
stopping and selected the best epoch in terms of validation loss.

B.2. Gaussian KDE. Fitting the pixel-space, class-specific CIFAR-10 Gaussian KDE followed the same procedure described for
the MNIST Gaussian KDE (see SI subsection A.3), using a vectorized form of the 32 × 32 × 3 RGB image representation as
features. σy was chosen independently for each class from the range [10−2, .., 102] (501 logarithmic steps).

B.3. Joint Energy Model. We used the official code and pretrained model (https://github.com/wgrathwohl/JEM) with two
modifications: we increased the number of inference-time logit-refinement steps to 20 and reduced the stochasticity of this
refinement by increasing the number of sampling chains from 5 to 30.

B.4. Wide-Resnet. We trained the discriminative control of the JEM model (’Wide-Resnet’) by executing the training code
of JEM after adjusting the generative objective weight, ’p_x_weight’, from 1.0 to 0.0. During inference, this model did not
perform logit refinement.

C. Synthesis of controversial stimuli: experiment-specific details.

C.1. Controversial-stimulus synthesis in Experiment 1 (MNIST). Each controversial stimulus was initialized to a floating-point 28×28
uniform white random noise matrix (x ∼ U(0.0, 1.0), where 0.0 and 1.0 correspond to MNIST’s 0 and 255 integer intensity
levels, respectively). While for most candidate models included in Experiment 1, one can derive an analytical gradient of Eq. 4,
this is not possible for the ABS model since its inference is based on latent space optimization. Hence, following (4)’s approach
to forming adversarial examples, we used numerical differentiation for all models. In each optimization iteration, we used the
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symmetric finite difference formula f(x+h)−f(x−h)
2h

to estimate the gradient of Eq. 4 with respect to the image. An indirect
benefit of this approach is that one can set h to be large, trading gradient precision for better handling rough cost-landscapes.
For each image, we began optimizing using h = 1 (clipping (x + h) and (x − h) to stay within the the grayscale intensity
range). Once the optimization converged to a local maximum, we halved h and continued optimizing. We kept halving h upon
convergence until final convergence with h = 1/256. We then increased the LSE hyperparameter α to 10 and reset h to equal
1.0 again, repeating the procedure (but without resetting the optimized image). A third and final optimization epoch used
α = 100.

In each optimization iteration, once a gradient estimate was determined we used a line search for the most effective step
size: We evaluated the effect of the maximal step in the direction of the gradient that did not cause intensity clipping, as well
as [2−1, 2−2, ..., 2−8] of this step size.

When the optimization converged to an image that had a controversiality score (Eq. 2) of less than 0.85 we repeated the
optimization procedure with a different initial random image, up to five attempts.

For analytically differentiable MNIST models, we found that this more involved (and more computationally intensive)
approach to image optimization resulted in less convergence to poor local maxima (i.e., images with low controversiality)
compared to standard gradient ascent using symbolic differentiation.

C.2. Controversial-stimulus synthesis in Experiment 2 (CIFAR-10). Since all of the candidate CIFAR-10 models were differentiable,
we applied a symbolic-differentiation-based stimulus synthesis procedure in Experiment 2. Unlike the MNIST case, optimizing
controversiality with the symbolic gradients of CIFAR-10 models rarely led to convergence to poor local maxima, potentially
indicating a smoother cost landscape associated with the CIFAR-10 models.

The optimized image was parameterized as an unconstrained floating point 32×32×3 matrix x0. This representation was
transformed to an intensity image x (with pixel intensities constrained between 0.0 and 1.0) by means of the sigmoid function,
x = 1

1+exp(−x0) . The image x was fed to the target models, and eventually presented to the human subjects. x was initilized as
a uniform random noise image (x ∼ U(0.0, 1.0)) and the corresponding initial x0 was set by the inverse sigmoid transform,
x0 = log( x

1−x
).

Using Eq. 4 as our optimization objective, we applied Adam (10) (α = 0.1, β1 = 0.9, β2 = 0.999, ε = 10−8) to the unbounded
image representation x0. The smooth-minimum sharpness parameter α in Eq. 4 was initially set to 1.0. The optimizer was run
to convergence and then resumed (without resetting the image) with a sharpness parameter of 10.0, and then finally with a
sharpness parameter of 100.0. The convergence criterion was an improvement of less than 0.1% in the maximal controversiality
score in the last 50 time steps compared to the maximal controversiality score in the time steps that preceded this window.
When the resulting image had a controversiality score (Eq. 2) of less than 0.85, we repeated the optimization procedure with a
different initial random image (up to five attempts). In most cases, even a single repetition was not needed.

D. Selection of controversial stimuli for human testing. For each model pair, we selected 20 controversial stimuli for human
testing (out of up to 90 we produced). Using integer programming (IBM DOcplex), we searched for the set of 20 images with
the highest total controversiality score, under the constraint that each class is targeted exactly twice per model. This was done
separately for Experiment 1 and Experiment 2.

E. Human testing. The two human experiments were conducted using a custom javascript interface. In addition to collecting
the perceptual judgments, we monitored reaction times to detect too quick responses. Trials completed in less than 100 ms
were rejected post hoc, treating the corresponding perceptual judgments as missing values. No participant took part in more
than one experiment.

E.1. Experiment 1. 30 participants (17 women, mean age = 29.3) participated in Experiment 1.
We monitored the participants’ performance through three measures: their accuracy on the 100 MNIST images, their

reaction times, and the reliability of their responses to 108 controversial images (3 per model pair) that were displayed again at
the end of the experiment. While the participants’ performance on these measures varied, we found no basis for rejecting the
data produced by any participant due to evident low effort or negligence.

E.2. Experiment 2. A total of 60 participants (25 women, mean age = 26.1) participated in the two replications of Experiment 2.
Since CIFAR-10 categories do not naturally map to response keys as MNIST categories do, we altered Experiment 1’s

graphical user interface to saliently display the mapping of categories to response keys (Fig. S6B). This mapping was randomized
for each participant.

As in Experiment 1, we monitored the performance of the human subjects through three measures: their accuracy on the 60
CIFAR-10 test images, their reaction times, and the reliability of their responses to 42 controversial images (2 per model pair)
that were displayed again at the end of the experiment. The data of two participants were excluded due to suspected low
effort performance (very short completion time and all-zero ratings for several natural CIFAR-10 test examples). These two
participants are not included in the abovementioned total count of participating subjects.

We found in pilot runs that a minority of the participants interpreted the task in an overly conservative way, assigning
all-zero responses (i.e., no hint of an object) to all images that were not natural. We eliminated this kind of response pattern
by including the following instruction:

In each of the images that you will see, there will be hints for at least one of the ten object categories.
If you see anything that reminds one of the ten object categories, rate the relevant category with at least 25%.
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We will give a 5 USD worth bonus payment to any participant who will do well in detecting objects that are especially
hard to recognize.

This bonus was paid after the experiment to half of the participants according to an objective criterion. Since the bonus
was awarded offline, it did not serve as feedback (which was intentionally absent in both experiments).

F. Noise-ceiling estimates.

F.1. Lower bound (leave-one-subject-out). Here we further detail the calculation of the leave-one-subject-out estimate, which serves
as a lower bound on the noise ceiling (i.e., the true model should be at least as accurate as this estimate). To calculate this
estimate, we held out one subject si at a time and averaged the response patterns of all of the other subjects: If p̂si (y | x)
is the probability judgment provided by subject si for image x and category y, then the leave-one-subject-out prediction for
this subject, image and category is given by q̂si (y | x) = 1

n−1
∑
j 6=i

p̂sj (y | x). Considering all stimuli and categories, one can

represent subject si’s response pattern and the corresponding leave-one-subject-out predicted response pattern as two vectors
of matching lengths, psi and qsi . These vectors would have 8200 elements for the responses of an Experiment 1 subject (820
images × 10 response categories) or 4800 elements for the responses of an Experiment 2 subject (480 images × 10 response
categories). The linear correlation between psi and qsi measures how well can the subject’s response pattern be predicted from
the mean response pattern of her/his peers:

r(S, si) =

∑
x,y

(
p̂si (y | x) − ¯̂psi

)(
q̂si (y | x) − ¯̂qsi

)
√∑

x,y

(
p̂si (y | x) − ¯̂psi

)2
√∑

x,y

(
q̂si (y | x) − ¯̂qsi

)2
, [S.1]

where ¯̂psi is the average probability judgment of subject si and ¯̂qsi is the average probability judgment of the corresponding
leave-one-subject-out predicted response pattern.

The resulting leave-one-subject-out correlation coefficients for each held-out subject were plotted as gray dots at the bottom
of Fig. 4A and Fig. 4B. The mean leave-one-subject correlation coefficient (averaged across subjects) was marked as a vertical
bar in these two figures and was statistically tested against the mean model-human correlation coefficients of each candidate
model. For analyses that included model recalibration, an inverse sigmoid transform was applied to the qsi vectors to produce
logits, which were then tuned in the same fashion the models’ logits were recalibrated, sharing the same scale and shift
parameters across different held-out subjects, exactly matching the level of flexibility in fitting each model’s predictions to the
human data by scaling and shifting the model’s logits.

F.2. Upper bound (’best possible model’). The upper bound on the noise ceiling (marked as ’best possible model’ in Fig. 4A and
Fig. 4B) was determined by optimization. We initiated a vector of logits (one value per image-category combination, e.g., 8200
elements for Experiment 1, or 4800 elements for Experiment 2) as a zero vector and optimized this vector with L-BFGS so
that the across-subject mean of the correlation coefficients between each subject and a sigmoid transform of this vector is
maximized. The resulting mean correlation coefficient reflects the inherent limitation of predicting variable individual response
patterns by a single response pattern.

Note that for the simple case of no missing values, the vector that maximizes the across-subject average correlation is
directly obtainable by transforming each individual response vector to a z-scored vector and then averaging the resulting
z-scored vectors across subjects (11, supplementary materials). Here, we used the more general optimization approach since
the rejection of trials with too short reaction times led to missing values which complicate the analytical derivation of the
correlation-maximizing response-vector.

G. Additional software tools used. TensorFlow (12) (Experiment 1), Keras (13) (Experiment 1), and PyTorch (14) (Experiments
1 & 2) were used for DNN training and testing; psiTurk (15) was used for as the backend of the online experiments; Numpy
(16), XArray (17), pandas (18), scikit-learn (19), and statsmodels (20) were used for data analysis; matplotlib (21) and seaborn
(22) were used for visualization.
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A B

C D

Fig. S1. A random sample of the negative examples (non-digits) used as a background class for the small VGG− model. (A) pixel-scrambled MNIST images.
(B) Fourier-phase scrambled MNIST-images. (C) EMNIST letters (23), excluding the letters o,s,z,l,i,q and g. (D) patches cropped from natural images. The small
VGG− model was trained on the MNIST dataset plus a dataset of a similar size per each of these four non-digit classes (so the digit images were only a fifth of the
training set). The non-digit class labels’ were coded as all-zero rows in the one-hot coding.
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Fig. S2. The entire set of controversial stimuli we synthesized for Experiment 1 (MNIST), organized by model pairs. Each panel indicates a targeted model pair
and the rows and columns within each panel indicate the targeted class pairs. For example, consider the bottom-left image in the bottom-left panel. This image (seen
to us as a 9) is detected as a 0 by the small VGG model and as a 9 by the Schott ABS model. Missing (crossed) cells are either along the diagonal (where the two
models would agree) or where our optimization procedure did not converge to a sufficiently controversial image (a controversiality score of at least 0.75). Best viewed
digitally.
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Fig. S3. A set of separate digit-specific discriminative DNNs do not match the set of digit-specific VAEs (the Schott ABS model) in human consistency. One
potential alternative explanation of the advantage of the Schott ABS model is that the ABS model has one DNN per MNIST class, whereas the other candidate
MNIST models we tested have a single DNN that learns to detect each of the ten classes. To test this alternative explanation, we trained a variant of the small VGG
model where ten small VGG DNNs were independently trained on binary one-vs-all classification tasks (i.e., the first DNN is trained to detect the digit 0 vs. the other
digits, the second DNN is trained to detect the digit 1 vs. the other digits, and so on). Other than this modification, the training procedure of each digit-specific
DNN was identical to the small-VGG training procedure specified in SI subsection A.1. The scalar sigmoid outputs of the ten DNNs, each representing the detection
of one particular digit, were concatenated to form a joint ten-unit output layer. The resulting model (’small VGG×10’) had MNIST test error of 0.64%, slightly worse
than the single DNN small VGG model (0.47%). We synthesized controversial stimuli targeting this model vs. the single DNN small VGG (panel A), as well as this
model vs. the Schott ABS model (panel B). As can be seen above, there is no qualitative indication that having one discriminative DNN per class improves the
model’s human consistency. One can form controversial stimuli for the single-DNN small VGG model and the small VGG×10 model that do not resemble digits
(panel A). Furthermore, the human recognition of the controversial stimuli for the small VGG×10 and the Schott ABS models is completely aligned with the Schott
ABS model (panel B). In fact, we hypothesize that not sharing parameters between classes is a shortcoming rather than a strength of the Schott ABS model, since
parameter sharing enables reusing visual features across different classes.
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Fig. S4. MNIST linear classifiers reading out hidden-layer features of an ImageNet-trained VGG-16 do not exhibit human-consistent classification. Discriminative
DNNs trained on object recognition in natural images (e.g., the ImageNet dataset) were found to have hidden-layer features that can serve as a surprisingly good basis
for predicting neural responses in mid-level ventral visual stream (e.g., 24–29), as well as for predicting behavioral similarity judgments (e.g., 30, 31). These findings
suggest an alternative explanation of the human-inconsistency of the discriminative models in Experiment 1 (e.g., the small VGG model): perhaps discriminative
models can perform well in the MNIST controversial stimuli benchmark if they are first trained on recognizing objects in natural images, and only then learn to
classify MNIST as a transfer learning task. After all, the ’visual diet’ humans are exposed to from birth consists mostly of natural images. To test for this hypothesis,
we trained multi-label linear classifiers on the MNIST task using the activations of the convolutional layers of an Imagenet-trained VGG-16 (5) as fixed features.
(A) MNIST test accuracy of multi-label linear classifiers, each operating on the activations of one VGG-16 convolutional layer as a fixed feature set. Each
classifier is trained to classify MNIST digits from the activations of a single layer. Different lines represent classifiers with different degrees of input-image upscaling.
Convolutional layers can be evaluated with input images of arbitrary size (as long as they are big enough to fit the kernels), so our rescaled input images were not
embedded in blank margins. Fully connected layers (which do not share this flexibility) were tested only with the largest input-image scale (224×224 pixels), on
which the model was originally trained. Following this accuracy comparison between different input-image scales and layers, we chose for further testing (panel B) the
classifiers that use VGG-16’s convolutional layers (i.e., layers 1-13) with a 64×64 pixels input-image size (orange dashed line in panel A).
(B) Controversial stimuli (targeting ’3’ vs. ’7’ classification), pitting the linear classifiers trained on the features of the different VGG-16 convolutional layers
against each other or against the Schott ABS model. The greater human-consistency of the Schott ABS model is evident, even though this model does not
enjoy the advantage of using Imagenet-driven features. Furthermore, controversial stimuli for pairs of classifiers based on different VGG-16 layers do not resemble
human-recognizable digits.
While we cannot preclude that features gained from learning to recognize objects in natural images might be necessary for achieving human-consistent
responses in the MNIST task, the controversial stimuli above indicate that in the discriminative-training context, using such features is an insufficient condition
for model-human consistency.
Classifier training details: We used a pretrained VGG-16 model (Keras implementation) and prepended a bilinear upsampling operation to the model’s normalized
input, transforming MNIST images from the dimensionality of 28×28×1 to 32×32×3, 64×64×3, 128×128×3 or 224×224×3. We then trained an MNIST linear
multi-label classifier separately for each layer using the layer’s ReLU activations as fixed features. Linear classification was implemented as a new fully-connected layer
projecting the ReLU activations of one particular hidden-layer to ten units. A sigmoid activation function was then applied to each of the ten units, rendering this
setup equivalent to one-vs-all logistic regression. We adjusted the weights of the new fully-connected layer to minimize the cross-entropy of the sigmoids and a
one-hot label representation using Adam (10) (Keras implementation). We used a learning rate of 0.001, reduced by a factor of 0.2 after every three epochs of no
training loss reduction, down to a minimum learning rate of 10−6. Early stopping was applied based on held-out validation data.
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Fig. S5. Initializing controversial stimuli with digit images rather than with random-noise images does not change the observed hierarchy of human-consistency
among the tested MNIST models. Each controversial stimulus was initialized with an MNIST test example randomly selected from either the 3 (A), 7 (B) or 8 (C)
class. These images were then optimized using the same procedure employed in Experiment 1 to evoke a 3 (but not 7) detection in the models listed above each
panel and at the same time, a 7 (but not 3) detection in the models listed to the left of each panel. The greater alignment of the Schott ABS (4) model with
human perception compared to the other candidate models is reproduced for each of the three different initializations: Most of the images in the rightmost
column of each panel look like the digit 3, a judgment consistent with the target class of the ABS model for these images. Similarly, most of the images in
the bottom row of each panel look like the digit 7, again a human perceptual judgment consistent with the target class of the ABS model and inconsistent
with the other models.
When pairs of standard discriminative DNNs are targeted, the initial image has a considerable effect on the resulting controversial stimulus (e.g., controversial stimuli
in the top-left corner of each panel look like 3s, 7s, or 8s, reflecting their seed images). This sensitivity to the starting condition is caused by the non-robustness of
these models. Since the classifications of these models can be easily changed by small perturbations, potential controversial stimuli densely populate the image space
and hence the stimulus optimization does not need to travel far from the initial image to achieve high controversiality.
While this analysis is provided here as a control for the effect of initialization, we generally recommend initializing controversial stimuli with random-noise images.
Controversial stimuli optimized from non-random initial images may inherit human-discernible features from the seed image. The resulting controversial stimuli may
thus contain natural features, which are not driven by any of the targeted models (as in the top left part of each panel above, where standard discriminative models
are paired). In contrast, when a controversial stimulus is initialized with a random noise image, any discernible feature is model-driven rather than experimenter-driven,
eliminating the potential confounding factor of perceivable visual content originating from the initializing image. Furthermore, while there is no evidence that gradient
obfuscation (32) plays a role in the optimization of the controversial stimuli above, initializing controversial stimuli with random images provides a strong protection
against this issue. A model with obfuscated gradients will not be able to drive a random noise image towards a high-confidence detection of its target class. Such an
outcome transparently indicates an optimization issue rather than give a false impression of model robustness.
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A Experiment 1, MNIST B Experiment 2, CIFAR-10

Fig. S6. Trials in the human online experiments. The subjects had to rate the presence of each class from 0% to 100%. These ratings do not need to sum to 100%.
Image presentation order was randomized for each subject. The ’Previous’ button enabled subjects to go back one trial to correct their responses. (A) Experiment 1
(comparing MNIST models). The images were upsampled using nearest-neighbor interpolation. (B) Experiment 2 (comparing CIFAR-10 models). The images were
upsampled using Lanczos interpolation. The mapping from the CIFAR-10 categories to the ten numerical response keys was randomized for each subject.
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A MNIST, linear correlation coefficients with model recalibration
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B CIFAR-10, linear correlation coefficients with model recalibration
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C MNIST, Mean Squared Error, with model recalibration
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D CIFAR-10, Mean Squared Error, with model recalibration
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Fig. S7. Alternative measures of the model-human prediction accuracy show a similar rank ordering of models. (A) Linear correlation coefficients between
each candidate MNIST models and the human responses to all of the test stimuli (Experiment 1), after recalibrating each model independently to maximize its
mean-across-subjects human response prediction accuracy. The logits of each model (i.e., the inputs to the ten readout sigmoids, see main text) were recalibrated
by a linear transformation. The slope and intercept of this transformation were adjusted to maximize each model’s mean correlation coefficient. The slope and
intercept parameters were unique to each model but did not vary across classes and subjects (i.e., there were exactly two free parameters per model). Note that this
procedure may introduce a small optimistic bias to all of the correlation measures. (B) An equivalent analysis of the CIFAR-10 models’ predictions (Experiment 2).
(C) Measuring Mean Squared Error (MSE) instead of linear correlation for the MNIST candidate models. Model recalibration was applied here as well, fitting the
slope and intercept of each model’s transformed logits to minimize the grand-average MSE across subjects. Unlike the linear correlation measure, the MSE measure
does not reduce individual differences in the baseline and scale of human behavioral ratings. Hence the greater dispersion of the subjects’ MSEs compared to the
subjects’ correlation coefficients. (D) An equivalent analysis for the CIFAR-10 candidate models.
The MSE between a model M and subject Si was calculated as 1

|X||C|

∑
x,y

(
p̂si

(y | x) − p̂M (y | x)
)2

where p̂si
(y | x) is the human-judged probability that

image x contains class y, p̂M (y | x) is the model’s corresponding recalibrated judgment, |X| is the number of stimuli (820 for Experiment 1, 480 for Experiment 2)
and |C| is the number of classes (ten for both experiments).
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A MNIST, controversial stimuli
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B CIFAR-10, controversial stimuli
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C MNIST, natural stimuli
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D CIFAR-10, natural stimuli
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Fig. S8. The performance of the candidate models in predicting the human responses to controversial stimuli (panel A, Experiment 1; panel B, Experiment 2)
and to natural stimuli (panel C, Experiment 1; panel D, Experiment 2). Unlike Fig. 4 (main text), where the model-human response correlation coefficients were
calculated across all of the stimuli included in the behavioral experiments, here the correlation coefficients were calculated separately for controversial and natural
stimuli. The Schott ABS model (4), which excels in the controversial stimuli benchmark (panel A), lags behind all of the discriminative MNIST models in predicting
the responses to MNIST ‘natural’ test examples (panel C). In contrast, the hybrid discriminative-generative JEM-20 (33) performs on par of its discriminative
counterpart (‘Wide-Resnet’, employing the same architecture) in predicting the human response to test CIFAR-10 images (panel D). At the same time, JEM-20 is at
least as good as the adversarially trained models (Engstrom `∞ and Engstrom `2, (8)) in predicting the human responses to the controversial stimuli (panel B). This
relatively high performance both within and outside the training distribution demonstrates the advantage of a hybrid discriminative-generative modeling approach.
However, JEM-20 is still less accurate than the finetuned, ImageNet-trained VGG-16 model in predicting the human responses to natural (test) CIFAR-10 images
(panel D).
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A Experiment 1 (MNIST)
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Fig. S9. The effect of the ratio of controversial to natural stimuli on the models’ human-response prediction accuracy. The human-response prediction accuracy
reported in Fig. 4 is measured across the entire stimulus set presented to the human subjects. Since this stimulus set included both natural and controversial stimuli,
the reported prediction accuracy is affected by the proportion of controversial to natural stimuli within this set. Here, we resampled stimuli (and subjects) with
replacement to simulate the hypothetical effect of different ratios of controversial to natural stimuli on Experiment 1 (MNIST models, panel A) and on Experiment 2
(CIFAR-10 models, panel B). 1000 datasets were resampled for each point along the x-axis (i.e., for each ratio).
The plots above depict the across-subjects-averaged human-response prediction accuracy of each model as a function of the percentage of controversial stimuli
among the resampled stimulus set. The colored lines depict the bootstrap averages of this measure, and the semi-transparent shaded bends correspond to 95%
percentile bootstrap confidence intervals. The dashed vertical lines indicate the original ratio of controversial to natural stimuli (i.e., as in Fig. 4). The prediction
accuracy to the right of the dashed vertical lines was obtained by gradually decreasing the number of resampled natural stimuli, down to no natural stimuli at all
(right end, as in Figs. S8A, B). The prediction accuracy to the left of the dashed lines was obtained by gradually decreasing the number of resampled controversial
stimuli, down to no controversial stimuli at all (left end, as in Figs. S8C, D). The resampling of controversial stimuli was stratified by subsets of controversial stimuli
targeting different model-pairs.
In Experiment 1 (panel A), the purely generative ABS model beats the discriminative MNIST models only when the controversial stimuli consist of the vast
majority of the test stimuli. In contrast, in Experiment 2 (panel B) the hybrid discriminative-generative JEM-20 model beats the other CIFAR-10 models
across most of the proportion range.
Note that an ideal model should weakly dominate all other models for any stimulus set; as long as we do not have such an ideal model, the model seen as ’best’
depends on our particular sampling of the stimulus space. Considering both natural examples and synthetic controversial stimuli provides a wider perspective on
model-human consistency. In particular, synthetic controversial stimuli expose regions in stimulus space where the predictions of some of the models must be wrong.
This is demonstrated here by the gap between the noise ceiling (in gray) and the models’ prediction accuracy; this gap increases as the controversial stimuli are
gradually introduced into the stimulus set.
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Fig. S10. Controversial stimuli for CIFAR-10 models, here organized to show the results of targeting each possible CIFAR class pair for four different model
pairs. The rows and columns within each panel indicate the targeted classes. For example, the top-right image in panel C was optimized to be detected as a truck by
the JEM-20 model and as an airplane by the Gaussian KDE model. Missing (crossed) cells are along the diagonal, where the two models would agree. All images
here have a controversiality score of at least 0.75. See Fig. S11 for all 21 model pairs.
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Fig. S11. The entire set of controversial stimuli we synthesized for Experiment 2 (CIFAR-10), organized by model pairs. Each panel indicates a targeted model
pair, and the rows and columns within each panel indicate the targeted class pairs. For example, consider the bottom-left image in the bottom-left panel. This image
is classified as an airplane by the finetuned VGG-16 model and as a truck by the Grathwohl JEM-20 model. Missing (crossed) cells are either along the diagonal
(where the two models would agree) or where our optimization procedure did not converge to a sufficiently controversial image (a controversiality score of at least
0.75). Best viewed digitally.
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A CIFAR-10 replication a (30 subjects)

0.0 0.2 0.4 0.6 0.8 1.0
human-response prediction accuracy (Pearson's r)

finetuned VGG-16

Wide-Resnet

Wen PCN-A6

Engstrom 

Engstrom 2

Gaussian KDE

Grathwohl JEM-20

leave 1 subject out

best possible model

B CIFAR-10 replication b (30 subjects)
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Fig. S12. A side by side comparison of two replications of Experiment 2. Each replication was conducted with an independently synthesized set of 420 controversial
stimuli and an independently selected set of 60 CIFAR-10 test examples. 30 subjects participated in each replication and no subject participated in both of them.
Main text Fig. 4B shows the same data pooled over the two replications. The similarity of the outcomes of the two replications demonstrates the statistical
reliability of our experimental procedure as a whole.
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Table S1. Candidate MNIST models

human-response prediction accuracy
model family model MNIST test error all stimuli controversial natural

discriminative feedforward small VGG (5)∗ 0.47% 0.516 0.434 0.919
small VGG− (5)∗ 0.59% 0.592 0.498 0.918

discriminative recurrent Wen PCN-E4 (1) 0.42% 0.567 0.490 0.921
CapsuleNet (2) 0.24% 0.541 0.439 0.921

adversarially trained Madry `∞ (3) (ε = 0.3) 1.47% 0.538 0.459 0.890
Madry `2 (3) (ε = 2.0) 1.07% 0.623 0.565 0.887

reconstruction-based CapsuleNet Recon (7)∗ 0.29% 0.643 0.566 0.912

generative Gaussian KDE 3.21% 0.632 0.621 0.675
Schott ABS (4) 1.00% 0.699 0.671 0.779

MNIST models tested in Experiment 1. ’Human-response prediction accuracy’ is the across-subject average of the
correlation between model and human judgments (r̄M ). The values listed here correspond to the means depicted by
vertical bars in Figs. 4A, S8A, and S8C.
∗ A modified architecture. See SI section A.

Tal Golan, Prashant C. Raju and Nikolaus Kriegeskorte 17 of 19



Table S2. Canidate CIFAR-10 models

human-response prediction accuracy
model family model CIFAR-10 test error all stimuli controversial natural

discriminative feedforward finetuned VGG-16 (5)∗ 4.37% 0.302 0.166 0.894
Wide-Resnet (33) 6.22% 0.268 0.162 0.795

discriminative recurrent Wen PCN-A6 (1) 6.66% 0.274 0.208 0.812

adversarially trained Engstrom `∞ (8) (ε = 8/255) 12.97% 0.387 0.340 0.696
Engstrom `2 (8) (ε = 1.0) 18.38% 0.373 0.337 0.622

generative Gaussian KDE 61.21% 0.114 0.080 0.133
hybrid discriminative-generative Grathwohl JEM-20 (33) 9.71% 0.434 0.351 0.827

CIFAR-10 models tested in Experiment 2. ’Human-response prediction accuracy’ is the across-subject average of the correlation between
model and human judgments (r̄M ). The values listed here correspond to the means depicted by vertical bars in Figs. 4B, S8B, and S8D.
∗ A modified architecture. See SI subsection B.1.
† Both models share the Wide-Resnet WRN-28-10 architecture (34), trained without batch normalization, and differ in their training and
inference procedures (see SI subsection B.4).
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