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SUMMARY

Successful visual navigation requires a sense of the
geometry of the local environment. Howdoour brains
extract this information from retinal images? Here we
visually presented scenes with all possible combina-
tions of five scene-bounding elements (left, right,
and back walls; ceiling; floor) to human subjects dur-
ing functionalmagnetic resonance imaging (fMRI) and
magnetoencephalography (MEG). The fMRI response
patterns in the scene-responsive occipital place
area (OPA) reflected scene layout with invariance to
changes in surface texture. This result contrasted
sharply with the primary visual cortex (V1), which
reflected low-level image features of the stimuli, and
the parahippocampal place area (PPA), which
showed better texture than layout decoding. MEG
indicated that the texture-invariant scene layout rep-
resentation is computed from visual input within
�100 ms, suggesting a rapid computational mecha-
nism. Taken together, these results suggest that the
cortical representation underlying our instant sense
of the environmental geometry is located in the OPA.

INTRODUCTION

Animals move around in their environment with grace and fore-

sight, avoiding collisions with obstacles by charting viable paths

based on their vision. This behavior requires an animal’s visual

system to provide its navigational circuits with information about

the local environmental geometry. The human cortex contains vi-

sual areas that preferentially respond tovisually presentedscenes

compared with other stimuli, such as faces or objects. These

areas include the parahippocampal place area (PPA; Epstein

and Kanwisher, 1998) and the occipital place area (OPA; Grill-

Spector, 2003; Dilks et al., 2013). The PPA and OPA likely play a

role in connecting visual perception with navigation, but their dif-

ferential computational roles have not been fully established.
Boundaries of open spaces, such as walls, constrain naviga-

tion and are therefore an essential aspect of the environmental

geometry our brains must represent (for a review, see Brunec

et al., 2018). Even small children automatically use room geom-

etry to reorient themselves (for a review, see Spelke et al.,

2010). Recent neuroimaging studies suggest a role for the hu-

man OPA in detecting navigationally important cues from visual

scenes. An fMRI study demonstrated that OPA encodes

possible paths in a visual scene (Bonner and Epstein, 2017),

and if processing in the OPA is temporarily disrupted using

transcranial magnetic stimulation (TMS), then a person’s ability

to use boundaries in a navigational task is impaired (Julian

et al., 2016).

Early fMRI studies already reported that the spatial layout, and

not the presence of objects within the scene, drives the scene-

selective areas (Epstein and Kanwisher, 1998). Subsequent neu-

roimaging studies have made a distinction between open and

closed sceneries (Harel et al., 2013; Kravitz et al., 2011; Park

et al., 2011) and revealed the relevance of the vertical height of

boundaries (Ferrara and Park, 2016). However, exactly how

scene-selective areas represent the geometry of the local envi-

ronment has not been established.

Here we ask how individual scene-bounding elements and

their compositions are represented in scene-selective cortical

areas. We test different brain regions for an explicit representa-

tion of the 3D geometry that is invariant to surface appearance.

We created a novel set of synthetic scene stimuli in which we

systematically vary the spatial layout of the scene by switching

on and off each of five spatial boundaries (three walls, the floor,

and the ceiling; Figure 1). The resulting 25 = 32 layouts are

rendered in three different styles of surface appearance (empty

room, fences, and urban space), yielding 96 scene stimuli. These

stimuli were presented to 22 subjects, each of whom partici-

pated in both an fMRI and a magnetoencephalography (MEG)

experiment. Whereas fMRI provides sufficiently high spatial res-

olution to resolve representations within a given brain region,

MEG provides millisecond temporal resolution, enabling us to

track the dynamics of cortical processing (Carlson et al., 2013;

for a review, see Hari and Salmelin, 2012). We investigated to

what extent the OPA and PPA encode the scene layout in terms

of the presence and absence of the scene-bounding elements
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Figure 1. Stimuli to Test the Hypothesis that Human Scene-Responsive Cortical Areas Encode Scene Layout

(A) The spatial layout of a room is captured by fixed scene-bounding elements, such as the walls.

(B) We created a complete set of spatial layouts using 3D modeling software by switching on and off the five bounding elements: left wall, back wall, right wall,

floor, and ceiling.

(C) For example, by switching off the back wall and the ceiling, we create a long, canyon-like environment.

(D) Textures and background images were added to the scenes to enable us to discern layout representations from low-level visual representations.

(E) The complete set of scenes included 32 different spatial layouts in 3 different textures, resulting in 96 scene stimuli.
and how rapidly the respective representations emerge following

stimulus onset.

RESULTS

The OPA Discriminates Layouts Better Than Textures,
whereas the Opposite Is True for the PPA
We measured fMRI responses to the 96 different scene images

(32 layouts in each of three different textures, Figure 1E) while

subjects fixated the stimuli centrally. Subjects were instructed

to pay attention to the layout of the scene elements. Occasion-

ally, the stimulus image was followed by an arrow pointing to

one of five possible directions, and the subject’s task was to

tell with a button press whether the preceding layout had a

bounding scene element in that direction (e.g., an arrow pointing

to the left would prompt the subject to report whether the left wall

was present in the previous scene). Four regions of interest

(ROIs) were defined based on criteria independent of the main

experiment: the primary visual cortex (V1) was defined on the ba-

sis of cortical sulci (Hinds et al., 2008), and the OPA, PPA, and

retrosplenial cortex (RSC) were defined on the basis of functional

localizer data using a different set of scenes, faces, objects, and

textures as stimuli. Figure S1 shows the average responses

separately for each stimulus in each ROI. In V1, the texture
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affected the response strength (empty < fence < urban), likely re-

flecting the amount of low-level image detail in the stimulus im-

ages. In the OPA and PPA, the difference in response strength

between the stimuli was smaller than in the V1. In the RSC,

many of the stimuli did not evoke ameasurable response; hence,

the results for the RSC are only shown in the Supplemental

Information.

First we askedwhether we can discriminate the fMRI response

patterns evoked by the different scene stimuli. The discriminabil-

ity of each pair of stimuli was evaluated by fitting a Fisher linear

discriminant (Nili et al., 2014) to the response patterns from half

of the fMRI data and by testing the performance on the response

patterns from the other half of the fMRI data (split-half cross-vali-

dation). The analyses were done on individual data, and the re-

sults were pooled across the 22 subjects. First we evaluated

whether we can better discriminate the layout or the texture of

a scene from the response patterns in different ROIs. Figure 2

shows the average linear discriminant t (LDt) values for scenes

that differ in layout (gray bars) and for scenes that differ in surface

texture (black bars). In the V1 and PPA, the LDt values were

higher for texture than for layout discrimination. Moreover, Fig-

ure S2 shows that, in the PPA but not in V1, the scene discrimi-

nability was consistently higher when both the layout and the

texture were different compared with scenes that only differed



Figure 2. Layout versus Texture Decoding

The average discriminability across all scene pairs that differ in the layout but

are of the same texture (layout decoding; gray bars) and all scene pairs that

have the same layout but differ in the texture (texture decoding; black bars) are

shown separately for the V1, OPA, and PPA. In the V1 and PPA, a change in

texture had, on average, a larger effect on the discriminability of the fMRI

response patterns than a change in layout, whereas the opposite was true for

the OPA. The p values are from two-tailed signed-rank tests across the 22

subjects; the error bars indicate SEM across the subjects. See Figure S1 for

average fMRI responses for all 96 individual stimuli for each region of interest

and Figure S2 for fMRI response pattern discriminability separately for each

stimulus pair.
in their layout. Because the texture defines the scene’s identity,

these results suggest that the PPA is involved in texture-based

scene categorization rather than representing scene layout. In

contrast to the results in the PPA, in the OPA, the average dis-

criminability was higher between scenes that differ in layout

rather than in texture (Figure 2).

Layout Discrimination in the OPA Generalizes across
Surface Textures
To test whether any of the regions contain a layout representa-

tion that is invariant to texture, we fit the linear discriminant to

the response patterns for a pair of layouts in one texture and

tested its performance with the same layouts in another texture.

Successful cross-decoding across textures would suggest a

scene layout representation that is tolerant to a change in the

surface texture and, at the same time, rule out confounding

effects of low-level image feature differences on layout discrim-

ination. Figures 3A and 3B show a schematic of the analysis.

The distinctiveness of each layout pair is shown separately (diag-

onal matrices) as well as the ability of the discriminants to gener-

alize to other surface textures (off-diagonal matrices). These

matrices will be referred to as representational dissimilarity

matrices (RDMs).

Figure 3C shows that, in the V1, the layouts evoked distinct

response patterns, but the results did not generalize across tex-

tures. This result suggests that the pattern discriminability in the

V1 was due to confounding low-level image feature differences

between the same-texture spatial layouts instead of an explicit

representation of layout. In theOPA, on the contrary, the discrim-

inants for stimulus pairs generalized across textures, suggesting
that the OPA encodes the layout of a visual scene invariantly to

manipulations of surface texture. Finally, although the PPA

responded to the stimuli (Figure S1), and its average layout

discriminability was above chance (Figure 2), its patterns did

not enable reliable discrimination of most pairs of layouts

(Figure 3C).

Figure 4 shows the average LDt RDMs and the corresponding

false discovery rate matrices for the V1, OPA and PPA, summa-

rizing results from Figure 3. Corresponding multidimensional

scaling (MDS) visualizations of the representational relationships

are shown in Figure S3. The average RDMs and the MDS visual-

izations reveal that the presence of the back wall had a strong ef-

fect on the distinctiveness of the response patterns in the V1,

OPA, and PPA. In contrast to the other scene elements, the

back wall covered a larger part of the visual field and was

centered on the point of fixation. Given its larger retinal extent

and the cortical magnification of the central region (Duncan

andBoynton, 2003), the backwall had amuch larger cortical rep-

resentation than the other scene elements in early visual areas,

especially in V1. In the scene-responsive regions, the added

depth to the scenes by removal of the back wall could also

contribute to response pattern discriminability. In the OPA, we

observed groupings that are consistent both in the within- and

across-texture analysis (Figures 4 and S3). For example, pairs

of scenes that only differed in the presence of the ceiling elicited

similar response patterns (blue off-center diagonal in the LDt

matrices), suggesting that the ceiling did not strongly contribute

to layout representation in the OPA. Moreover, the number of the

bounding elements present in the layout appears to have an

effect on pattern distinctiveness (clusters in the MDS plots;

Figure S3).

Although some layout pairs could still be discriminated by the

V1 response patterns when the analysis was done across

different textures (Figure 4B), the overall decoding performance

was significantly worse than when the analysis was done within

the textures (Figure 4A). In the V1, but not in the OPA, the repre-

sentational geometry, as visualized using the MDS (Figure S3),

was also clearly different between the within-texture and

cross-texture analyses. In the PPA, the average discriminability

of the layouts was low. The OPA stands out against the V1 and

PPA in that it discriminated spatial layouts of the same texture,

and the result generalized across textures (Figures 4A and 4B,

center panels). This finding is consistent with a texture-invariant

scene layout representation in the OPA.

The OPA Representation Is Reflected in Early MEG
Responses
All subjects also participated in an MEG experiment to charac-

terize the temporal dynamics of scene layout encoding. Similar

to the fMRI experiments, the subjects fixated the stimuli centrally

andwere instructed to pay attention to the layouts. Occasionally,

the stimulus image was followed by an arrow pointing to one of

the five possible directions, and the subject’s taskwas to tell with

a finger lift whether the preceding layout had a scene-bounding

element in that direction. RDMs were constructed based on the

cross-validated Mahalanobis distance between the evoked re-

sponses of each pair of spatial layouts. For fMRI, the cross-vali-

dated distance estimator LDt was chosen based on previous
Neuron 103, 161–171, July 3, 2019 163



Figure 3. Discriminability of the fMRI

Response Patterns for Each Pair of Layout

Stimuli in the V1, OPA, and PPA and Gener-

alization of the Result across Textures

(A) The discriminability of the layout stimuli from

the fMRI response patterns was evaluated for

each pair of the 32 layouts, separately for the three

textures. The Fisher linear discriminant was fitted

to response-patterns obtained from training data

(odd fMRI runs) and the performance was evalu-

ated on independent testing data (even fMRI runs).

The results are shown as linear discriminant

t values (LDt; Nili et al., 2014; Walther et al., 2016).

The analyses were done on individual data, and

the results were pooled across subjects.

(B) The generalization of the layout discrimination

across different surface textures was evaluated by

fitting the Fisher linear discriminant to response

patterns corresponding to a pair of layouts in one

texture and evaluating the performance on the

response patterns corresponding to the same

layout pair in another texture. All combinations of

texture pairs were evaluated. A high LDt value

suggests successful generalization of layout

discrimination across surface textures and, hence,

a layout representation that is tolerant to a change

in surface texture.

(C) The top row shows the average LDt values

for all pairs of stimuli. Along the diagonal, the

three matrices reflect the distinctiveness of the

response patterns between each pair of layout

stimuli in the same texture. The six off-diagonal

matrices show generalization across textures

(training between two layouts in one texture,

testing on the same pair in another texture). The

bottom row shows the expected false discovery

rates (FDRs; n.s., not significant); the p values

were obtained using a two-sided signed-rank test

across 22 subjects. In the V1, the spatial layout

stimuli elicited distinct response patterns, but the

result did not generalize across textures. In the

OPA, most layouts evoked a distinct response

pattern, and the results generalized across tex-

tures. In the PPA, only a few of the layouts evoked

significantly different response patterns.
results (Walther et al., 2016). For MEG, cross-validated distance

estimators are also recommended (Guggenmos et al., 2018), but

the effect of noise normalization is less well understood. We

therefore used the cross-validated Mahalanobis distance (also

termed linear discriminant contrast, LDC; Walther et al., 2016),

which omits the final noise normalization. Figure S4 shows a

comparison of LDt and LDC RDM reliability in our data. The

MEGRDMswere compared with the fMRI RDMs using Kendall’s

tau-a rank correlation (Nili et al., 2014). The analyses were done

on individual data, separately for each texture. Representational

dissimilarities were then averaged across textures for each sub-

ject, and the significance testing treated subject as a random

effect.

Figure 5A shows that, as expected, both V1 and OPA fMRI-

RDMs correlated with the MEG RDMs. To find out the unique

contribution of the OPA to the correlation, MEG-RDMs were

fitted as a linear combination of the V1 and OPA fMRI-RDMs.

The OPA showed a unique contribution to the MEG RDM fit early
164 Neuron 103, 161–171, July 3, 2019
after stimulus onset. The unique OPA contribution becomes sig-

nificant 60 ms after stimulus onset (two-sided signed-rank test

across subjects, multiple testing accounted for by controlling

the false discovery rate at 0.01) and peaks at about 100 ms (Fig-

ure 5B). Importantly, only the OPA showed a significant match

between fMRI and MEG across-texture generalization of layout

discriminants (Figure 5C). In other words, MEG reflected the sur-

face texture-invariant representation of the spatial layouts simi-

larly to the OPA fMRI-RDM, and the similarity emerged early in

the MEG data (significant at 65 ms, peaking at about 100 ms).

These results suggest early texture-invariant encoding of scene

layout in the OPA.

Scene-Bounding Elements Explain OPA
Representational Geometry Better Than GIST
To characterize the geometries of the scene layout representa-

tions, a set of models (Figure 6) was fitted to the fMRI and

MEG RDMs. We aimed to model both the contribution of the



Figure 4. Representational Geometry of Scene Layouts Generalizes

across Textures in the OPA

(A) The distinctiveness of the fMRI response patterns for the spatial layouts are

shown, as captured by the LDt values. The analyses done separately for the

three textures were averaged (shown separately in Figure 3). The bottom row

shows the corresponding FDRs (two-tailed signed-rank test across 22

subjects).

(B) The generalization performance of the discriminant across different tex-

tures was evaluated by fitting the linear discriminant to a pair of spatial layouts

in one texture and testing the discriminant on the same pair of layouts in

another texture. The analysis was done for each combination of textures, and

the results were averaged (shown separately in Figure 3). The bottom row

shows the corresponding FDRs. In the OPA, the representation shows texture

invariance. The multidimensional scaling visualizations of the distinctiveness

of the response patterns are shown in Figure S3.
low-level image features and the presence of the scene-bound-

ing elements. The GIST (Oliva and Torralba, 2001) model was

included to capture low-level image feature differences between

the scene stimuli. Separate GIST RDMs were constructed for

each texture. The first scene layout-based RDM model con-

sisted of the Hamming distance between the binary vectors,

indicating which scene-bounding elements were present and

absent. For each pair of scenes, the Hamming distance is the

number of discrepant scene-bounding elements. The Hamming

distance assigns equal importance to all elements: vertical walls,

the floor, and the ceiling. Hence, we name this model ‘‘ewalls’’

(equally weighted walls; Figure 6, top row). To model the possi-

bility that the brain representation does not weigh all scene-

bounding elements equally, we included a separate RDM

component for each of the five scene-bounding elements and

modeled the RDM as a fitted linear combination of the compo-
nents (model ‘‘fwalls’’ [fitted walls]; Figure 6, center row). In addi-

tion, the number of walls present in a scene was included (model

‘‘nwalls’’ [number of walls]; Figure 6, top row), predicting similar

response patterns for two layouts with a similar number of walls.

This model can be interpreted as reflecting the size of the space

depicted in the scene (ranging from open to closed). For possible

interaction effects between specific scene elements (e.g., the

presence of both the floor and the left wall forming an edge),

interaction models were also constructed (Figure 6, two bottom

rows). The models were fitted using non-negative least squares

(Khaligh-Razavi and Kriegeskorte, 2014) and tested by cross-

validation across subjects.

The GIST model explained the V1 RDM (fMRI) better than any

of the scene layout models (nwalls, ewalls, and fwalls; Figures 7A

and 7B). For the OPA, the results were strikingly different. The

GIST model was still better than the number of walls (nwalls, re-

flecting the degree of openness) at explaining theOPARDM (Fig-

ures 7A and 7B) but there was no significant difference between

the GIST model and the scene layout model with equal contribu-

tion of each scene-bounding element (ewalls; Figures 7A and

7B). Moreover, the fitted combination of the scene-bounding el-

ements model (fwalls) captured the representation significantly

better than the GIST model (Figures 7A and 7B). Adding the

GIST component and the wall-specific RDM components in a

fitted model did not increase explained variance in the OPA (it

did in the V1). Explained variance in the OPA was increased by

adding the number-of-walls component, suggesting that scene

openness is reflected in the representation. Finally, adding com-

ponents for the interactions between the scene-bounding ele-

ments slightly increased the explained variance in both the V1

and OPA. In the PPA, the best predictions were obtained by

combining all components (GIST, walls with fitted weights, and

number of walls). In contrast to the V1 andOPA, however, adding

the interaction components did not significantly improve predic-

tions for the PPA.

Figure 7C shows the model cross-validation results for the

MEG RDMs, illustrating the dynamics of how the different

models (Figure 6) captured the representations. As expected,

the GIST model captured the early representation (black line).

However, including the scene-bounding elements improved

the fit early. Figure 7D shows the unique contribution scene-

bounding elements added to the GIST model, peaking at about

100 ms after stimulus onset. Similar to the fMRI modeling, the

contribution of each of the scene-bounding elements was

modeled separately, and the result was cross-validated across

subjects. Moreover, consistent with the fMRI results for the

OPA and PPA, the number of walls present in the scene also

significantly contributed to theMEGRDMs, especially at the later

time points (Figure 7E).

To further evaluate the contribution of each representational

component, Figure 8 shows how much is gained in total ex-

plained variance by each of themodel components. The analysis

was done by leaving out eachmodel component in turn and eval-

uating the proportion of variance explained between the full

model and the reduced model. The interactions (Figure 6, two

bottom rows) were excluded from the full model because they

did not significantly increase the adjusted explained variance in

fMRI or MEG data (Figures S5 and S6). The GIST model
Neuron 103, 161–171, July 3, 2019 165



A B C Figure 5. Early Correspondence between

the Representations in the OPA (fMRI)

and MEG

(A) The Kendall tau-a rank correlations between

the MEG RDMs and fMRI RDMs are shown. The

top panel shows the full time course (stimulus-on

period indicated by the black bar), and the bottom

panel highlights the early time window. The black

line shows the correlation between the MEG and

V1-fMRI, and the dark red line shows the corre-

spondence between the MEG and OPA-fMRI. The

correspondence between the MEG RDMs and

cross-validated fitted linear combinations of mul-

tiple fMRI RDMs are also shown (light red line for

the V1 and OPA and blue dashed line for the V1,

OPA, and PPA). The analyses were done sepa-

rately for each subject and for each texture, and

the results were averaged. Significant time points

are indicated by thick lines (FDR of 0.01; p values

were computed with two-tailed signed-rank test

across the 22 subjects, FDR adjusted across time

points). The gray line indicates the amount of

replicable structure in the MEG RDMs across

subjects. Figure S4 evaluates the effect of the

distance estimator for the reliability of the RDMs.

(B) The OPA significantly adds to the V1 in ex-

plaining the MEG RDMs already in the early time

window after stimulus onset. Shaded regions indicate SEM across subjects, and a red line indicates an FDR rate of 0.01 (two-tailed signed-rank test across the 22

subjects; FDR across time points).

(C) Both MEG and fMRI RDMs were also constructed based on how well the layout discrimination results generalized across surface textures (see also Figures 3

and 4). Only OPA (fMRI), not V1 or PPA, shows a significant correlation withMEGwhen the texture-generalized RDMs are compared (a red line indicates an FDR of

0.01 between OPA fMRI-RDM and MEG RDM; two-tailed signed-rank test across the 22 subjects).
dominates the explained variance in the V1. In both the V1 and

OPA (fMRI), the contribution of the back wall was stronger

compared with the other walls, likely reflecting its larger visual

field extent, and in the OPA, possibly also reflecting the added

depth to the scenes by the removal of the back wall. In the

OPA, the floor had a significantly larger contribution than the

right wall, the left wall, and the ceiling (two-sided signed-rank

test across subjects, multiple testing accounted for by control-

ling the false discovery rate at 0.05). In the MEG results, corre-

sponding results were found, with the GIST model dominating

the gain in the explained variance, but also a pronounced repre-

sentation of the floor compared with the right and left wall and

the ceiling (Figure 8C, bottom row), consistent with the results

found in the OPA (fMRI).

Fixations during Free Viewing Favor the Floor over the
Ceiling
Before the neuroimaging experiments, all 22 subjects partici-

pated in a behavioral experiment to familiarize themselves with

the stimuli. The subjects were shown the 96 stimulus images

(Figure 1E) once in a random order. We tracked their eye gaze

when they freely explored the scenes. The presentation time

was short (1 s), and the subjects were asked to always bring their

gaze back to the central fixation cross between the stimuli.

Without any specific instructions on where or what to look at in

the images, subjects made more saccades to the lower than

the upper visual field and, more specifically, to the floor than to

the ceiling (Figure S7; false discovery rate [FDR] = 0.0035,

0.0077, and 0.003 for each texture separately; two-tailed
166 Neuron 103, 161–171, July 3, 2019
signed-rank test across 22 subjects; FDR across the combina-

tions of wall pairs). This result suggests that attention is automat-

ically directed to the lower parts of a scene, where the naviga-

tionally crucial geometry of the ground appears. The prioritized

processing of the ground geometry is consistent with our neuro-

imaging results, where subjects maintained central fixation, but

the OPA exhibited a more prominent representation of the floor

(comparedwith the ceiling and the left and right walls; Figure 8B).

DISCUSSION

Visual navigation requires that the human brain represent the ge-

ometry of the environment and especially the physical bounds of

navigable space (Spelke and Lee, 2012). We refer to the stable

geometric shape of the space bounded by walls, the floor, and

the ceiling as the layout of the scene. Our results suggest that

the scene-bounding elements are extracted from the visual input

by the scene-responsive cortical area OPA. Specifically, using

fMRI, we found that the OPA encodes scene layout in a format

that supports linear readout of the presence or absence of

bounding elements with invariance to manipulations of surface

texture. The representation in the V1 was better captured by a

model of low-level image features of the scene stimuli than the

presence of the walls, whereas, in the OPA, the presence of the

walls better captured the representation. The PPA did not reliably

distinguish the scene layouts in its fMRI response patterns, and,

overall, the PPA showed a better decoding performance for

scene texture than for layout, which was contrary to the results

found in the OPA. Texture is closely related to the category of



Figure 6. The Representational Geometries

Were Modeled as Linear Combinations of

Representational Components

The first three model-RDMs capture the GIST

features (Oliva and Torralba, 2001) of the stimuli

(low-level image feature similarity), shown sepa-

rately for the three different textures. The next

model predicts the responses for a scene layout-

based representation with equal contribution of all

walls, calculated as the Hamming distance be-

tween the layouts (the percentage of the same

boundaries present in a pair of scenes, predicting

a similar response to two scenes with the same

boundaries and a distinct response for a pair of

scenes with different boundaries). The last model

in the top row was constructed based on the

number of scene-bounding elements present in

each scene (a similar response to a pair of scenes

with the same number of scene elements present

in the scene), roughly reflecting the size of the

space. The center row shows the five model-

RDMs separately capturing the presence of each

of the five scene-bounding elements in the spatial

layouts. The last ten model-RDMs reflect the in-

teractions between the walls.
the scene (e.g., indoor versus outdoor, urban versus natural).

Hence, our results support the view that the OPA is involved in

extracting the spatial structure of the local environment, whereas

the PPA has a role in scene recognition (Julian et al., 2018). We

complemented the fMRI results with high-temporal-resolution

MEG data. Scene layout representations with similar invariance

to surface texture as found in the OPAwith fMRI emerged rapidly

after stimulus onset in theMEG responses (peaking at�100 ms).

The rapid emergence of an explicit encoding of scene layout in

the humanOPA is consistentwith recentmodelingwork suggest-

ing that a layout representation can be efficiently computed by a

feedforward mechanism (Bonner and Epstein, 2018).

Our stimulus set systematically varied the presence of five

scene-bounding elements (three walls, the floor, and the ceiling)

for a total of 25 = 32 environmental geometries, each of which

was rendered in three different surface textures. This systematic

set enabled us to investigate the relative contribution of each of

the five scene-bounding elements to the representations. The

back wall covered a much larger and more central part of the

visual field and, thus, mapped onto a larger patch of cortical

surface in the V1 (Duncan and Boynton, 2003) than other

scene-bounding elements. The back wall was also prominently

represented in downstream scene-responsive regions, which

might reflect both its early visual representation and its naviga-

tional relevance in limiting forward movement. The removal of

the back wall also adds depth to the scenes, but the current

stimuli were not optimized for fully disentangling the contribution

of perceived depth from confounding low-level image features.

Lescroart et al. (2015) have previously looked at the relationship

between Fourier power and subjective distance in natural

scenes. They conclude that these models provide similar pre-

dictions of brain activity in the OPA and PPA when the re-

sponses to natural scenes are analyzed using voxel-wise

encoding models and suggest that some previous fMRI studies
reporting representations of distance in scene-responsive

cortical areas might be affected by this confound. More

recently, Lescroart and Gallant (2019) used computer-gener-

ated stimuli similar to ours to model the relative contributions

of low-level features and 3D structure on the voxel responses

to scenes across the visual cortex. They report that individual

voxels in scene-responsive areas represent combinations of ori-

entations and distances of surfaces and, overall, that distance

and openness are represented in the OPA, PPA, and RSC.

Our results complement their results by showing a dissociation

between the representations in the OPA and PPA, with only the

OPA exhibiting a texture-invariant representation of scene

layout, and by revealing the rapid emergence of this representa-

tion in the MEG responses.

The right and left walls, the ceiling, and the floor all covered

equally sized regions in the visual field in our stimulus set and,

hence, enabled comparisons of their relative contributions to

the representations. The ceiling and floor differed from the left

and right walls in terms of their prominence in the cortical repre-

sentations. In the V1, the ceiling was more weakly represented

than the other scene elements, which is likely explained by the

asymmetry between the upper and lower visual field representa-

tions in the V1 (Henriksson et al., 2012; Liu et al., 2006). Overall,

however, low-level image feature differences between the stim-

ulus images better captured the representation in the V1 than

any scene-layout-based model. The OPA exhibited a more

prominent representation of the floor than of the left and right

walls and the ceiling. One interpretation of this result is that the

ground ahead of us has a special status in the OPA representa-

tion because it supports our movement in the environment. A

special status for the ground is also supported by the eye gaze

data collected before the neuroimaging experiments, which

showed that subjects paid more attention to the floor than to

the ceiling when viewing the novel scenes.
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Figure 7. The Contributions of Low-Level Image Differences and

True Scene Layout-Based Representations in the fMRI and

MEG RDMs

(A) The mean Kendall’s tau-a correlation between the models and fMRI RDMs

are shown separately for the V1, OPA, and PPA. In the V1, there is only a small

improvement in the correlations when the GIST model is complemented with

other models. In the OPA, the fitted combination of scene-bounding elements

model (fwalls) alone already explain the representation better than the GIST

model. The gray lines indicate the amount of replicable structure in the fMRI

RDMs across subjects. The error bars indicate SEM across the subjects.

(B) Pairwise comparisons between the models, shown separately for the V1,

OPA, and PPA. The color codes and order of the models is the same as in (A).

Dark gray indicates a significant difference between the models (two-tailed

signed-rank tests across the 22 subjects, multiple testing accounted for by

controlling the FDR at 0.01), light gray indicates non-significance.

(C) The time courses of the model RDM fits to the MEG RDMs. The colors are

the same as in (A). The gray line indicates the amount of replicable structure in

the MEG RDMs across subjects. The thick lines indicate significant correla-

tions (FDR of 0.01 based on two-tailed signed-rank tests across the 22 sub-

jects). The black rectangle shows the timing of the stimulus.

(D) Themean increase in the Kendall’s tau a rank correlation is shownwhen the

fitted wall RDMs were included in the fitting compared with having only the

GIST model. Time points with significant increase are indicated by blue lines

(FDR 0.01, two-tailed signed-rank test across subjects).
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Consistent with our findings, previous studies have shown that

the OPA (also called the transverse occipital sulcus [TOS]) has

lower and peripheral visual field biases (Silson et al., 2015;

Levy et al., 2004, 2001). An important question for future work

is to what extent the OPA represents the geometry of the ground

ahead or more general features of the lower visual field. The OPA

representation most likely reflects the natural regularities of the

environment and the functional importance of different features.

During normal navigation, the gaze is typically directed ahead,

and, hence, the floor is perceived in the lower peripheral visual

field from where information is sampled to avoid obstacles and

to adjust steps according to the terrain (Marigold and Patla,

2008; Turano et al., 2001). We have proposed previously that

the occipital face area (OFA) might develop from a perifoveal ret-

inotopic protomap into a map of face feature detectors arranged

on the cortical sheet in the topology of a face (the ‘‘faciotopy’’ hy-

pothesis; Henriksson et al., 2015). The neighboring scene-

responsive cortex has a peripheral visual field bias (Levy et al.,

2001, 2004) andmight similarly develop from a retinotopic proto-

map into a representation of scene layout with extended repre-

sentations of the behaviorally most relevant features.

A limitation of the current study is the use 2D renderings of the

scenes instead of 3D stimulus presentation. The literature on

navigation has used virtual reality (VR) much more rigorously

(for an example, see Hartley et al., 2003) than studies of visual

perception, although scene perception studies would also

benefit from 3D stimuli and interaction with the scenes. Chal-

lenges with more complex stimuli are stimulus control and how

to reliably analyze and interpret the data. In the future, combining

MEG with VR might allow novel experiments aimed at under-

standing the smooth interplay between visual perception and

navigation during natural behavior. Furthermore, the scenes we

used as stimuli likely varied in how plausible they are in the

context of environments we encounter naturally. We wanted to

use a full stimulus set where the presence (absence) of each

wall was equally possible. Future studies could reveal how

cortical representations differ between scene layouts that are

typically encountered and layouts that are improbable to be

encountered. Moreover, use of a more restricted set of layouts

with a wider set of textures could further help tease apart

perceptual differences that, in our stimuli, might co-vary with

the change in the layout; for example, related to perceived dis-

tance in a scene.

The functional roles of the scene-responsive cortical visual

areas OPA, PPA, and RSC (Maguire, 2001) are often discussed

in the context of navigation, but the interplay between visual

perception and navigation is not yet fully understood. Navigation

is thought to rely on a cognitive map-like representation of the

environment in the hippocampus that might be anchored to the

visually perceived environment with the help of landmarks by

the RSC (Epstein et al., 2017). Although the PPA was originally

linked to the perception of the spatial layout of the environment

(Epstein and Kanwisher, 1998), cumulative evidence suggests

that the PPA is primarily involved in recognizing the scene
(E) Including the RDM based on the number of walls present in the scenes

further increased the model fit, especially at the later time points (blue lines

indicate an FDR of 0.01; two-tailed signed-rank test across subjects).
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Figure 8. The Unique Variance Explained by EachModel Component

(A) The explained variance (R2 adjusted) of the fitted joint models containing

components for the five scene-bounding elements (black bars and line for

fMRI and MEG, respectively), components for the five scene-bounding ele-

ments and the GIST (dark gray bars and line), and components for the five

scene-bounding elements, the GIST, and the number of walls (light gray bars

and line). The red lines indicate a significant improvement compared with a

model with fewer components (one-tailed signed-rank tests across the 22

subjects, multiple testing within a region of interest or across time points ac-

counted for by controlling the FDR at 0.05). See Figures S5 and S6 for the

results for each texture separately and also including the component models

for interactions between walls (overall no further improvement in the adjusted

explained variance).

(B and C) The gain in variance explained by each of the model components

was calculated by comparing the explained variance between the full model

(light gray in A) with a model where this one component was left out from the

joint fit. Each model component was left out in turn, and the results are shown

separately for (B) V1, OPA, and PPA (fMRI) and (C) MEG data. Error bars (fMRI)

and shaded regions (MEG) are SEM across subjects. In different regions of

interest (fMRI), the different model componentsmade different contributions to

the representation; see the half-matrices for results from significance testing
category (e.g., kitchen versus woods) and scene identity (e.g.,

our kitchen versus someone else’s) using a combination of ge-

ometry and texture cues, whereas theOPA is involved in analysis

of the local scene elements (Bonner and Epstein, 2017; Julian

et al., 2018; Kamps et al., 2016; Lowe et al., 2017). Scenes we

recognize as distinct places might have an identical layout,

and it is the textures and object ensembles that provide the

crucial cues to where we are. Scene perception mostly happens

in the peripheral visual field, which is limited by visual acuity but

especially by visual crowding (Rosenholtz, 2016). The PPA may

extract the identity of the scene by encoding the summary statis-

tics of object ensembles present in the scene (Cant and Xu,

2012). Overall, our results regarding better texture than layout

encoding in the PPA are in agreement with previous studies

showing texture information in the human PPA (Park and Park,

2017) and in the putative PPA homolog in macaques (Kornblith

et al., 2013).

In conclusion, our study shows a striking distinction between

the PPA, which did not enable reliable decoding of scene layout,

and the OPA, whose activity patterns reflected the presence or

absence of each of the five spatial constraints with invariance

to surface texture. These results support the view that the OPA

extracts information about a scene’s spatial structure, whereas

the PPA is involved in recognizing the scene context (Julian

et al., 2018). Our analyses reveal the emergence, within

100 ms of stimulus onset, of detailed encoding of scene layout

in the OPA, suggesting that this cortical region supports our

rapid visual sense of the geometry of our environment.
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(two-tailed signed-rank tests across the 22 subjects, multiple testing within a

region of interest accounted for by controlling the FDR at 0.05). The pro-

nounced contribution of the floor to the scene representations (fMRI-OPA and

MEG) is consistent with the behavioral results shown in Figure S7.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Twenty-two healthy volunteers (9 females; mean age: 26, age range 19–49) with normal vision took part in this study. All subjects

participated in a behavioral eye-tracking experiment, an MEG experiment and an fMRI experiment (divided into two sessions).

Two additional subjects were recruited but excluded from the analyses because they did not participate in both fMRI and MEG ex-

periments. Ethical approval for the research was obtained from Aalto University Ethics Committee. Subjects gave written informed

consent before participating in the study.

METHOD DETAILS

Spatial layout stimuli and experimental designs
We created all possible combinations of spatial layouts that can be made from five scene-bounding elements (left wall, back wall,

right wall, floor, ceiling; 25 = 32 different layouts). In practice, the layouts were created by starting from a 5-wall room and switching

the spatial constraints ’on’ and ’off’ using the Blender 3D modeling software. Three different surface-textures and background im-

ages were applied. The textures were jittered for all stimuli to reduce the effect of low-level image similarities between the stimulus

images. All 96 spatial layout stimuli are shown in Figure 1E.
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In all experimental setups, the spatial layout stimuli extended approximately 20 deg 3 20 deg of the visual field. The timing of the

stimuli was controlled with Presentation (Neurobehavioral Systems, Albany, CA) software. In the behavioral lab, the stimuli were

shown using a monitor. During the neuroimaging experiments, the stimuli were presented to semitransparent screens with 3-DLP

projectors (Panasonic PT-D7700E; Panasonic PT-DZ110XEJ).

During the behavioral eye-gaze tracking experiment, the spatial layout stimuli were displayed for one second with a one second

inter-stimulus-interval (ISI) when only a fixation cross was shown. The stimuli were shown once in a random presentation order that

was different for each subject. The subjects were requested to return their gaze to the fixation cross in-between the stimulus pre-

sentations but no other instructions were given except that the subjects could freely explore the novel scenes.

The fMRI experiments applied a rapid event-related design, where the stimulus images were shown for 2 s followed by a 2 s ISI

when only a red fixation cross was shown on amid-gray background (stimulus trial). All 96 stimuli were shown once in a random order

during one experimental run. The subjects were instructed to keep their eyes at the fixation cross throughout the experimental runs.

To have enough baseline data, 32 4-second rest trials showing only the fixation cross were intermixed with the stimulus trials.

Moreover, 10 task trials were randomly intermixed after the stimulus trials. During the task trials, an arrow was pointing to one of

five directions and the subjects’ task was to respond with a button press whether there was a wall present in that direction in the

previous layout. In sum, the total duration of a run was (96+32+10) * 4 s = 552 s, completed with a few extra rest-trials at the beginning

and end of each run. Altogether 12 fMRI runs (12 trials for each stimulus) were collected for each subject. The fMRI data were

collected during two separate experimental sessions.

During the MEG recordings, the stimulus images were displayed for 1 s followed by a 2 s ISI when only a red fixation cross was

shown on a mid-gray background (stimulus trial). Similar to the fMRI experiments, 10 task-trials were randomly intermixed after

the stimulus trials. All 96 stimuli were shown once in random order during one experimental run, and the subjects were instructed

to keep their eyes at the fixation cross throughout the experimental runs. The total duration of one MEG run was (96 + 10) * 3 s =

318 s, completed with some baseline data at the beginning and end of each run. Altogether 8 MEG runs (8 trials for each stimulus)

were collected for each subject.

Eye-gaze data collection and analysis
Eye-gaze data were collected separately in a behavioral laboratory and during the neuroimaging data collections. In all setups, we

used SR Research EyeLink1000 systems (SR-Research, Ontario, Canada; sampling rate 500 Hz). A 9-point calibration was per-

formed at the start of each experiment. During the fMRI and MEG experiments, the eye-gaze was tracked online to track the stability

of the subjects’ gaze during central fixation. In the behavioral experiment, the subjects’ scan paths during free-viewing of the stimuli

were followed. Fixations, saccades, and blinks were extracted from the continuous eye-tracking data using the software provided by

the eye-tracker manufacturer.

(f)MRI data acquisition
The functional and anatomical MRI data were acquired using a 3T MAGNETOM Skyra whole-body scanner (Siemens Healthcare,

Erlangen, Germany) equipped with a 30-channel head coil. During eachmain experimental run, the functional volumeswere acquired

using an EPI sequence with imaging parameters: repetition time 2 s, 29 slices with 2 mm slice thickness (no gap), field of view

192 mm3 192 mm, imaging matrix 963 96, echo time 30 ms, and flip angle 70�. Each subject attended two measurement sessions

with six main experimental runs and two functional localizer runs. Two T1-weighted high-resolution structural images were acquired

using an MPRAGE sequence, from which the white and gray matter borders were segmented and reconstructed using Freesurfer

software package (Dale et al., 1999).

MEG data acquisition
MEG was recorded in a magnetically shielded room with a whole-scalp 306-channel MEG device (Elekta Oy, Helsinki, Finland). The

device comprises 102 triple-sensor elements, with onemagnetometer and two orthogonal planar gradiometers at each location. Only

the gradiometer data (204 sensors) were used in the analysis here. The recording passband was 0.03–330 Hz, and the signals were

sampled at 1000 Hz. The position of the subject’s head with respect to the MEG sensors was tracked throughout the experiment

using five head position indicator coils. Horizontal and vertical electro-oculogramswere recorded with the same recording passband

and sampling rate as applied for the MEG.

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI data analysis
Functional MRI data were pre-processed with SPM12 (Wellcome Department of Imaging Neuroscience) MATLAB toolbox. The first

four functional images from each run were excluded from the analysis to reach stable magnetization. The functional images were

corrected for interleaved acquisition order and for head motion, and spatially smoothed using a 4 mm Gaussian smoothing kernel.

The data from the second measurement session were co-registred and re-sampled to the same space with the first measurement

session data. All analyses were performed in native space; no normalization was applied. The responses for the spatial layout stimuli

were estimated using standard general linear model (GLM) analysis. The timings of the stimuli were entered as regressors-of-interest
Neuron 103, 161–171.e1–e3, July 3, 2019 e2



to the GLM, which were convolved with the canonical hemodynamic response model. Additional regressors included the responses

and the six head-motion-parameters. During the parameter estimation, the data were high-pass filtered with 128 s cut-off.

The primary visual cortex (V1) was localized in each individual based on the cortical folds via a surface-based atlas alignment

approach using Freesurfer (Hinds et al., 2008). Occipital place area (OPA), parahippocampal place area (PPA) and retrosplenial

cortex (RSC) were localized based on independent functional localizer data. During the functional localizer run, the subjects were

presented with blocks of images of scenes (different from the main experiment), faces, objects, and scrambled textures. Subjects

performed a one-back task on the stimulus images. Two approximately 5-minute localizer runs were collected in both fMRI sessions

for each subject. The regions-of-interest (ROIs) were manually drawn on each participant’s cortical surface based on the contrast

scenes > faces using Freesurfer. Voxels representing the ROIs in the right and left hemispheres were concatenated for the linear

discriminant analysis.

We used linear discriminant analysis (Kriegeskorte et al., 2007; Nili et al., 2014) to study the discriminability of the response patterns

evoked by the different spatial layouts. The data were first divided into two independent sets based on runs. For each pair of spatial

layout stimuli, Fisher linear discriminant analysis (Nili et al., 2014) was applied to find the weights for the voxels that discriminated

between the response patterns and then the weights were applied to the independent data to calculate the linear-disciminant t-value

(LDt), reflecting the discriminability between the response patterns evoked by two different spatial layouts. The LDt can be interpreted

as a cross-validated, normalized version of the Mahalanobis distance (Nili et al., 2014). The analyses were done on individual data,

and the linear-discriminant t-values were pooled across the 22 subjects. The significance was tested using a two-sided signed-rank

test across the subjects. All pairwise comparisons of the spatial layouts were collected to matrices; multiple testing (496 pairwise

comparisons of 32 spatial layouts) was accounted for by controlling the false-discovery rate. To test for generalization across surface

textures, the Fisher linear discriminant was fit to the response patterns evoked by the spatial layouts in one texture and tested on the

response patterns evoked by the same spatial layouts in another texture.

MEG data analysis
The continuous MEG data were preprocessed using spatiotemporal signal-space separation (Taulu and Simola, 2006) implemented

in the MaxFilter software (Elekta Oy, Helsinki, Finland). This step included suppression of magnetic interference of external sources

and compensation for headmovement. Next, independent component analysis-based eye blink artifact correctionwas applied to the

data (Oostenveld et al., 2011). Single-trial MEG responses to stimulus images were extracted from the continuous MEG recording,

baseline-corrected from –200ms to 0ms and low-pass filtered at 45 Hz using tools provided by theMNE and Fieldtrip software pack-

ages (Gramfort et al., 2014; Oostenveld et al., 2011).

The cross-validated (leave-one-trial-out) Mahalanobis distance between the MEG responses was used as the distance estimator

when constructing the representational dissimilarity matrices (RDMs; Walther et al., 2016). The RDMs were constructed separately

for each time point using data from all 204 gradiometers.

Representational similarity analysis and fitting of models
For the fMRI data, the representational geometry (Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 2008) of the regions-of-interest

(V1, OPA andPPA) was characterized by the LDt-matrices. For theMEGdata, cross-validatedMahalanobis distancewas used as the

distance estimator between the response-patterns of different stimuli. The representations were compared via the matrices using

Kendall’s tau-a rank correlation (Nili et al., 2014). We used non-negative least-squares (Khaligh-Razavi and Kriegeskorte, 2014) (1)

to fit multiple fMRI-LDt-matrices to an MEG distance matrix, and (2) to fit multiple competing models to brain representations

(both fMRI and MEG). The fitting was done on individual distance matrices and the results were cross-validated using a leave-

one-subject-out approach. In the cross-validation, the weights fitted separately for each subject were averaged across all subjects

except the left-out subject. The left-out subject’s RDM was then compared to the reference-RDM with the average weights for the

components. This approach was repeated by leaving out each subject in turn, and the results were averaged. The fitted models

included the GIST (Oliva and Torralba, 2001) to capture low-level image features of the spatial layout stimuli and feature models

based on the presence of different scene-bounding elements in the spatial layouts (see Figure 6). The unique variance explained

by each component model was evaluated by leaving out each model component in turn and evaluating the proportion of variance

explained by the full model and the reduced model. The analysis was done on individual data and the results were averaged across

subjects.

DATA AND SOFTWARE AVAILABILITY

The key resources table lists the software and the existing, freely available toolboxes that were used for the analyses. Custom scripts

and data contained in this manuscript are available upon request from the lead contact (linda.henriksson@aalto.fi).
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