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Disentangling five dimensions of animacy in human
brain and behaviour
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Radoslaw M. Cichy 4,6 & Nikolaus Kriegeskorte5,6

Distinguishing animate from inanimate things is of great behavioural importance. Despite

distinct brain and behavioural responses to animate and inanimate things, it remains unclear

which object properties drive these responses. Here, we investigate the importance of five

object dimensions related to animacy (“being alive”, “looking like an animal”, “having agency”,

“having mobility”, and “being unpredictable”) in brain (fMRI, EEG) and behaviour (property

and similarity judgements) of 19 participants. We used a stimulus set of 128 images, opti-

mized by a genetic algorithm to disentangle these five dimensions. The five dimensions

explained much variance in the similarity judgments. Each dimension explained significant

variance in the brain representations (except, surprisingly, “being alive”), however, to a lesser

extent than in behaviour. Different brain regions sensitive to animacy may represent distinct

dimensions, either as accessible perceptual stepping stones toward detecting whether

something is alive or because they are of behavioural importance in their own right.
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The perception of animate things is of great behavioural and
evolutionary importance to humans and other animals.
Recognizing animate things is essential for choosing appro-

priate actions as we engage in the physical and social world, and can
be a matter of life and death (e.g., quick recognition of a predator).
Animacy is an important representational division in nonhuman
and human higher ventral visual cortical areas in the inferior
temporal cortex1 and the medial temporal lobe2 as measured by
functional magnetic resonance imaging (fMRI). Consistent with the
importance of animacy perception in the classical neuropsycholo-
gical literature, lesion studies established that living things are
represented in dedicated regions of the cortex3–5. However, it is less
clear which of the distinctive features of animate things are repre-
sented in the brain and reflected in judgments of animacy and of the
similarity between things. An animal differs from an inanimate
object in many respects, so animacy could be diagnosed by many
different indicators. The dimensions of animacy that have been
explored include “being alive”6–12, “looking like an animal”6,8,11–14,
“having mobility”15–17, “having agency”17–23, and “being
unpredictable”20. Each of these studies offers important insights on
one particular dimension of animacy. However, to understand
which of a number of confounded dimensions are represented, we
need experiments designed to disentangle them.

Dimensions that define a concept depend on the chosen defi-
nition of the concept. Dictionary definitions of animate rely
heavily on the dimension of being alive (animate: “living; having
life”, Oxford Advanced Learner’s Dictionary). However, being
alive is a difficult-to-assess latent property of a thing. It seems
plausible that a perceptual system might represent more acces-
sible dimensions that are correlated with being alive, even if being
alive were ultimately the behaviourally important property. In
addition, a more accessible related property, such as “looking like
an animal” or “being unpredictable”, may be of behavioural
importance in its own right. We are not concerned here with the
philosophical and semantic questions of animacy, but with the
empirical question of which of several related and commonly
conflated dimensions are represented in particular brain regions
and in behavioural judgements.

Apart from the abovementioned dimensions of animacy, sev-
eral other human-centred interpretations of animacy have been
proposed. Recently reported animacy-related concepts that
explain variance in the ventral visual stream fMRI measurements
are human-likeness24, humanness23, resemblance to human faces
and bodies25, and capacity for self-movement and thought rather
than face presence26. Another similar concept is the animacy
continuum, where objects are perceived as more animate when
they are more similar to humans (e.g., images of monkeys would
be perceived as more animate than insects, even though both
species belong to the animal category;6). In addition to the high-
level dimensions, low-level visual features correlate with
animacy27–29. Colour statistics28, curvature27, and mid-level
shape features29 can be used to classify whether an object is
animate or inanimate.

The stimuli used in previous studies were mostly handpicked
to investigate a chosen dimension without controlling for con-
founding variables. Previous studies often used unnatural stimuli
(e.g., point-light displays in17–22,30 or grey-scale simplified objects
in31) or stimuli from only one category of objects (e.g., animals
in17–22,30). The “being unpredictable” dimension has only been
studied in the language domain and not in vision. Finally, pre-
vious studies mostly focused on one type of behaviour or one type
of brain measurement but none of them has combined multiple
measurements of behaviour and different brain measurement
modalities, which would allow building a more comprehensive
understanding. This approach has limited our progress toward a
comprehensive understanding of the representation of the

multiple dimensions of animacy. Thus, despite decades of
research that has established the prominence of different
dimensions of animacy in human brain and behaviour, it remains
unclear whether any one of the five selected dimensions or a
subset of them can explain the responses and how this depends
on the brain region or behavioural measure.

Here, we comprehensively investigate the importance of the
five selected dimensions of animacy: “being alive”, “looking like
an animal”, “having agency”, “having mobility”, and “being
unpredictable”. By using a larger number and diversity of stimuli
than in the previous studies, we can disentangle the dimensions
experimentally. We study responses to this stimulus set using two
behavioural tasks (animacy ratings and similarity judgements)
and two brain measurement modalities (fMRI and EEG). To
disentangle the five selected dimensions of animacy, we optimized
a stimulus set of 128 images using a genetic algorithm (GA).

Results
Stimulus selection procedure and stimulus set. Evaluating the
contribution of individual dimensions of animacy (“being alive”,
“looking like an animal”, “having mobility”, “having agency”, and
“being unpredictable”) would be best performed on a stimulus set
that is as decorrelated on these dimensions as possible. We cre-
ated such a stimulus set by optimizing stimuli using a genetic
algorithm. We selected images that were maximally decorrelated
on dimensions of animacy using a four-step procedure (Fig. 1a,
see Methods for details). First, we created an animacy dimension
grid where we asked participants to fill freely in the names of the
objects fulfilling each animacy dimension combination to then
find images that satisfy combinations of dimensions of animacy
(29 out of 32 possible combinations). The object names provided
by the subjects did not cover all 32 combinations, which is why 29
combinations out of 32 were included in step 1 of the stimulus
selection procedure. Participants came up with 100 classes in
total, and the participants were not given any object classes to use
by the experimenters (Supplementary Table 1). The object cate-
gories were distinct (e.g., there were different types of robots and,
therefore, two different object categories, “humanoid robot” and
“animal robot”, were included). Second, we assembled object
images based on object names from step one. Third, an inde-
pendent set of participants rated object images (which were
assembled based on object names from step one) on each of the
five selected dimensions of animacy to generate animacy ratings.
Fourth, we used a genetic algorithm to select a subset of images
with the lowest maximum correlation between dimensions of
animacy (10,000 generations). The maximum correlation between
dimensions in the stimulus set was 0.36. This result was better
than when randomly selecting the stimuli 10,000 times without
optimization (maximum correlation between dimensions = 0.64),
proving that our novel stimulus selection procedure was suc-
cessful. The pairwise correlations between animacy dimensions
for the 128 stimuli selected randomly and for the 128 stimuli
selected by GA are represented in Fig. 1b. This stimulus set was
used in subsequent behavioural and brain imaging experiments.

The stimulus set (Fig. 2a) consisted of 128 images spanning
almost all animacy dimension combinations (26 out of 32
possible combinations). Among 29 dimension combinations for
which participants provided object names, three were not selected
by the GA. This is because the objective of the GA was to
minimise the maximum correlations between dimensions, and
some dimension combinations were not optimal to be chosen. A
wide range of objects was present, such as humans, human
fetuses, human organs, human and animal shadows, plants,
corals, forces of nature, game items, toys, vehicles, and electronic
equipment covering 68 categories. The GA did not choose some
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of the images representing object names from the initial 100
object names listed in step 1, as the dimensions of animacy
ratings on these images were not optimal for the GA objective.
The GA was allowed to choose a maximum of two different
images representing different objects from a given category (e.g.,
two different animal robots) if this selection contributed to an

optimal GA solution. A small percentage of stimuli can be
considered as unusual (7.8%, 10 out of 128 stimuli, considering
that stimuli such as human foetus, disembodied eyeball, person
on life support, heart can be considered as emotional triggers). As
the unusual stimuli constitute only a small percentage of our
stimulus set we do not think that they would affect the

Step 1. Create dimensions of animacy combination grid and 
            acquire grid combination labels

being unpredictable

having mobility

being alive
looking like animal

having agency

1

0
1
1
0

1
1
1
1 0

0

0

1
0
1

ba
by

wav
es

 ro
bo

t
animacy dimensions

Step 3. Acquire ratings of animacy dimensions for 300 images

Step 2. Find 300 images corresponding to labels 
           (3 images per label) 

being 
alive

-10 10
dead alive

having
agency

having 
mobility

looking like 
animal

0

being 
unpredictable

-10 100

being 
alive

having
agency

having 
mobility

looking like 
animal

being 
unpredictable

judge properties of objects 
on the scale from -10 to 10

Step 4. Select 128 out of 300 images decorrelated on dimensions of 
             animacy using genetic algorithm

Step 0. Initialize 
(random population)

Step 1. Select
(based on fitness)

Step 2a. Mutate

Step 2b. Cross-over

next generation population
(repeat until fitness reaches plateau)

fitness = minimize
 max corr 

between dimensions

population
(selected images)

..

..

..

.

.

..

..

..

..

..

..

.

.

.

.

..

.
.

..

a

b

0

0.2

0.4

0.6

0.8

1

being unpredictable

having mobility

being alive

looking like animal

having agency

be
ing

 a
liv

e 
 

loo
kin

g 
lik

e 
an

im
al 

 

ha
vin

g 
m

ob
ilit

y  

ha
vin

g 
ag

en
cy

  

be
ing

 u
np

re
dic

ta
ble

  

dimension correlations
for 128 stimuli selected

randomly

0

0.2

0.4

0.6

0.8

1

be
ing

 a
liv

e 
 

loo
kin

g 
lik

e 
an

im
al 

 

ha
vin

g 
m

ob
ilit

y  

ha
vin

g 
ag

en
cy

  

be
ing

 u
np

re
dic

ta
ble

  

dimension correlations
for 128 stimuli selected

by genetic algorithm

being unpredictable

having mobility

being alive

looking like animal

having agency

Fig. 1 Stimulus-selection procedure and pairwise correlation between animacy dimensions before and after stimulus selection by the genetic
algorithm. a First, we created an animacy grid with all dimensions of animacy combinations and asked 11 participants to fill in the names of objects that
fulfilled these combinations. Second, we assembled object images based on object names from step one. Third, an independent set of 26 participants
performed animacy ratings of 300 of these object images. Finally, we selected an optimal set of stimuli that had a low correlation between dimensions (as
behaviourally rated) using a genetic algorithm. These stimuli were used in behavioural and brain representation experiments where a new set of
participants was recruited to make sure that the stimulus generation and the actual experiments were independent. b Pairwise correlation between
animacy dimensions for the randomly selected 128 stimuli (left) and the 128 stimuli selected by the genetic algorithm (right) in behavioural ratings.
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interpretation of our results. None of the participants mentioned
that they found any of the stimuli upsetting after performing the
experiment. However, future studies may benefit from including
affect ratings alongside the dimensions of animacy ratings. This
stimulus set was used for two behavioural studies: animacy
ratings and similarity judgements, and two brain response
measurement studies: EEG (to access temporal information)
and fMRI (to access spatial information). Nineteen participants
performed all the studies. Importantly, participants first
performed EEG and fMRI studies, followed by similarity
judgements and finally animacy ratings (Fig. 2b). This experi-
mental order was to ensure that participants did not know about
animacy dimensions tested until the final animacy ratings.

Consistency in animacy ratings across participants. We first
wanted to evaluate the contribution of each dimension of animacy
when participants were asked to judge how animate an object image
was. We first explored how consistent participants were in judging
each dimension of animacy and each image. We used representa-
tional similarity analysis32 to reveal which dimensions contribute
most when participants judged animacy. We also examined which
dimension(s) explained unique variance in the animacy ratings.

Participants judged each object image using a continuous scale
from −10 to 10 for each dimension, e.g., −10 meant “inanimate”

and 10 meant “animate” (Fig. 3a). The same image was judged in
the same way on the five investigated dimensions of animacy using
the same scale. The mean between-participant correlation was 0.6,
which indicated that participants were generally consistent in their
ratings. The mean within-participant consistency for thirty repeated
stimuli was 0.89 meaning that participants consistently judged the
same stimulus within a session. The raw data of animacy ratings
shows that a given stimulus could be differently rated on each of the
dimensions (Fig. 3b).

We wanted to know how consistent participants were in
judging each dimension and each stimulus. This analysis had two
purposes: to be able to determine whether the variability in
animacy ratings is low enough to interpret the ratings at all and to
test which dimensions and stimuli were particularly controversial
for participants as reflected by higher variability.

We first asked about the participants’ consistency across
stimuli in all dimensions of animacy. There is variability in the
consistency of ratings as some of the object images, e.g., “bike”,
was judged very consistently as expected, whereas other more
controversial ones, e.g., ‘human foetus’, less consistently, with
“human shadow” having the lowest consistency among the object
images tested (Fig. 3c). While participants were asked to judge
what is represented on images (“human shadow”), it might not be
apparent whether to judge the shadow itself or the person
creating the shadow.

a

b

behaviour brain

 animacy ratings  similarity judgements EEG fMRI

19 participants

Fig. 2 Stimulus set and study overview. a The genetic-algorithm driven stimulus set consisted of 128 images decorrelated on dimensions of animacy. The
stimuli were coloured images of sport equipment, games, robots, dolls and puppets, plush toys, land vehicles, air vehicles, plants, forces of nature (water,
air, fire, smoke), sea organisms, cells, organs and fetuses, humans, food, kitchen and office equipment, shadows. b Study overview. All 19 participants
performed two behavioural studies: animacy ratings and similarity judgements, and two brain response measurement studies: EEG (to access temporal
information) and fMRI (to access spatial information). Importantly, participants first performed EEG and fMRI studies, then similarity judgements and
finally animacy ratings. This experimental order was to ensure that participants did not know about animacy dimensions tested until the final animacy
ratings.
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To get more insights into animacy dimension ratings, we
explored the consistency of each stimulus per each animacy
dimension. For “looking like an animal”, which was judged most
consistently among the dimensions, “hammer” was one of the
object images that were most consistently judged, whereas an
image of a “human” was not judged very consistently. The lower
consistency of judging an image of a human may be related to the
fact that some humans do and others do not consider themselves
animals, even though from a biological point of view Homo
sapiens belong to the animal category. Looking at the other side
of the spectrum - “having agency” dimension was judged least
consistently - we observed that an example image that had a high
consistency of ratings was “eyeball”, whereas an image of a
“robot” was not very consistently judged (Fig. 3d).

Among all the dimensions participants judged “having agency”
least consistently and “looking like an animal” most consistently
(see Fig. 3e for the consistency of ratings for each dimension).
What about the animacy ratings (“being animate”)? Would object
animacy be judged consistently across participants or given the
ambiguous definition of this term, would the consistency be lower
than some of the more precisely defined dimensions of animacy?
We found that the latter was the case - animacy ratings had lower
consistency than more precisely defined dimensions of animacy,
except for the ‘having agency’ dimension.

Contribution of each animacy dimension to animacy ratings.
To gain more intuition about what stimuli are considered to have

the highest value on each animacy dimension, we visualized 10
object images with the overall minimum and 10 with the maximum
rating on a given dimension (Fig. 4a). Overall, images that had low
values on animacy dimension ratings were similar among dimen-
sions (e.g., plush toys, meat, washing machine). In contrast, images
with high ratings did differ depending on a dimension tested (e.g.,
stimuli judged as the most unpredictable being humans and forces
of nature, in contrast to humans judged as having the most agency),
proving that indeed these dimensions capture different aspects of
animacy perception (Fig. 4a, right panel).

To reveal which dimensions contribute most when participants
judged animacy we used representational similarity analysis (RSA,
see Methods). RSA characterises representations in behavioural
and brain data and models by representational dissimilarity
matrices (RDMs) of the response patterns elicited by stimuli.
RDMs capture the information represented by data or models by
characterizing their representational geometry33,34. The represen-
tational geometry reflects which stimulus information is empha-
sized and which is de-emphasized. Models (here dimensions of
animacy) are tested by correlating their RDMs with data RDMs.

Using RSA, we found that among all the dimensions, “having
agency” and “being alive” explained more variance than
some other dimensions (Fig. 4b) in animacy ratings (when
participants were asked to judge how animate an object image
was). This result means that when asked to judge animacy
humans mostly think about whether an object is alive and
whether it has agency. Even though “having agency” and “being
alive” explain more variance than the other dimensions, it does
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Fig. 3 Animacy ratings and their consistency with examples of images judged consistently and not very consistently. a Illustration of animacy ratings.
Participants judged each object image using a continuous scale from−10 to+10 for each animacy dimension, e.g.,−10 meant “dead” and+10 meant “alive” for
the “being alive” dimension. Additionally, participants performed a rating of “being animate” dimension in a similar fashion. b Mean ratings of each animacy
dimension and stimulus across 19 participants. cConsistency of each stimulus in animacy ratings across participants (standard error of the mean) with examples
of stimuli with varying values of standard error. d Consistency of each animacy dimension and stimulus in animacy ratings across participants with examples of
stimuli with varying values of standard error for the most consistently judged (“looking like an animal”) and the least consistently judged (“having agency”)
dimensions. e Consistency of each animacy dimension in animacy ratings across participants (standard error of the mean).
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not mean that they explain unique variance. To test that, we
performed a unique variance analysis (see Methods for details)
and observed that, “being alive” and “having agency” explain
significantly more unique variance than “being unpredictable”
dimension (Fig. 4c). “Being alive” and “having agency” are the
dimensions that explain the most variance in animacy ratings and
also the ones that explain significantly more unique variance than
some of the other dimensions.

In summary, when asked to rate object animacy, participants
found “being alive” and “having agency” as dominant dimen-
sions, and were most consistent when judging the “looking like an

animal” dimension and least consistent in judging the “having
agency” dimension.

Contribution of each animacy dimension to similarity judge-
ments. After having established the contribution of animacy
dimensions to animacy ratings, we tested whether any of the
dimensions would explain similarity judgements. The similarity
judgements task allows participants to evaluate objects in a more
natural way concentrating on general object similarity. Please
note that participants performed the similarity judgements task
before competing dimensions of animacy ratings, so they were

Fig. 4 Dimensions of animacy and animacy ratings. a Order of images with lowest and highest ratings on each animacy dimension. Out of 128 images, we
show ten lowest and ten highest rated images on each animacy dimension. b Animacy dimension representational dissimilarity matrices (RDMs)
comparisons with animacy ratings (“being animate”) RDMs. Bars show the correlation between the animacy ratings RDMs and each animacy dimension
RDM of 19 participants. A significant correlation is indicated by an asterisk (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). Error bars show the
standard error of the mean based on single-participant correlations, i.e., correlations between the single-participant animacy ratings RDMs and animacy
dimension RDM. Circles show single-participant correlations. The grey bar represents the noise ceiling, which indicates the expected performance of the
true model given the noise in the data. Horizontal lines show significant pairwise differences between model (here dimensions of animacy) performance
(p < 0.05, FDR corrected across all comparisons), an asterisk to the right of horizontal lines indicates their significance. c Unique variance of each animacy
dimension in explaining animacy ratings computed using a general linear model (GLM). For each animacy dimension m, the unique variance was computed
by subtracting the total variance explained by the reduced GLM (excluding the dimension of interest) from the total variance explained by the full GLM.
Specifically, for dimension m, we fit GLM on X= “all dimensions but m” and Y= data, then we subtract the resulting R2 from the total R2 (fit GLM on
X= “all dimensions” and Y= data). We used non-negative least squares to find optimal weights. A significant unique variance is indicated by an asterisk
(one-sided Wilcoxon signed-rank test, p < 0.05 corrected). The error bars show the standard error of the mean based on single-participant unique
variance. Circles show single-participant unique variance. Horizontal lines show significant pairwise differences between model performance (p < 0.05, FDR
corrected across all comparisons), an asterisk to the right of horizontal lines indicates their significance.
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unaware of the dimensions of animacy tested. As participants
were asked to arrange object images based on their similarity and
not asked about animacy, dimensions of animacy may not explain
these representations. Rather than dimensions of animacy, either
other categorical divisions or lower-level image features could be
used for judging object similarity. Participants placed images of
objects inside a circular arena according to how similar they judge
them (Fig. 5a). The procedure was repeated with different
numbers of objects that had to be arranged indefinitely until
reaching a predefined arrangement consistency (see Methods).
We evaluated how well the dimensions of animacy explained the
similarity judgements task using RSA and the unique variance
analysis.

Visualizing the similarity judgements as a multidimensional
scaling (MDS) plot helped us to determine which object images
were grouped together (Fig. 5b). For example, object images of

most robots, fetuses, and a human on life support were grouped,
with human images separated but placed close to an image of a
realistic humanoid robot. This grouping is related to the agency
dimension as these images received the highest rating on “having
agency” dimension (Fig. 5b). Animal robots formed their own
cluster together with other moving objects such as boomerangs,
balls, and buses. Different vehicles were grouped nearby with
images of cars being placed near comets, clouds, and dominos.
Games and toys were arranged in proximity to the “animal-like
robot” group and the “human” group. Some unpredictable objects
were also grouped together: geysers and game machines, or
volcanos and waves (Fig. 5b). As a sanity check, images that
depict the same object were grouped together, for example, two
pictures of flowers or wheels (Fig. 5b). To gain an intuition of
how well the five dimensions of animacy studied here separated
representations in the similarity judgements, we have displayed
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Fig. 5 Dimensions of animacy and similarity judgements. a Similarity judgements multiarrangement task. During this task, object images were shown on a
computer screen in a circular arena, and participants were asked to arrange the objects according to their similarity, such that similar objects were placed
close together and dissimilar objects were placed further apart. Participants performed multiple arrangements of subsets of the images, enabling us to
estimate the underlying perceptual similarity space (see Methods for details). b Multidimensional scaling plot of similarity judgements (mean across 19
participants, with metric stress criterion). c Animacy dimension RDM comparisons with similarity judgements RDMs. Bars show the correlation between
the similarity judgements RDMs and each animacy dimension RDM. A significant correlation is indicated by an asterisk (one-sided Wilcoxon signed-rank
test, p < 0.05 corrected). Error bars show the standard error of the mean based on single-participant correlations, i.e., correlations between the single-
participant similarity judgements RDMs and animacy dimension RDM. Circles show single-participant correlations. The grey bar represents the noise
ceiling, which indicates the expected performance of the true model given the noise in the data. Horizontal lines show significant pairwise differences
between model performance (p < 0.05, FDR corrected across all comparisons), an asterisk to the right of horizontal lines indicates their significance.
d Unique variance of each animacy dimension in explaining similarity judgements. For each animacy dimension m, the unique variance was computed by
subtracting the total variance explained by the reduced GLM (excluding the dimension of interest) from the total variance explained by the full GLM.
Specifically, for dimension m, we fit GLM on X= “all dimensions but m” and Y= data, then we subtract the resulting R2 from the total R2 (fit GLM on
X= “all dimensions” and Y= data). We used non-negative least squares to find optimal weights. A significant unique variance is indicated by an asterisk
(one-sided Wilcoxon signed-rank test, p < 0.05 corrected). The error bars show the standard error of the mean based on single-participant unique
variance. Circles show single-participant unique variance. Horizontal lines show significant pairwise differences between model performance (p < 0.05, FDR
corrected across all comparisons), an asterisk to the right of horizontal lines indicates their significance.
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MDS plots colour-coded according to binary animacy dimensions
(e.g., “being alive” with one colour of dots and “not being alive”
with another colour of dots, Supplementary Fig. 1). All
dimensions separated the stimuli well, with each dimension
revealing different divisions between stimuli (Supplementary
Fig. 1). Despite “having agency” dimension having positive values
for three stimuli (images of two adult humans and a human
foetus in the late stages of pregnancy, Supplementary Fig. 1), this
dimension of animacy explained significant variance in the
similarity judgements (Fig. 5c).

If we assume that the similarity judgements are based only on
the similarity between low-level visual features, the dimensions of
animacy should not explain a large fraction of the variance. This
assumption is not what we observed - all dimensions of animacy
explained a significant amount of variance in the similarity
judgements task (Fig. 5c). If the low-level features were the only
ones that participants used in similarity judgements object
arrangements, then we would see on the MDS that objects are
arranged by, for example, colour or shape, but this is not what we
observe (Fig. 5b). None of the dimensions fully explained the
similarity judgements data but the “having agency” dimension
was close to explaining the total explainable variance given the
noise in the data. As a portion of the variance remained
unexplained, other dimensions beyond the ones explored here are
likely needed to capture the data fully. Overall, when judging
object similarity, humans use all dimensions of animacy
tested here.

Even when all dimensions of animacy explain similarity
judgements, maybe one or more dimensions explain unique
variance. After having performed the unique variance analysis, we
observed that each dimension explained unique variance in the
similarity judgements (Fig. 5d). However, almost no dimension
explained more unique variance than the other dimensions. This
finding suggests that each dimension not only explains variance
in the data but also explains a unique portion of that variance.

It is important to consider the effect of low-level visual features
on the interpretation of these results and test whether the five
animacy dimensions studied here explain unique variance over
and above low-level visual features in similarity judgements. We
included the first convolutional layer of the deep neural network

AlexNet35 as a model of low-level visual features in this analysis.
We observed that each of the animacy dimensions explained a
significant amount of unique variance over and above the
variance explained by low-level visual features and the other
dimensions (Supplementary Fig. 2).

Overall, each animacy dimension explained a similar amount
of variance in a behavioural task of similarity judgements,
meaning that participants use higher-level dimensions of animacy
when judging object similarity.

Contribution of each animacy dimension to EEG time course.
Having shown the contribution of each animacy dimension in
explaining animacy ratings and in a behavioural task of similarity
judgements, we asked whether dimensions of animacy explain the
time course of object image processing in the brain using EEG.
One possibility is that once an image is shown for only half a
second, the brain performs only automated image processing, and
higher-level dimensions of animacy do not contribute to this
process at all. The other possibility is that beyond low-level fea-
tures, higher-level dimensions of animacy do play a role in
forming brain representations of images even with a short sti-
mulus presentation. To arbitrate between those possibilities, we
evaluated the amount of variance explained by each animacy
dimension and tested whether any dimension(s) explains unique
variance in the EEG signal.

We first performed multivariate pattern analysis (MVPA) to
determine how well we could decode the pattern of activations
evoked by each stimulus. We performed pairwise stimuli
decoding using a support vector machine approach and we could
decode images in the stimulus set to a high decoding accuracy
(62%) in a long time window (between 43 and 1000 ms after
stimulus onset, Fig. 6a). The peak decoding accuracy was at
197 ms (+/- 7 ms, standard error).

To explore the structure of the representations, we displayed
MDS plots for the selected timepoints: 0 ms - when the stimulus
was just displayed, 100 ms - when the decoding accuracy started
to go up, 200 ms - peak decoding accuracy, and 300 ms - when
the decoding accuracy started to drop. As expected, no structure
was visible at the stimulus onset (0 ms, Supplementary Fig. 5a). At
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Fig. 6 Dimensions of animacy and EEG time course. a Mean decoding curve across 19 participants (pairwise stimuli decoding using a support vector
machine approach). Significant decoding is indicated by a horizontal line above the graph (one-sided Wilcoxon signed-rank test, p < 0.05 corrected) and
starts at 43ms (+/−2ms, standard error) with a peak latency of 197ms (+/−7ms, standard error, indicated by an arrow). The shaded area around the
lines shows the standard error of the mean based on single-participant decoding. The grey horizontal bar on the x axis indicates the stimulus duration.
b Animacy dimension RDM comparison with EEG RDMs across time. Lines show the correlation between the EEG RDMs and each animacy dimension
RDM. A significant correlation is indicated by a horizontal line above the graph (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). The grey
horizontal bar on the x-axis indicates the stimulus duration. c Unique variance of each animacy dimension in explaining EEG RDMs computed using a GLM.
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dimension of interest) from the total variance explained by the full GLM, using non-negative least squares to find optimal weights. A significant unique
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horizontal bar on the x axis indicates the stimulus duration.
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100 ms, human and humanoid and animal robot faces were
grouped together, as well as forces of nature (Supplementary
Fig. 5b). At 200 ms, faces were still grouped together, however,
faces of a human and robots were represented further away from
each other (Supplementary Fig. 5c). We have also displayed MDS
plots colour-coded according to binary animacy dimensions for
visualization purposes (Supplementary Fig. 6). At 300 ms, we
observed similar clusters to those present at 100 ms (Supplemen-
tary Fig. 5d).

Once we knew that we could decode our stimuli, we asked how
much variance each animacy dimension explained in EEG
recordings. Do any of the dimensions explain any variance at
all? To answer this question, we correlated each animacy
dimension with EEG representations at every time point in every
participant using RSA. First, we determined whether each of the
animacy dimension RDMs was significantly related to the EEG
data RDMs at every timepoint using a participant-as-random-
effect analysis (one-sided Wilcoxon signed-rank test). We
subsequently tested for differences in animacy dimension
performance between each pair of dimensions of animacy at
each timepoint using a participant-as-random-effect analysis
(two-sided Wilcoxon signed-rank test). We accounted for multi-
ple comparisons for each analysis by controlling the FDR at 0.05.
We found that most animacy dimensions explained a significant
amount of variance in EEG recordings (Fig. 6b, Supplementary
Fig. 3); however, some dimensions explained variance at slightly
different times. Despite differences in the exact timing of when
dimensions of animacy explained the variance, a very clear
pattern that one dimension explains representations earlier than
the other was not observed. However, ‘being unpredictable’
explained significantly more variance than most dimensions in
early time points: specifically more than “looking like an animal”
(89–130 ms), “having mobility” (89–113 ms), and “having
agency” (79–126ms). While “looking like an animal” explained
more variance than most other dimensions in later time points:
more than “being alive” (209–302 ms), “having agency”
(230–266 ms), and “being unpredictable” (146–184 ms). Finally,
“having agency” explained more variance than most of the
dimensions even later in time: more than “being alive”
(268–301 ms), “having mobility” (261–289 ms) and “being
unpredictable” (293–315ms). To investigate how the five
dimensions of animacy studied here relate to the general animacy,
we correlated the general animacy ratings alongside the
dimensions of animacy with the EEG RDMs. We observed that
the “being animate” ratings explained a significant amount of
variance in the EEG responses, similar in magnitude and timing
to the variance explained by the dimensions of animacy tested
(Supplementary Fig. 4).

Most animacy dimensions explained variance in EEG record-
ings. Is it the same or unique variance? Does one dimension
explain more unique variance than the others, as in the case of
animacy ratings, or is there no difference between the amount of
unique variance explained by each dimension, as for the similarity
judgements? We found that only one dimension -“looking like an
animal”- explained the unique variance in EEG recordings
between 237 and 301 ms. None of the other dimensions explained
any significant unique variance (Fig. 6c). We wanted to check
whether the unique variance explained by the “looking like an
animal” dimension in the EEG data can be related to low-level
visual features or whether this dimension explains unique
variance over and above the variance explained by low-level
features. We therefore included the first convolutional layer of
AlexNet as a model of low-level visual features in the unique
variance analysis in addition to the five dimensions of animacy
studied here. We observed that our result of “looking like an
animal” explaining a significant amount of the unique variance

still holds. “Looking like an animal” explains the unique variance
not explained by either the other four dimensions or the first
convolutional layer of AlexNet (Supplementary Fig. 7).

Overall, most dimensions of animacy explained EEG recordings
with subtle differences in timing, but only ‘looking like an animal’
explained unique variance. Even for the rapid object recognition
time course, higher-level dimensions of animacy explained a
significant amount of variance in brain representations.

Contribution of each animacy dimension to fMRI repre-
sentations. We asked where in the brain dimensions of animacy
explain patterns of responses to images using fMRI. We performed
both regions of interest (ROI) analysis along the ventral and dorsal
visual streams and searchlight analysis. The ROI analysis was
performed to evaluate the contribution of dimensions of animacy
in the brain regions along the visual stream where we know object
images are represented. The searchlight analysis complemented the
ROI analysis testing whether other regions in the visual stream exist
where dimensions of animacy explain variance that we may have
missed when preselecting ROIs.

We first evaluated the contribution of each animacy dimension
in ROIs across the ventral: visual area 1 (V1v), ventral occipital
cortex 2 (VO2), parahippocampal cortex 2 (PHC2) and dorsal:
visual area 1 (V1d), lateral occipital cortex 2 (LO2), TO2 visual
streams (Fig. 7a, Supplementary Fig. 9 - with displayed noise
ceiling). To define ROIs, we used a Probabilistic brain atlas
(Wang et al., 2015). The locations of the examined ROIs are
presented in Supplementary Fig. 8. In the ventral visual stream,
“being unpredictable”, “having mobility”, and to a lesser extent
“having agency” explained variance in V1v, in contrast to higher-
level visual areas (VO2, PHC2) where additionally “looking like
an animal” explained a significant amount of variance and
“having agency” explained more variance than in V1v. In the
dorsal visual stream, “being unpredictable” and “having mobility”
explained variance in V1d, with “having agency” explaining
variance in higher-level visual areas (LO2, TO2), and “looking
like an animal” explaining variance only in TO2. As the dorsal
stream carries information related to movement it is intuitive that
“having mobility” and “being unpredictable” explain variance in
dorsal regions. It was not clear, however, whether “having
agency” and “looking like an animal” would explain variance in
dorsal regions but it is indeed what we observe. After examining
the contribution of general “being animate” ratings to the fMRI
ROI representations, we did not see that “being animate”
explained a significant amount of variance in fMRI data (except
PHC2, Supplementary Fig. 10). For completeness, we performed
the same analysis for all regions in ventral (V1v, V2v, hV4, VO1,
VO2, PHC1, PHC2) and dorsal (V1d, V2d, V3d, V3a, V3b, LO1,
LO2, TO1, TO2) visual streams. We observed that more
dimensions of animacy studied here explain variance in higher-
level visual cortex than in early visual cortex (Supplementary
Figs. 11 and 12).

To gain an intuition about the structure of the representations,
we displayed MDS plots for the ROIs. As expected, the stimuli in
early visual regions were grouped by shapes and colours, whereas
we could see clusters of faces and forces of nature in higher-level
visual regions (Supplementary Fig. 13). In addition, the colour-
coded MDS plot for PHC2 based on the binary dimensions of
animacy revealed mild categorical structure for some dimensions
(e.g., “looking like an animal”, Supplementary Fig. 14).

The results of the unique variance analysis are included in
Supplementary Fig. 15. “Being unpredictable”, “having mobility”,
and “having agency” dimensions explained unique variance in
early visual cortex. Except “being alive” dimension, four
dimensions of animacy explained unique variance in higher-
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level visual areas. We also wanted to test whether the five
dimensions of animacy studied here explained variance over and
above low-level visual features in the fMRI ROI analysis. We
therefore included the first convolutional layer of AlexNet along
with the five dimensions of animacy in the unique variance
analysis. Similarly to behavioural and EEG results, selected
dimensions of animacy explained variance over and above low-
level visual features of AlexNet’s first convolutional layer
(Supplementary Fig. 16). As expected, the unique contribution
of the first convolutional layer of AlexNet was greater in the early
and intermediate visual cortex in comparison to the high-level
visual cortex (Supplementary Fig. 16). These results suggest that
the dimensions of animacy are important for both ventral and
dorsal visual streams, however, a substantial variance remained
unexplained.

To investigate the contribution of each animacy dimension in a
spatially unbiased fashion we performed a searchlight analysis in
the visual stream (Fig. 7b). Consistently with the ROI analysis
“being alive” did not explain any significant amount of variance
in the brain. “Looking like an animal” also did not explain any
significant amount of variance in searchlight analysis but it is
possible that with a larger amount of data we would see this
dimension explaining some variance as the ROI analysis and EEG

results pointed in that direction. “Having mobility” dimension
explained variance in early visual cortex only (based on the
correlation strength of the searchlight analysis). In contrast,
“having agency” explained variance only in higher-level visual
cortex, which is consistent with the ROI analysis where “having
agency” explains more variance in higher-level visual areas and
further suggests that this dimension best captures higher-level
representations. One dimension that explained variance in both
early and higher-level visual areas was “being unpredictable”
suggesting that unpredictability is important for attention and is
already detected in the early visual cortex. Despite the living non-
living distinction being thought to be important for brain
representations “being alive” dimension did not explain any
significant amount of variance in brain responses based on the
ROI and searchlight analyses. This suggests that the ventral and
dorsal visual streams do not represent the results of a deeper
cognitive inference process that would assess whether something
is alive.

Discussion
We investigated the representation of the five selected facets of
animacy in brain and behaviour (summary in Table 1) and
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Fig. 7 Dimensions of animacy and fMRI responses. a Animacy dimension RDM comparisons with fMRI ROI RDMs of 19 participants. Bars show the
correlation between each animacy dimension RDM with fMRI ROI RDMs. We selected ROIs across the ventral (V1v, VO2, PHC2) and dorsal (V1d, LO2,
TO2) visual streams. A significant correlation is indicated by an asterisk (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). Error bars show the
standard error of the mean based on single-participant correlations, i.e., correlations between the single-participant ROI RDMs and animacy dimension
RDM. Circles show single-participant correlations. Horizontal lines show significant pairwise differences between model performance (p < 0.05, FDR
corrected across all comparisons), an asterisk to the right of horizontal lines indicates their significance. b Searchlight analysis with each animacy
dimension showing where in the brain animacy dimensions explain image representations masked with the visual stream regions (Spearman’s ρ between
animacy dimension and brain representations, one-sided Wilcoxon signed-rank test, FDR controlled at 0.05).
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concluded that different brain regions sensitive to animacy may
actually represent distinct dimensions, either as accessible per-
ceptual stepping stones toward detecting whether something is
alive or because they are of behavioural importance in their own
right. Including multiple dimensions in a linear model enabled us
to disentangle their roles. To increase the power of these analyses,
we decorrelated the five selected dimensions of animacy using an
optimized set of natural stimuli. We managed to reduce the
maximum pairwise correlation from 0.64 (for random selection)
to 0.36 (optimized). It may not be possible to create a stimulus set
that has no correlations between dimensions at all using natural
images. However, as long as the predictors of the model do not
form a linearly dependent set, they can be disentangled in analysis
by considering the unique variance explained by each. Histori-
cally, our analysis is related to studying one predictor of interest
at a time, e.g., face-selective regions36. More recently, studies
focused on decorrelating two predictors e.g., shape and
animacy31. However, to our knowledge, none of the studies tried
to decorrelate as many as the five selected dimensions of animacy.
More broadly, our novel stimulus selection procedure using a
genetic algorithm could be adopted to disentangle other multi-
dimensional concepts beyond animacy.

The brain activity patterns did not fall into a small number of
clusters, such as the animate and inanimate clusters observed in1.
This does not contradict previous findings, but rather reflects
the design of the stimulus set, which was optimized to reveal the
ambiguities at the boundaries between the categories, far from
the prototypically animate and prototypically inanimate stimuli.
The Kriegeskorte et al. study is a good example of what happens
when a wide range of common things are selected to define the
stimulus set: many of them are low on all of the animacy
dimensions studied here and many others are high on all of them.
Here, by contrast, the stimulus set was designed to evenly
populate a 5-dimensional space. The prototypes of animate and
inanimate things fall in diametrically opposed corners of this
5-dimensional space. Those two corners are populated by very
few stimuli (those that are either low on all five dimensions or
high on all five dimensions). Most of the stimuli sample the
unknown territory close to the boundary, which has not been
explored in previous studies.

When evaluating variance explained by different dimensions it
is important to keep in mind that the dimensions may not be
equally represented by the stimuli. This issue can be illustrated
with a conceptual experiment that aims to compare the con-
tribution of colour and orientation in explaining early visual
responses. If the presented stimuli vary in orientation by a few
degrees only, whereas they vary in colour by a wide range of hues,

then we can’t directly compare the contribution of orientation
and colour dimensions. Since the variance of orientation would
be much smaller than the variance of colour, colour will most
likely contribute more to explaining the representations. A more
fair comparison would be if we used all 360 degrees for orien-
tation and all possible colour hues for colour. Unlike in the
example above we use the same scale for all the dimensions of
animacy (values between −10 and 10), which make the dimen-
sions comparable to each other. However, a similar issue exists in
our study in that it is impossible to equalize the distribution of
values for each dimension using a natural stimulus set. We
already know that some of the dimension combinations are more
sampled than others. This issue does not change the interpreta-
tion of our findings but rather points at the overall issue that
arises when multidimensional concepts are compared. In future
studies, it will be important to validate the generalizability of the
results presented here with a larger stimulus set spanning a wide
range of object categories.

Despite its prominence in the neuroscience literature3–5, the
living/non-living distinction (“being alive”) did not explain var-
iance in brain representations. This finding suggests that the
ventral and dorsal visual streams do not represent the results of a
deeper cognitive inference process that would assess whether
something is alive. Our EEG result is consistent with a magne-
toencephalography (MEG) study where the “living” dimension
did not explain much variance in MEG representations23. The
fact that “looking like an animal” was the only dimension that
explained significant unique variance in the EEG data may be
because this dimension provides an accessible visual correlate of
animacy that can be computed by the visual system. For a sti-
mulus set where dimensions of animacy were not decorrelated,
we predict that “being alive” would explain substantial variance.
Our decorrelated stimulus set revealed that other dimensions
underlie the responses to living things. Likely “having agency”
dimension has captured some variance of the “being alive”
dimension in the brain responses as the “being alive” dimension
was correlated with the “having agency” dimension (Fig. 1b).
Studying the interactions between the dimensions will be an
important future work direction. The “being alive” dimension did
explain variance in animacy ratings and similarity judgements
suggesting that this dimension is present in cognition despite its
lack of prevalence in the brain responses. Our result of differential
representations of dimensions of animacy in brain measurement
modalities and in brain and behavioural responses is consistent
with previous studies that investigated a given animacy dimen-
sion of interest. For example, MEG patterns do not seem to carry
information about the animate vs inanimate object category, in

Table 1 Summary of findings.

being alive explains no significant variance for brain representations in this study
(but strongly reflected in behavioural judgments like the other four dimensions)

looking like animal only dimension explaining significant unique variance in EEG
(weak significant effects in fMRI)

having agency explains significant variance in higher-, but not lower-level visual cortex in fMRI
(weak significant effects also in EEG)

having mobility & being unpredictable both dimensions explain small amounts of significant variance in lower- and higher-level visual cortex in fMRI
(for both, there are weak significant effects also in EEG)

We find that the five tested dimensions of animacy captured behaviour very well. Brain representations were also explained by most dimensions (surprisingly not “being alive”), however, to a lesser
extent than behaviour. The living/non-living distinction (“being alive”) features prominently in both dictionary definitions of animacy and the neuroscience literature on brain representations. Consistent
with this prominent role, “being alive” accounted for about half the explainable variance in our participants’ object similarity judgements. Surprisingly, however, “being alive” did not explain variance in
brain representations. The other four dimensions of animacy explained variance in both brain and behaviour. The “looking like an animal” dimension was the only dimension that explained significant
unique variance in the EEG data. One interpretation is that “looking like an animal” provides an accessible visual correlate of animacy that can be computed by the visual system. The “having agency”
dimension explained more variance in higher-level visual areas, consistent with the cognitive demands of determining agency. The “being unpredictable” dimension was reflected in representations in
both lower and higher-level visual cortex, possibly because unpredictable things require attention. In the fMRI data, three dimensions explained unique variance in early visual cortex (“having agency”,
“having mobility”, and “being unpredictable”) and four dimensions in higher visual cortex (all except “being alive”). Our results reveal that different brain regions sensitive to animacy may actually
represent distinct dimensions, either as accessible perceptual stepping stones toward detecting whether something is alive or because they are of behavioural importance in their own right.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04194-y ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1247 | https://doi.org/10.1038/s42003-022-04194-y |www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


contrast to fMRI37. Another study has shown that animate-
looking (e.g., cow mug) and animate objects (e.g., cow) are dis-
sociated in behaviour but not in the ventral visual stream13. Little
agreement between behavioural similarity judgements and 7 T
fMRI responses has also been found in38.

Consistent with higher-cognitive contributions, the “having
agency” dimension explained significant variance in higher-level
visual areas, explained more variance than most other animacy
dimensions later in time, and was prominent in the judgements.
The observation of the “having agency” dimension explaining
high-level visual representations is consistent with previous stu-
dies that showed agency representations in the fusiform gyrus
(refs.17–22,30,15–17) and the ventral visual cortex (refs.17–22,30).
Gobbini et al. used point-light displays as stimuli rather than
images of natural objects used in this study. Beauchamp et al. and
Shultz et al. used two computer-animated avatar characters. Sti-
muli in Throat et al. were from 40 animal categories. The number
and the diversity of stimuli in our study allowed us to disentangle
the dimensions of animacy experimentally with higher precision.
The “having agency” dimension was least consistently judged in
behavioural animacy ratings suggesting that different people have
different intuitions on whether something has agency; for
example, our participants were divided as to whether the robots
in our stimuli had agency or not. Seeing agency (or not) in robots
mirrors an ongoing debate in society and may influence how
humans interact with the increasing presence of robots in their
environment.

The “being unpredictable” dimension captured representations
in both lower and higher-level visual cortex and earlier in time.
One interpretation of this finding is that unpredictable things
require attention and need to be processed early on. Humans
need to know what to attend to in the visual world and if
something unpredictable happens it captures attention, which
enables us to stay on top of what is happening around us. This
dimension of animacy has been studied only in the language
domain and only in the context of natural forces20, but we now
show that “being unpredictable” also explains visual representa-
tions using a variety of stimuli. Lowder & Gordon et al. found
that natural forces are processed like animate entities during
online sentence processing based on an eye-tracking experiment.
They propose an alternative explanation why the “being unpre-
dictable” may be important in contrast to the attention-based
explanation mentioned above. They claim that the “being
unpredictable” dimension reflects a cognitive and linguistic focus
on casual explanations that increase the predictability of events,
which could offer an alternative theory to explain our results.

Our study did not include human-centred dimensions
(human-likeness24, humanness23, resemblance to human faces
and bodies25, capacity for self-movement and thought rather than
face presence26). It would be interesting to include these inter-
pretations of animacy in a follow-up study when designing a
larger stimulus set with a greater number of dimensions of ani-
macy that we try to disentangle. Some of the dimensions tested in
this study (e.g., “looking like an animal”) may be correlated with
the human-centred dimensions (e.g., “has a face”) and exploring
the relationship between the five selected dimensions of animacy
and the human-centred dimensions could be a focus of future
studies. Previous observations that animate versus inanimate
objects can be distinguished using classifiers based on colour
information28, as well as curvature and mid-level shape features29

inspired our control analyses that tested whether the five selected
dimensions of animacy can explain unique variance over and
above the low-level visual features and indeed they can. Future
stimulus selection procedures using a genetic algorithm could
benefit from accounting for the low-level visual features at the
stimulus set selection stage.

Our study disentangled the five selected dimensions of animacy
and will pave the way for future studies. For example, more work
is needed to understand how exactly something quite abstract like
“agency” or “unpredictability” is computed from visual stimuli.
Testing alternative theories of animacy dimension computations
could be addressed by comparing different classes of models in
their ability to explain the data. The subsequent acquisition of
higher resolution fMRI data (7 T) would provide insights into the
finer-grained spatial organisation of animacy dimensions and
their representations across cortical layers. Future studies may
extend our approach to videos because some of the dimensions
like “having mobility” may be better represented dynamically.

In summary, we disentangled the five selected dimensions of
animacy using an approach for stimulus decorrelation and
showed the contribution of each animacy dimension in explain-
ing human brain representations and behavioural judgements.
These dimensions captured behaviour well. A significant amount
of variance in brain representations was also explained by most
dimensions (with the surprising exception of “being alive”),
however, to a lesser extent than in behaviour. Our results suggest
that different brain regions sensitive to animacy may represent
distinct dimensions, either as accessible perceptual stepping
stones toward detecting whether something is alive or because
they are of behavioural importance by themselves. Future studies
may expand on the representation of each of the dimensions
while avoiding their entanglement and may apply our dimension
disentanglement approach to other multidimensional concepts.

Methods
Stimulus set generation: Filling animacy dimension grid combinations. We
created a grid with all possible combinations of dimensions of animacy (2^5= 32).
We asked participants (S= 11, mean age = 33, 6 females) to write down object
category names (e.g., “humanoid robot”) for each combination in the grid to obtain
a list of object categories (Fig. 1a Step 1). Participants listed 100 categories, and we
selected 3 images per category (total = 300 images, Fig. 1a Step 2), which formed
the basis for the experiment to rate the dimensions of animacy.

Stimulus set generation: Ratings of dimensions of animacy to generate sti-
mulus set. Twenty-six participants (mean age = 25, 21 females) performed ani-
macy ratings of 300 object images through an on-line web-based interface.
Participants judged each object image using a continuous scale from −10 to +10
for each dimension, e.g., −10 meant “dead” and +10 meant “alive” for the “being
alive” dimension (Fig. 1a Step 3). Thirty images were repeated for a within-
participant consistency measure.

Stimulus set generation: Stimuli subset selection using a genetic algorithm.
To select a subset of 128 images for which ratings on the dimensions of animacy
were maximally decorrelated we used a genetic algorithm. A genetic algorithm is an
optimization method that mimics biological evolution through natural selection.
Fitness was defined as minimising the maximum correlation between dimensions
of animacy (Fig. 1a Step 4). We also introduced a penalty if the algorithm selected
more than two stimuli from the same category (to ensure that stimuli were selected
from a wide range of categories) and if the algorithm did not select at least one
image of a human face and a human body (to have a reference point of object
images that we know should have high ratings on the dimensions of animacy).

Stimulus set generation: Stimuli. All stimuli are displayed in Fig. 2a. Stimuli were
128 coloured images of real-world objects with natural backgrounds, selected from
the Internet. The same set of stimuli was used in animacy ratings, similarity jud-
gements, EEG, and fMRI experiments.

Participants. The same nineteen participants performed an on-line animacy rat-
ings, similarity judgements, EEG, and fMRI experiments (mean age = 27, 13
females). Participants had normal or corrected-to-normal vision. All of them were
right-handed. Before completing the experiment, participants received information
about the procedure of the experiment and gave their written informed consent. All
participants received monetary reimbursement or course credits for their partici-
pation. The experiments were approved by the Ethics Committee of the Depart-
ment of Education and Psychology at Freie Universität, Berlin. Participants first
completed the EEG and fMRI experiments, then the similarity judgements
experiment, and finally the animacy ratings experiment so that they did not know
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about specific dimensions of animacy tested while performing EEG, fMRI, and
similarity judgements experiments.

Animacy ratings: experimental design and task. Participants judged each object
image using a continuous scale from −10 to +10 for each animacy dimension, e.g.,
−10 meant “dead” and +10 meant “alive” for the “being alive” dimension (Fig. 3a).
Additionally, participants performed a rating of “being animate” dimension in a
similar fashion.

Similarity judgements: experimental design and task. We acquired pairwise
object-similarity judgements for all 128 images by asking participants to perform an
on-line multi-arrangement task using Meadows platform (www.meadows-research.
com). During this task, object images were shown on a computer screen in a circular
arena, and participants were asked to arrange the objects by their similarity, such that
similar objects were placed close together and dissimilar objects were placed further
apart (Fig. 5a). The multi-arrangement method uses an adaptive trial design, showing
all object images on the first trial, and selecting subsets of objects with weak dis-
similarity evidence for subsequent trials. To determine which stimuli to select for the
next trial, the evidence weight of each stimulus had an evidence utility exponent
(E= 10) applied to it, to calculate its utility if the stimulus was picked. The similarity
judgements task was completed if, among all pairs of stimuli, the pair with the lowest
evidence had an evidence weight higher than 0.5. The multi-arrangement method
allows the efficient acquisition of a large number of pairwise similarities. We delib-
erately did not specify which object properties to focus on, to avoid biasing partici-
pants’ spontaneous mental representation of the similarities between objects. We
aimed to obtain similarity judgements that reflect the natural representation of
objects without forcing participants to rely on one given dimension. However, par-
ticipants were asked after having performed the task, what dimension(s) they used in
judging object similarity. All participants reported arranging the images according to
categorical clusters. The reports suggest that participants used a consistent strategy
throughout the experiment. The method of the object similarity judgements has been
described in39, where further details can be found.

EEG: experimental design and task. Stimuli were presented at the centre of the
screen for 500 ms, while participants performed a paper clip detection task. Stimuli
were overlaid with a light grey fixation cross and displayed at a width of 4° visual
angle. Participants completed 15 trials. Each image was presented twice in every
trial in random order with an inter-trial interval of 1–1.1 s. Participants were asked
to press a button and blink their eyes in response to a paper clip image shown
randomly every 3–5 trials (mean performance 99% (+/−0.09, standard error)).
These trials were excluded from the analysis.

EEG: acquisition. The electroencephalogram (EEG) signals were acquired using
BrainVision actiCHamp EASYCAP 64 channel system at a sampling rate of
1,000 Hz. The arrangement of the electrodes followed the standard 10-20 system.

EEG: preprocessing. The time series were analysed with Brainstorm (http://
neuroimage.usc.edu/brainstorm/). We extracted EEG patterns for each millisecond
time point (from 100 ms before stimulus onset to 1000 ms after stimulus onset) for
each trial. We filtered the responses between 0 and 50 Hz.

EEG: decoding. We performed pairwise decoding across stimuli using a support
vector machine (SVM) approach40. For each time point, EEG signals were arranged
in 64-dimensional vectors (corresponding to the 64 EEG channels), yielding M= 30
pattern vectors per time point and condition. We sub-averaged the M vectors in
groups of k= 5 with random assignment, obtaining L=M/k averaged pattern vec-
tors. This procedure was performed to reduce computational load and improve the
signal-to-noise ratio. Subsequently, for each pair of conditions, we assigned L-1
averaged pattern vectors to train a linear SVM using the LibSVM implementation
(www.csie.ntu.edu.tw/~cjlin/libsvm). We used the trained SVM to predict the con-
dition labels of the left-out testing data set consisting of the Lth averaged pattern
vector. This process was repeated 100 times with random assignment of the M raw
pattern vectors to L averaged pattern vectors. For every time point, we assigned the
average decoding accuracy to a decoding accuracy matrix.

EEG: peak latency analysis. We defined peaks of the decoding accuracy as time
points with the maximum decoding accuracy.

fMRI: experimental design and task. Stimuli were presented using a rapid event-
related design (stimulus duration, 500 ms) while participants performed a fixation-
cross-brightness-change detection task, and their brain activity was measured with
a 3 T fMRI scanner. Stimuli were overlaid with a light grey fixation cross and
displayed at a width of 4° visual angle. Each image was presented once per run in
random order. Each run contained 32 randomly timed null trials (null trial
duration, 500 ms) without the stimulus presentation (grey square background with
a fixation cross). Participants had to report a short (100 ms) change in the lumi-
nance of the fixation cross via a button press (mean performance 97% (+/−0.14,

standard error)). On average, reaction times for fixation cross trials were 0.55 s
(+/−0.06 s, 2.45 s before the subsequent stimulus trial). The fixation cross was
always present between stimuli or null trial presentations.

fMRI: acquisition. Magnetic resonance imaging was acquired using Siemens 3 T
Trio with a 12-channel head coil. For structural images, we used a standard T1-
weighted sequence (176 slices). The TR was 2 s, and the inter-trial-interval was 3 s.
For fMRI, we conducted 9–13 runs in which 249 volumes were acquired for each
participant. The number of runs varied per participant as different participants
took a different number of breaks during the experiment and different amount of
time was needed for them to become comfortable in the scanner. The average
number of runs per participant was 10.9 (+/−0.07, standard error). The acquisi-
tion volume covered the full brain.

fMRI: estimation of single-image activity patterns. The fMRI data were pre-
processed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). For each participant and
session separately, functional data were spatially realigned, slice-time corrected, and
coregistered to the participant-individual T1 structural image.We estimated the fMRI
responses to the 128 image conditions with a general linear model (GLM), which
included movement parameters as nuisance terms. To obtain a t-value for each voxel
and condition, GLM parameter estimates for each condition/stimulus were con-
trasted against a baseline. To assess the degree of the general visual stimulation we
contrasted the parameter estimates for all images against the baseline.

fMRI: definition of regions of interest. For the ROI definition, we used a
Probabilistic brain atlas41. Anatomical masks were reverse-normalized from MNI-
space to single-participant space. For each ROI, we extracted a multivoxel pattern
of activity (t-values) for each of the 128 stimuli. We included 100 most strongly
activated voxels in the ROI analysis.

fMRI: searchlight analysis. To analyse fMRI data in a spatially unbiased
approach, we performed a volume-based searchlight analysis42 in each participant
(radius of 4 voxels) with each animacy dimension RDM. We restricted the voxels
included in the significance testing to visual stream areas (one-sided Wilcoxon
signed-rank test).

Construction of representational dissimilarity matrix. We used the repre-
sentational similarity analysis toolbox for animacy dimension comparison32. We
computed response patterns (across animacy ratings, similarity judgements, EEG,
and fMRI signals) for each image. We then computed response-pattern dissim-
ilarities between images (using Euclidean distance as a metric) and placed these in a
representational dissimilarity matrix (RDM). An RDM captures which distinctions
among stimuli are emphasized and which are de-emphasized.

Unique variance analysis. We used a hierarchical general linear model (GLM) to
evaluate the unique variance explained by dimensions of animacy43. For each
animacy dimension m, the unique variance was computed by subtracting the total
variance explained by the reduced GLM (excluding the dimension of interest) from
the total variance explained by the full GLM. Specifically, for dimension m, we fit
GLM on X= “all dimensions but m” and Y= data, then we subtract the resulting
R2 from the total R2 (fit GLM on X= “all dimensions” and Y= data). We per-
formed this procedure for each participant and used non-negative least squares to
find optimal weights. A constant term was included in the GLM model. We per-
formed a one-sided Wilcoxon signed-rank test to evaluate the significance of the
unique variance contributed by each dimension across participants controlling the
expected false discovery rate at 0.05.

Statistics and reproducibility. We performed inferential analyses of animacy
dimension performance by correlating the animacy dimension and data RDMs using
Spearman’s correlation coefficient. We determined whether each of the animacy
dimension RDMs was significantly related to the data RDMs using a participant-as-
random-effect analysis (one-sided Wilcoxon signed-rank test). We subsequently
tested for differences in animacy dimension performance between each pair of
dimensions of animacy using a participant-as-random-effect analysis (two-sided
Wilcoxon signed-rank test). For each analysis, we accounted for multiple compar-
isons by controlling the FDR at 0.05. The same nineteen participants performed an
on-line animacy ratings, similarity judgements, EEG, and fMRI experiments.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during the current study are available from the corresponding
author on request. Source data for Figs. 4b, c, 5c, d, and 7a are provided in
Supplementary Data 1.
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