
Current Biology

Magazine

Current Biology 29, R225–R240, April 1, 20

and/or the extent of branching of 
N-linked glycans attached to plasma 
fi brinogen, possibly leading to a 
bleeding disorder.

Why are proteins glycosylated? 
Numerous roles have been assigned 
to protein glycosylation. At the level 
of the individual protein, glycosylation 
is directly related to protein folding, 
solubility, stability and activity, 
protection from proteases and 
subcellular targeting. For instance, 
in the ER, the chaperones calnexin 
and calreticulin follow the folding 
status of nascent polypeptides by 
assessing the composition of N-linked 
glycans decorating such proteins. 
Proper protein glycosylation is also 
important for the formation of protein 
complexes, for modulating protein–
protein interactions and for the correct 
assembly of higher-order protein 
structures. At the cellular level, protein 
glycosylation is important for both 
transient and sustained cell–cell and 
cell–matrix recognition events and other 
interactions. This is exemplifi ed by the 
impact of altered N-glycosylation on the 
affi nity of antibodies for Fc receptors. 
Indeed, the enormous diversity that 
exists in terms of glycan composition 
and structure lends itself to the high 
specifi city needed for such interactions. 

At the same time, various pathogens 
can exploit surface-exposed glycans 
to attack target cells, either by 
binding to such moieties as part 
of a cellular entry strategy, or by 
relying on mimicry, whereby host-like 
glycans are presented with the aim of 
circumventing target cell defenses. In 
one striking example of how pathogens 
use protein glycosylation for attack, 
enteropathogenic Escherichia coli 
injects the host cell with an enzyme 
that modifi es the glycosylation profi le 
of host defense proteins, thereby 
preventing them from acting. Indeed, 
bacterial protein glycosylation is 
associated with virulence. 

Archaea present yet another 
physiological role for protein 
glycosylation, with a modifi ed 
glycosylation profi le being seen 
in response to changes in the 
surroundings, such as changes in 
salinity or temperature, a strategy that 
may contribute to the ability of members 
of this domain to thrive in some of the 
most extreme environments on Earth.

Are there human diseases 
associated with improper protein 
glycosylation? Congenital disorders 
of glycosylation (CDGs) are a series of 
conditions in which mutations affect 
different components of the protein 
glycosylation pathway. For instance, 
CDGs caused by mutations in almost 
every N-glycosylation pathway 
gene have been described. While a 
complete loss of N-glycosylation is 
lethal, CDG patients can present an 
array of clinical symptoms, including 
retarded growth, incomplete brain 
development, muscle weakness, and 
abnormal endocrine and liver function. 
The most common of these maladies 
is CDG-Ia, in which the enzyme 
phosphomannomutase 2 is affected. 
Patients show developmental 
and motor defi cits, hypotonia, 
dysmorphia, failure to thrive, 
liver dysfunction, coagulopathy, 
and abnormal endocrinology. 
Likewise, genetic maladies in which 
O-glycosylation is compromised 
are also known. In several types of 
muscular dystrophy, O-glycosylation 
of alpha-dystroglycan, responsible for 
binding to the extracellular matrix in 
skeletal muscle, is perturbed. Altered 
protein glycosylation is, moreover, 
considered to be a hallmark of 
cancer. In malignant cells, proteins 
can present reduced or enhanced 
glycan levels, incomplete, shortened 
or augmented glycans, and, less 
frequently, novel glycans. Indeed, 
the protein glycosylation profi le of a 
cancer cell can change as the disease 
progresses, possibly encouraging 
tumor growth and invasiveness.

Where can I find out more?
Koomey, J.M., and Eichler, J. (2017). Sweet new 

roles for protein glycosylation in prokaryotes. 
Trends Microbiol. 25, 662–672.

Ng, B.G., and Freeze, H.H. (2018). Perspectives 
on glycosylation and its congenital disorders. 
Trends Genet. 34, 466–476.

Schäffer, C., and Messner, P. (2017). Emerging 
facets of prokaryotic glycosylation. FEMS 
Microbiol. Rev. 41, 49–91.

Varki, A. (2017). Biological roles of glycans. 
Glycobiology 27, 3–49.

Varki A., Cummings, R.D., Esko, J.D., Stanley, P., 
Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, 
T., Packer, N.H., Prestegard, J.H., et al. 
(2017). The Essentials of Glycobiology. 
(Cold Spring Harbor, NY: Cold Spring Harbor 
Press.)

Department of Life Sciences, Ben Gurion 
University of the Negev, Beersheva 84105, 
Israel. 
E-mail: jeichler@bgu.ac.il
Neural network 
models and deep 
learning

Primer
Nikolaus Kriegeskorte1,2,3,4,*
and Tal Golan4,*
Originally inspired by neurobiology, 
deep neural network models have 
become a powerful tool of machine 
learning and artifi cial intelligence. 
They can approximate functions and 
dynamics by learning from examples. 
Here we give a brief introduction to 
neural network models and deep 
learning for biologists. We introduce 
feedforward and recurrent networks 
and explain the expressive power 
of this modeling framework and the 
backpropagation algorithm for setting 
the parameters. Finally, we consider 
how deep neural network models might 
help us understand brain computation.

Neural network models of brain 
function
Brain function can be modeled at 
many different levels of abstraction. At 
one extreme, neuroscientists model 
single neurons and their dynamics in 
great biological detail. At the other 
extreme, cognitive scientists model 
brain information processing with 
algorithms that make no reference to 
biological components. In between 
these extremes lies a model class that 
has come to be called artifi cial neural 
network.

A biological neuron receives 
multiple signals through the synapses 
contacting its dendrites and sends 
a single stream of action potentials 
out through its axon. The conversion 
of a complex pattern of inputs into 
a simple decision (to spike or not to 
spike) suggested to early theorists that 
each neuron performs an elementary 
cognitive function: it reduces 
complexity by categorizing its input 
patterns. Inspired by this intuition, 
artifi cial neural network models are 
composed of units that combine 
multiple inputs and produce a single 
output.

The most common type of unit 
computes a weighted sum of the inputs 
and transforms the result nonlinearly. 
19 © 2019 Published by Elsevier Ltd. R231

mailto:jeichler@bgu.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2019.02.034&domain=pdf


Current Biology

Magazine

y1 y2

y1 y2

X2 X1

output

Current Biology

W2

W1

y = f(W2·f(W1·x))

x1 x2

Figure 1. Function approximation by a feedforward neural network. 
A feedforward neural network with two input units (bottom), three hidden units (middle), and two 
output units (top). The input patterns form a two-dimensional space. The hidden and output units 
here use a sigmoid (logistic) activation function. Surface plots on the left show the activation of 
each unit as a function of the input pattern (horizontal plane spanned by inputs x1 and x2). For the 
output units, the preactivations are shown below the output activations. For each unit, the weights 
(arrow thickness) and signs (black, positive; red, negative) of the incoming connections control 
the orientation and slope of the activation function. The output units combine the nonlinear ramps 
computed by the hidden units. Given enough hidden units, a network of this type can approximate 
any continuous function to arbitrary precision.
The weighted sum can be interpreted 
as comparing the pattern of inputs 
to a reference pattern of weights, 
with the weights corresponding 
to the strengths of the incoming 
connections. The weighted sum is 
called the preactivation. The strength 
of the preactivation refl ects the overall 
strength of the inputs and, more 
importantly, the match between the 
input pattern and the weight pattern. 
For a given input strength (measured 
as the sum of squared intensities), 
the preactivation will be maximal if 
the input pattern exactly matches the 
weight pattern (up to a scaling factor).

The preactivation forms the input to 
the unit’s nonlinear activation function. 
The activation function can be a 
threshold function (0 for negative, 1 
for positive preactivations), indicating 
whether the match is suffi ciently 
close for the unit to respond. More 
typically, the activation function is a 
monotonically increasing function, such 
as the logistic function (Figure 1) or a 
rectifying nonlinearity, which outputs 
the preactivation if it is positive and 
zero otherwise. These latter activation 
functions have non-zero derivatives 
R232 Current Biology 29, R225–R240, April
(at least over the positive range of 
preactivations). As we will see below, 
non-zero derivatives make it easier to 
optimize the weights of a network.

The weights can be positive or 
negative. Inhibition, thus, need not 
be relayed through a separate set of 
inhibitory units, and neural network 
models typically do not respect 
Dale’s law (which states that a neuron 
performs the same chemical action 
at all of its synaptic connections 
to other neurons, regardless of the 
identity of the target cell). In addition 
to the weights of the incoming 
connections, each unit has a bias 
parameter: the bias is added to the 
preactivation, enabling the unit to 
shift its nonlinear activation function 
horizontally, for example moving the 
threshold to the left or right. The bias 
can be understood as a weight for 
an imaginary additional input that is 
constantly 1.

Neural networks are universal 
approximators
Units can be assembled into networks 
in many different confi gurations. 
A single unit can serve as a linear 
 1, 2019
discriminant of its input patterns. A 
set of units connected to the same set 
of inputs can detect multiple classes, 
with each unit implementing a different 
linear discriminant. For a network 
to discriminate classes that are not 
linearly separable in the input signals, 
we need an intermediate layer between 
input and output units, called a hidden 
layer (Figure 1).

If the units were linear — outputting 
the weighted sum directly, without 
passing it through a nonlinear 
activation function — then the output 
units reading out the hidden units 
would compute weighted sums of 
weighted sums and would, thus, 
themselves be limited to weighted 
sums of the inputs. With nonlinear 
activation functions, a hidden layer 
makes the network more expressive, 
enabling it to approximate nonlinear 
functions of the input, as illustrated in 
Figure 1.

A feedforward network with a single 
hidden layer (Figure 1) is a fl exible 
approximator of functions that link the 
inputs to the desired outputs. Typically, 
each hidden unit computes a nonlinear 
ramp, for example sigmoid or rectifi ed 
linear, over the input space. The ramp 
rises in the direction in input space that 
is defi ned by the vector of incoming 
weights. By adjusting the weights, 
we can rotate the ramp in the desired 
direction. By scaling the weights 
vector, we can squeeze or stretch 
the ramp to make it rise more or less 
steeply. By adjusting the bias, we can 
shift the ramp forward or backward. 
Each hidden unit can be independently 
adjusted in this way.

One level up, in the output layer, we 
can linearly combine the outputs of 
the hidden units. As shown in Figure 1, 
a weighted sum of several nonlinear 
ramps produces a qualitatively different 
continuous function over the input 
space. This is how a hidden layer 
of linear–nonlinear units enables 
the approximation of functions very 
different in shape from the nonlinear 
activation function that provides the 
building blocks.

It turns out that we can approximate 
any continuous function to any 
desired level of precision by allowing 
a suffi cient number of units in a single 
hidden layer. To gain an intuition of why 
this is possible, consider the left output 
unit (y1) of the network in Figure 1. 



Current Biology

Magazine

Cost

Output activations (layer L)
for input pattern x

Partial derivative of the cost with respect 
to activation in unit j of layer L

Target
outputs

Activations of layer l

Preactivations of layer l
Weights of connections into layer l

Errors (partial derivatives of the 
cost with respect to the
preactivations in layer l)

Activations of layer l-1

Activation function

Example: squared-error cost

Propagate
activation

1

Backpropagate
errors 2 Derivative of the

activation function

Weight of connection to unit j in
layer l from unit k in layer l-1

Derivative of cost with
respect to each weight

Current Biology

Figure 2. The backpropagation algorithm. 
Backpropagation is an effi cient algorithm for computing how small adjustments to the connection 
weights affect the cost function that the network is meant to minimize. A feedforward network 
with two hidden layers is shown as an example. First, the activations are propagated in the feed-
forward direction (upward). The activation function (gray sigmoid) is shown in each unit (circle). 
In the context of a particular input pattern (not shown), the network is in a particular activation 
state, indicated by the black dots in the units (horizontal axis: preactivation, vertical axis: activa-
tion). Second, the derivatives of the cost function (squared-error cost shown on the right) are 
propagated in reverse (downward). In the context of the present input pattern, the network can 
be approximated as a linear network (black lines indicating the slope of the activation function). 
The chain rule defi nes how the cost (the error) is affected by small changes to the activations, 
preactivations, and weights. The goal is to compute the partial derivative of the cost with respect 
to each weight (bottom right). Each weight is then adjusted in proportion to how much its adjust-
ment reduces the cost. The notation roughly follows Nielsen (2015), but we use bold symbols for 
vectors and matrices.
By combining ramps overlapping in 
a single region of the input space, 
this unit effectively selects a single 
compact patch. We could tile the entire 
input space with sets of hidden units 
that select different patches in this way. 
In the output layer, we could then map 
each patch to any desired output value. 
As we move from one input region to 
another, the network would smoothly 
transition between the different output 
values. The precision of such an 
approximation can always be increased 
by using more hidden units to tile the 
input space more fi nely.

Deep networks can effi ciently 
capture complex functions
A feedforward neural network is called 
‘deep’ when it has more than one 
hidden layer. The term is also used in 
a graded sense, in which the depth 
denotes the number of layers. We have 
seen above that even shallow neural 
networks, with a single hidden layer, 
are universal function approximators. 
What, then, is the advantage of deep 
neural networks?

Deep neural networks can re-use 
the features computed in a given 
hidden layer in higher hidden layers. 
This enables a deep neural network 
to exploit compositional structure in 
a function, and to approximate many 
natural functions with fewer weights 
and units. Whereas a shallow neural 
network must piece together the 
function it approximates, like a lookup 
table (although the pieces overlap 
and sum), a deep neural network can 
benefi t from its hierarchical structure. 
A deeper architecture can increase the 
precision with which a function can 
be approximated on a fi xed budget 
of parameters and can improve the 
generalization after learning to new 
examples.

Deep learning refers to the automatic 
determination of parameters deep in 
a network on the basis of experience 
(data). Neural networks with multiple 
hidden layers are an old idea and 
were a popular topic in engineering 
and cognitive science in the 1980s. 
Although the advantages of deep 
architectures were understood in 
theory, the method did not realize its 
potential in practice, mainly because 
of insuffi cient computing power and 
data for learning. Shallow machine 
learning techniques, such as support 
vector machines, worked better in 
practice and also lent themselves 
to more rigorous mathematical 
analysis. The recent success of deep 
learning has been driven by a rise in 
computing power — in particular the 
advent of graphics processing units, 
GPUs, specialized hardware for fast 
matrix–matrix multiplication — and 
web-scale data sets to learn from. 
In addition, improved techniques for 
pretraining, initialization, regularization, 
and normalization, along with the 
introduction of rectifi ed linear units, 
have all helped to boost performance. 
Recent work has explored a wide 
variety of feedforward and recurrent 
network architectures, improving the 
state-of-the-art in several domains of 
artifi cial intelligence and establishing 
deep learning as a central strand of 
machine learning in the last few years.

The function that deep neural 
networks are trained to approximate is 
often a mapping from input patterns to 
output patterns, for example classifying 
natural images according to categories, 
translating sentences from English 
to French, or predicting tomorrow’s 
weather from today’s measurements. 
When the cost minimized by training 
Current 
is a measure of the mismatch between 
the network’s outputs and desired 
outputs (that is, the ‘error’), for a 
training set of example cases, the 
training is called supervised. When the 
cost minimized by training does not 
involve prespecifi ed desired outputs for 
a set of example inputs, the training is 
called unsupervised. 

Two examples of unsupervised 
learning are autoencoders and 
generative adversarial networks. 
Autoencoder networks learn to 
transform input patterns into a 
compressed latent representation by 
exploiting inherent statistical structure. 
Generative adversarial networks 
operate in the opposite direction, 
transforming random patterns in 
a latent representation into novel, 
synthetic examples of a category, 
such as fake images of bedrooms. 
The generator network is trained 
concurrently with a discriminator 
network that learns to pick out the 
generator’s fakes among natural 
examples of the category. The two 
adversarial networks boost each 
other’s performance by posing 
increasingly diffi cult challenges of 
counterfeiting and detection to each 
Biology 29, R225–R240, April 1, 2019 R233



Current Biology

Magazine

A

Time

B

Current Biology

Figure 3. Recurrent neural networks. 
(A) A recurrent neural network model with two input units (in blue box), three hidden units (green 
box), and two output units (pink box). The hidden units here are fully recurrently connected: each 
sends its output to both other units. The arrows represent scalar weights between particular units. 
(B) Equivalent feedforward network. Any recurrent neural network can be unfolded along time as a 
feedforward network. To this end, the units of the recurrent neural network (blue, green, pink sets) 
are replicated for each time step. The arrows here represent weight matrices between sets of units 
in the colored boxes. For the equivalence to hold, the feedforward network has to have a depth 
matching the number of time steps that the recurrent network is meant to run for. Unfolding leads 
to a representation that is less concise, but easier to understand and often useful in software im-
plementations of recurrent neural networks. Training of the recurrent model by backpropagation 
through time is equivalent to training of the unfolded model by backpropagation.
other. Deep neural networks can also 
be trained by reinforcement (deep 
reinforcement learning), which has led 
to impressive performance at playing 
games and robotic control.

Deep learning by backpropagation
Say we want to train a deep neural 
network model with supervision. How 
can the connection weights deep in the 
network be automatically learned? The 
weights are randomly initialized and 
then adjusted in many small steps to 
bring the network closer to the desired 
behavior. A simple approach would 
be to consider random perturbations 
of the weights and to apply them 
when they improve the behavior. This 
evolutionary approach is intuitive and 
has recently shown promise, but it is 
not usually the most effi cient solution. 
There may be millions of weights, 
spanning a search space of equal 
dimension. It takes too long in practice 
to fi nd directions to move in such a 
space that improve performance. We 
could wiggle each weight separately, 
and determine if behavior improves. 
Although this would enable us to make 
progress, adjusting each weight would 
require running the entire network many 
times to assess its behavior. Again, 
progress with this approach is too slow 
for many practical applications.

In order to enable more effi cient 
learning, neural network models are 
composed of differentiable operations. 
How a small change to a particular 
weight affects performance can then 
be computed as the partial derivative 
R234 Current Biology 29, R225–R240, April 1
of the error with respect to the weight. 
For different weights in the same 
model, the algebraic expressions 
corresponding to their partial 
derivatives share many terms, enabling 
us to effi ciently compute the partial 
derivatives for all weights.

For each input, we fi rst propagate the 
activation forward through the network, 
computing the activation states of all 
the units, including the outputs. We 
then compare the network’s outputs 
with the desired outputs and compute 
the cost function to be minimized 
(for example, the sum of squared 
errors across output units). For each 
unit, we then compute how much 
the cost would drop if the activation 
changed slightly. This is the sensitivity 
of the cost to a change of activation 
of each output unit. Mathematically, 
it is the partial derivative of the cost 
with respect to each activation. We 
then proceed backwards through 
the network propagating the cost 
derivatives (sensitivities) from the 
activations to the preactivations and 
through the weights to the activations 
of the layer below. The sensitivity of 
the cost to each of these variables 
depends on the sensitivities of the 
cost to the variables downstream in 
the network. Backpropagating the 
derivatives through the network by 
applying the chain rule provides an 
effi cient algorithm for computing all the 
partial derivatives.

The critical step is computing the 
partial derivative of the cost with 
respect to each weight. Consider the 
, 2019
weight of a particular connection (red 
arrow in Figure 2). The connection links 
a source unit in one layer to a target 
unit in the next layer. The infl uence 
of the weight on the cost for a given 
input pattern depends on how active 
the source unit is. If the source unit 
is off for the present input pattern, 
then the connection has no signal to 
transmit and its weight is irrelevant 
to the output the network produces 
for the current input. The activation of 
the source unit is multiplied with the 
weight to determine its contribution 
to the preactivation of the target 
unit, so the source activation is one 
factor determining the infl uence of the 
weight on the cost. The other factor 
is the sensitivity of the cost to the 
preactivation of the target unit. If the 
preactivation of the target unit had no 
infl uence on the cost, then the weight 
would have no infl uence either. The 
derivative of the cost with respect to 
the weight is the product of its source 
unit’s activation and its target unit’s 
infl uence on the cost.

We adjust each weight in the 
direction that reduces the cost (the 
error) and by an amount proportional to 
the derivative of the cost with respect 
to the weight. This process is called 
gradient descent, because it amounts 
to moving in the direction in weight 
space in which the cost declines most 
steeply. To help our intuition, let us 
consider two approaches we might 
take. First, consider the approach 
of taking a step to reduce the cost 
for each individual training example. 
Gradient descent will make minimal 
and selective adjustments to reduce 
the error, which makes sense as we 
do not want learning from the current 
example to interfere with what we’ve 
learned from other examples. However, 
our goal is to reduce the overall error, 
which is defi ned as the sum of the 
errors across all examples. So second, 
consider the approach of summing up 
the error surfaces (or, equivalently, the 
gradients) across all examples before 
taking a step. We can still only take a 
small step, because the error surface 
is nonlinear and so the gradient will 
change as we move away from the 
point about which we linearized the 
network.

In practice, the best solution is to use 
small batches of training examples to 
estimate the gradient before taking a 



Current Biology

Magazine

Feature
maps

R,G,B
visuotopic Xvi

su
ot

op
ic

 Y

X

Y

Input image

Receptive Field

50 units (X)

50 units (Y)

50 units
(feature
 maps)

Current Biology

Figure 4. Deep convolutional feedforward neural networks. 
The general structure of Alexnet, a convolutional deep neural network architecture which had 
a critical role in bringing deep neural networks into the spotlight. Unlike the visualization in the 
original report on this model, here the tensors’ dimensions are drawn to scale, so it is easier 
to appreciate how the convolutional deep neural network gradually transforms the input image 
from a spatial to semantic representation. For sake of simplicity, we did not visualize the pool-
ing operations, as well as the splitting of some of these layers between two GPUs. The leftmost 
box is the input image (a tensor of the dimensions 227×227×3, where 227 is the length of the 
square input-image edges and three is the number of color components). It is transformed by 
convolution into the fi rst layer (second box from the left), a tensor with smaller spatial dimensions 
(55x55) but a larger number of feature maps (96). Each feature map in this tensor is produced by 
a convolution of the original image with a particular 11×11×3 fi lter. Therefore, the preactivation 
of each unit in this layer is a linear combination of one rectangular receptive fi eld in the image. 
The boundaries of such a receptive fi eld are visualized as a small box within the image tensor. In 
the next, second layer, the representation is even more spatially smaller (27×27) but richer with 
respect to the number of feature maps (256). Note that from here and onwards, each feature is 
not a linear combination of pixels but a linear combination of the previous layer’s features. The 
sixth layer (see the small overview inset at the top-right) combines all feature maps and locations 
of the fi fth layer to yield 4096 different scalar units, each with its own unrestricted input weights 
vector. The fi nal eighth layer has 1000 units, one for each output class. The eight images on the 
bottom were produced by gradually modifying random noise images so excite particular units in 
each of the eight layers. The rightmost image was optimized to activate the output neuron related 
to the class ‘Mosque’. Importantly, these are only local solutions to the activation-maximization 
problem. Alternative activation-maximizing images may be produced by using different starting 
conditions or optimization heuristics.
step. Compared to the single-example 
approach, this gives us a more stable 
sense of direction. Compared to the 
full-training-set approach, it greatly 
reduces the computations required to 
take a step. Although the full-training-
set approach gives exact gradients for 
the training-set error, it still does not 
enable us to take large steps, because 
of the nonlinearity of the error function. 
Using batches is a good compromise 
between stability of the gradient 
estimate and computational cost. 
Because the gradient estimate depends 
on the random sample of examples in 
the current batch, the method is called 
stochastic gradient descent (SGD). 
Beyond the motivation just given, the 
stochasticity is thought to contribute 
also to fi nding solutions that generalize 
well beyond the training set. 

The cost is not a convex function of 
the weights, so we might be concerned 
about getting stuck in local minima. 
However, the high dimensionality of 
weight space turns out to be a blessing 
(not a curse) for gradient descent: 
there are many directions to escape 
in, making it unlikely that we will ever 
fi nd ourselves trapped, with the error 
surface rising in all directions. In 
practice, it is saddle points (where the 
gradient vanishes) that pose a greater 
challenge than local minima. Moreover, 
the cost function typically has many 
symmetries, with any given set of 
weights having many computationally 
equivalent twins (that is, the model 
computes the same overall function 
for different parameter settings). As a 
result, although our solution may be 
one local minimum among many, it may 
not be a poor local minimum: It may be 
one of many similarly good solutions.

Recurrent neural networks are 
universal approximators of 
dynamical systems
So far we have considered feedforward 
networks, whose directed connections 
do not form cycles. Units can also be 
confi gured in recurrent neural networks 
(RNNs), where activity is propagated 
in cycles, as is the case in brains. This 
enables a network to recycle its limited 
computational resources over time 
and perform a deeper sequence of 
nonlinear transformations. As a result, 
RNNs can perform more complex 
computations than would be possible 
with a single feedforward sweep 
through the same number of units and 
connections.

For a given state space, a suitable 
RNN can map each state to any 
desired successor state. RNNs, 
therefore, are universal approximators 
of dynamical systems. They provide 
a universal language for modeling 
dynamics, and one whose components 
could plausibly be implemented with 
biological neurons.

Much like feedforward neural 
networks, RNNs can be trained 
by backpropagation. However, 
backpropagation must proceed through 
the cycles in reverse. This process is 
called backpropagation through time. 
An intuitive way to understand an RNN 
and backpropagation through time is 
to ‘unfold’ the RNN into an equivalent 
feedforward network (Figure 3). Each 
layer of the feedforward network 
represents a timestep of the RNN. 
Current 
The units and weights of the RNN 
are replicated for each layer of the 
feedforward network. The feedforward 
network, thus, shares the same set of 
weights across its layers (the weights 
of the recurrent network).

For tasks that operate on 
independent observations (for 
example, classifying still images), 
the recycling of weights can enable 
an RNN to perform better than a 
feedforward network with the same 
number of parameters. However, 
RNNs really shine in tasks that 
operate on streams of dependent 
observations. Because RNNs can 
maintain an internal state (memory) 
over time and produce dynamics, they 
lend themselves to tasks that require 
temporal patterns to be recognized 
or generated. These include the 
perception speech and video, 
cognitive tasks that require maintaining 
Biology 29, R225–R240, April 1, 2019 R235



Current Biology

Magazine

1Department of Psychology, 2Department 
of Neuroscience, 3Department of Electrical 
Engineering, 4Zuckerman Mind Brain 
Behavior Institute, Columbia University, New 
York, NY 10027, USA. 
*E-mail: n.kriegeskorte@columbia.edu (N.K.), 
tal.golan@columbia.edu (T.G.)
representations of hidden states 
of the agent (such as goals) or the 
environment (such as currently hidden 
objects), linguistic tasks like the 
translation of text from one language 
into another, and control tasks at the 
level of planning and selecting actions, 
as well as at the level of motor control 
during execution of an action under 
feedback from the senses.

Deep neural networks provide 
abstract process models of 
biological neural networks
Cognitive models capture aspects 
of brain information processing, 
but do not speak to its biological 
implementation. Detailed biological 
models can capture the dynamics 
of action potentials and the 
spatiotemporal dynamics of signal 
propagation in dendrites and axons. 
However, they have only had limited 
success in explaining how these 
processes contribute to cognition. 
Deep neural network models, as 
discussed here, strike a balance, 
explaining feats of perception, 
cognition, and motor control in terms 
of networks of units that are highly 
abstracted, but could plausibly be 
implemented with biological neurons.

For engineers, artifi cial deep neural 
networks are a powerful tool of 
machine learning. For neuroscientists, 
these models offer a way of specifying 
mechanistic hypotheses on how 
cognitive functions may be carried 
out by brains. Deep neural networks 
provide a powerful language for 
expressing information-processing 
functions. In certain domains, they 
already meet or surpass human-level 
performance (for example, visual 
object recognition and board games) 
while relying exclusively on operations 
that are biologically plausible.

Neural network models in 
engineering have taken inspiration 
from brains, far beyond the general 
notion that computations involve 
a network of units, each of which 
nonlinearly combines multiple 
inputs to compute a single output. 
For example, convolutional neural 
networks, the dominant technology in 
computer vision, use a deep hierarchy 
of retinotopic layers whose units 
have restricted receptive fi elds. The 
networks are convolutional in that 
weight templates are automatically 
R236 Current Biology 29, R225–R240, April
shared across image locations 
(rendering the computation of a feature 
map’s preactivations equivalent 
to a convolution of the input with 
the weight template). Although the 
convolutional aspect may not capture 
an innate characteristic of the primate 
visual system, it does represent an 
idealization of the fi nal product of 
development and learning in primates, 
where qualitatively similar features are 
extracted all over retinotopic maps 
at early stages of processing. Across 
layers, these networks transform a 
visuospatial representation of the 
image into a semantic representation 
of its contents, successively reducing 
the spatial detail of the maps and 
increasing the number of semantic 
dimensions (Figure 4).

The fact that a neural network 
model was inspired by some abstract 
features of biology and that it matches 
overall human or animal performance 
at a task does not make it a good 
model of how the human or animal 
brain performs the task. However, we 
can compare neural network models 
to brains in terms of detailed patterns 
of behavior, such as errors and 
reaction times for particular stimuli. 
Moreover, we can compare the internal 
representations in neural networks to 
those in brains.

In the ‘white-box’ approach, we 
evaluate a model by looking at its 
internal representations. Neural 
network models form the basis for 
predicting representations in different 
brain regions for a particular set 
of stimuli. One approach is called 
encoding models. In encoding 
models, the brain activity pattern in 
some functional region is predicted 
using a linear transformation of the 
representation in some layer of the 
model. In another approach, called 
representational similarity analysis, 
each representation in brain and model 
is characterized by a representational 
dissimilarity matrix. Models are 
evaluated according to their ability 
to explain the representational 
dissimilarities across pairs of stimuli. A 
third approach is pattern component 
modeling, where representations are 
characterized by the second moment 
of the activity profi les.

Recent results from the domain of 
visual object recognition indicate that 
deep convolutional neural networks 
 1, 2019
are the best available model of how 
the primate brain achieves rapid 
recognition at a glance, although they 
do not explain all of the explainable 
variance in neuronal responses.

In the ‘black-box’ approach, we 
evaluate a model on the basis of its 
behavior. We can reject models for 
failing to explain detailed patterns 
of behavior. This has already 
helped reveal some limitations of 
convolutional neural networks, which 
appear to behave differently from 
humans under noisy conditions and 
to show different patterns of failures 
across exemplars. 

Deep neural networks bridge 
the gap between neurobiology and 
cognitive function, providing an 
exciting framework for modeling brain 
information processing. Theories of 
how the brain computes can now 
be subjected to rigorous tests by 
simulation. Our theories, and the 
models that implement them, will 
evolve as we learn to explain the 
rich measurements of brain activity 
and behavior provided by modern 
technologies in animals and humans.
FURTHER READING

Dayan, P., and Abbott, L.F. (2001). Chapter 7.4, 
Recurrent neural networks. In Theoretical 
Neuroscience (Cambridge, MA: MIT Press).

Goodfellow, I., Bengio, Y., and Courville, A. (2016). 
Deep Learning (MIT Press).

Hassabis, D., Kumaran, D., Summerfi eld, C., and 
Botvinick, M. (2017). Neuroscience-inspired 
artifi cial intelligence. Neuron 95, 245–258.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep 
learning. Nature 521, 436–444.

Kietzmann, T., McClure, P., and Kriegeskorte, N. 
(2019). Deep neural networks in computational 
neuroscience. In Oxford Research Encyclopedia 
of Neuroscience. https://doi.org/10.1093/
acrefore/9780190264086.013.46

Kriegeskorte, N. (2015). Deep neural networks: a 
new framework for modeling biological vision 
and brain information processing. Annu. Rev. 
Vis. Sci. 1, 417–446.

Nielsen, M.A. (2015). Neural Networks and Deep 
Learning (Determination Press).

Schmidhuber, J. (2015). Deep learning in neural 
networks: An overview. Neural Netw. 61, 85–117.

Storrs, K.R. and Kriegeskorte, N. (2019). Deep 
learning for cognitive neuroscience. In The 
Cognitive Neurosciences (6th Edition), M. 
Gazzaniga, ed. (Boston: MIT Press).

Yamins, D.L.K., and DiCarlo, J.J. (2016). Using 
goal-driven deep learning models to understand 
sensory cortex. Nat. Neurosci. 19, 356–365.

https://doi.org/10.1093/acrefore/9780190264086.013.46
mailto:n.kriegeskorte@columbia.edu
mailto:tal.golan@columbia.edu
https://doi.org/10.1093/acrefore/9780190264086.013.46

	Neural networkmodels and deeplearning
	Neural network models of brainfunction

	Neural networks are universal approximators 

	Deep networks can effi cientlycapture complex functions

	Deep learning by backpropagation

	Recurrent neural networks areuniversal approximators ofdynamical systems

	Deep neural networks provideabstract process models ofbiological neural networks

	Further Reading



