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Abstract

A central goal of neuroscience is to understand the representations formed by brain activity patterns and

their connection to behavior. The classical approach is to investigate how individual neurons encode

the stimuli and how their tuning determines the fidelity of the neural representation. Tuning analyses

often use the Fisher information to characterize the sensitivity of neural responses to small changes

of the stimulus. In recent decades, measurements of large populations of neurons have motivated a

complementary approach, which focuses on the information available to linear decoders. The decodable

information is captured by the geometry of the representational patterns in the multivariate response

space. Here we review neural tuning and representational geometry with the goal of clarifying the rela-

tionship between them. The tuning induces the geometry, but different sets of tuned neurons can induce

the same geometry. The geometry determines the Fisher information, the mutual information, and the

behavioral performance of an ideal observer in a range of psychophysical tasks. We argue that future

studies can benefit from considering both tuning and geometry to understand neural codes and reveal

the connections between stimulus, brain activity, and behavior.
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1 Introduction

Brain computation can be understood as the transformation of representations across stages of process-

ing [1]. Information about the world enters through the senses, is encoded and successively re-coded

so as to extract behaviorally relevant information and transform its representational format to enable the

inferences and decisions needed for successful action. Neuroscientists often focus on the code in one

particular neural population at a time (let’s call it area X), summarily referring to the processes producing

the code in X as the encoder, and the processes exploiting the code in X as the decoder [2].

The neural code in our area of interest X is classically characterized in terms of the tuning of individual

neurons. A tuning curve describes the dependence of a neuron’s firing on a particular variable thought

to be represented by the brain. Like a radio tuned to a particular frequency to select a station, a "tuned"

neuron [3] may selectively respond to stimuli within a particular band of some stimulus variable, which

could be a spatial or temporal frequency, or some other property of the stimulus such as its orientation,

position, or depth [3, 4, 5, 6]. As a classic example, the work by Hubel and Wiesel [7, 8, 9] demonstrated

that the firing rate of many V1 neurons is systematically modulated by the retinal position and orientation

of an edge visually presented to a cat. The dependence was well described by a bell-shaped tuning

curve [4, 5, 10, 6, 11]. Tuning provides a metaphor and the tuning curve a quantitative description of a

neuron’s response as a function of a particular stimulus property. A set of tuning curves can be used

to define a neural population code [12, 13, 14, 15, 16]. Consider the problem of encoding a circular

variable, such as the orientation of an edge segment, with a population of neurons. A canonical model

assumes that each neuron has a (circular) Gaussian tuning curve with a different preferred orientation.

The preferred orientations are distributed over the entire cycle, so the neural population can collectively

encode any orientation.

Over the past several decades, systems neuroscience has characterized neural tuning in different brain

regions and species for a variety of stimulus variables and modalities (e.g., [8, 17, 18, 19, 20, 21, 22,

12, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]). We have also accumulated much knowledge on how

tuning changes with spatial context [35, 36, 37], temporal context [38, 39, 40, 41, 42, 43, 44, 45, 46],

internal states of the animal such as attention [47, 48, 49], and learning [50, 51, 52]. The tuning curve

is a descriptive tool, ideal for characterizing strong dependencies, as found in sensory cortical areas, of

individual neurons’ responses on environmental variables of behavioral importance. However, when the

tuning curve is reified as a computational mechanism, it can detract from non-stimulus-related influences

on neuronal activity, such as the spatial and temporal environmental context and the internal network

context, where information is encoded in the population activity, and computations are performed in a

nonlinear dynamical system [53, 54] whose trial-to-trial variability may reflect stochastic computations

[55]. Despite their limitations, tuning functions continue to provide a useful first-order description of how

individual neurons encode behaviorally relevant information in sensory, cognitive, and motor processes.

A complementary perspective is that of a downstream neuron that receives input from a neural popula-

tion and must read out particular information toward behaviorally relevant inferences and decisions. This
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decoding perspective addresses the question what information can be read out from a population of neu-

rons using a simple biologically plausible decoder, such as a linear decoder. Decoding analyses have

gained momentum more recently, as our ability to record from a large number of channels (e.g., neurons

or voxels) has grown with advances in cell recording [56, 57, 58] and functional imaging [59, 60]. A linear

decoding analysis reveals how well a particular variable can be read out by projecting the response pat-

tern onto a particular axis in the population response space. A more general characterization of a neural

code is provided by the representational geometry [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74].

The representational geometry captures all possible projections of the population response patterns and

characterizes all the information available to linear and nonlinear decoders [75]. The representational

geometry is defined by all pairwise distances in the representational space among the response patterns

corresponding to a set of stimuli. The distances can be assembled in a representational dissimilarity ma-

trix (RDM), indexed horizontally and vertically by the stimuli, where we use “dissimilarity" as a more

general term that includes estimators that are not distances in the mathematical sense [75]]. The RDM

abstracts from the individual neurons, providing a sufficient statistic invariant to permutations of the neu-

rons and, more generally, to rotations of the ensemble of response patterns. These invariances enable us

to compare representations among regions, individuals, species and between brains and computational

models [76, 77, 70, 78].

The neural tuning determines the representational geometry, so the two approaches are deeply related.

Nevertheless they have originally been developed in disconnected literatures. Tuning analysis has been

prevalent in neuronal recording studies, often using simple parametric stimuli and targeting lower-level

representations. The analysis of representational geometry has been prevalent in the context of large-

scale brain-activity measurements, especially in functional MRI (fMRI) [79], often using natural stimuli

and targeting higher-level representations. In recent years, there has been growing cross-pollination

between these literatures. Notably, encoding models for simple parametric [80] and natural stimuli [81,

82] have been used to explain single-voxel fMRI responses, and a number of studies have characterized

neural recordings in terms of representational geometry [67, 83, 84, 70, 71].

Tuning and geometry are closely related, and the respective communities using these methods have

drawn from each other. Here we clarify the mathematical relationship of tuning and geometry and attempt

to provide a unifying perspective. We review the literature and explain how tuning and geometry relate

to the quantification of information-theoretical quantities such as the Fisher information (FI) [85] and the

mutual information (MI) [86]. Examples from the literature illustrate how the dual perspective of tuning

and geometry illuminates the content, format, and computational roles of neural codes.
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Figure 1: Neuronal tuning determines representational geometry. Each row shows a specific configuration of the neural
code for encoding a circular variable, such as orientation. Each column shows a particular way to characterize the neural code.
The first two columns show traditional tuning-based characterizations. The small inset on top of the population response matrix
plots the summed population activity as a function of the stimulus orientation. The third column plots the Fisher information
of the neural population as a function of the stimulus (arbitrary units), which provides a local measure of the coding fidelity.
Specifically, the square root of Fisher information gives a lower bound of the discrimination threshold in fine discrimination
tasks. The last four columns show the geometry of the neural code, using a representational dissimilarity matrix (RDM), 3-
d multi-dimensional scaling, and the relation between distance in the stimulus space (horizontal axis) and representational
distance (vertical axis). The last column plots the proportion of variance explained by individual principal components. This
reflects the dimensionality of the representation. Several general insights emerge from this framework: (1) Tuning width can
modulate the representational geometry, without changing the allocation of Fisher information (compare rows a and b). (2)
Fisher information only provides a local measure of the geometry. It does not fully determine the geometry (compare a, b, d).
(3) Non-uniform stimulus gain (c) can change the representational precision (as reflected in the Fisher information) for particular
parts of the stimulus space. (4) The same representation can manifest itself in different neural response patterns (compare b
and d). The configuration in (d) is obtained by a rigid transformation (shift and rotation) of the codes in (b).
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BOX 1: Mathematical definitions
Entropy. The entropy of a random variable r with a probability density p(r) is a measure of our uncertainty about the variable
and is defined as:

H(r) = −
∫
p(r) · log p(r) dr (1)

The conditional entropy of a random variable r given another random variable θ is defined as:

H(r|θ) = −
∫
p(r, θ) · log p(r|θ) dr dθ (2)

Mutual information. The mutual information (MI) I(r; θ) between response r and stimulus θ measures the information that
the response conveys about the stimulus (and vice versa). The MI can be thought of as the shared entropy, or entropy
overlap, that is the number of bits by which the entropy H(r, θ) of the joint distribution of both variables is smaller than the
sum of their individual entropies H(r) and H(θ):

I(r; θ) = H(r) +H(θ)−H(r, θ) (3)

Equivalently, the MI is the reduction of the entropy of one of the variables when we learn about the other:

I(r; θ) = H(r)−H(r|θ) = H(θ)−H(θ|r) (4)

Note that MI depends on the distribution of both variables. In more explicit terms, the MI can be expressed as:

I(r; θ) =

∫ ∫
p(r, θ) log

p(r, θ)

p(r)p(θ)
drdθ. (5)

Fisher information. The Fisher information (FI) of a neural population code is a function of the stimulus. For each location in
stimulus space, the FI reflects how sensitive the code is to local changes of the stimulus. Assume a population of N neurons
encoding stimulus variable θ, with tuning curves fi. The population response is denoted as r. The FI can be defined as

J(θ) =

∫
− d2

dθ2
log p(r|θ)p(r)dr. (6)

If θ is a vector, rather than a scalar, description of the stimulus, J(θ) becomes the FI matrix, characterizing the magnitude
of the response pattern change for all directions in stimulus space. The FI of a neuron is determined by the neuron’s tuning
curve and noise characteristics. Assuming Poisson spiking, and tuning curve f(θ), where θ is the encoded stimulus property,
the Fisher information J(θ) can be computed as

J(θ) =
f ′(θ)2

f(θ)
. (7)

Under the assumption of additive stimulus-independent Gaussian noise (with noise variance equal to 1), the Fisher informa-
tion is simply the squared slope of the tuning curve

J(θ) = f ′(θ)2. (8)

For a neural population, if neurons have independent noise, the population FI is simply the sum of the FI for individual
neurons. With correlated noise, evaluating the FI is more complicated as it depends on the correlation structure. FI depends
on the specific parameterization of the stimulus space. More precisely, when θ is reparameterized as θ̃, the following relation
holds: √

J(θ)dθ =

√
J(θ̃)dθ̃. (9)

Discrimination threshold. The square root of the Fisher information provides a lower bound on the discrimination threshold
δ(θ) in fine discrimination tasks

δ(θ) ≥ C/
√
J(θ), (10)

where C is a constant dependent on the definition of the psychophysical discrimination threshold.

Variance-stabilizing transformation. For independent Poisson noise, we can apply a square-root transformation to an
individual neuron’s response ri [139, 140]. The resulting response will have approximately constant variance independent
of firing rate. In general, assuming the variance of ri is a smooth function g(·) of its mean µ , one could first stabilize the
variance by applying the following transformation to obtain r̃i and the statements below would apply to r̃i.

r̃i =

∫ ri 1√
g(µ)

dµ (11)
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2 A dual perspective

2.1 Tuning determines mutual information and Fisher information

A tuning curve tells us how the mean activity level of an individual neuron varies depending on a stimulus

property. The tuning curve, thus, defines how the stimulus property is encoded in the neuron’s activity.

Conversely, knowing the activity of the neuron may enable us to decode the stimulus property. How

informative the neural response is depends on the shape of the tuning curve. A flat tuning curve, often

described as a lack of tuning, would render the response uninformative. If the neuron is tuned, it con-

tains some information about the stimulus property. However, a single neuron may respond similarly to

different stimuli. For example, a neuron tuned to stimulus orientation may respond equally to two stimuli

differing from its preferred orientation in either direction by the same angle. The resulting ambiguity may

be resolved by decoding from multiple neurons.

For a population of neurons, the tuning function f(θ) can be defined as the expected value of the re-

sponse pattern r given stimulus parameter θ:

f(θ) = Er∼p(r|θ)[r] = E[r|θ]. (12)

In the special case of additive noise with mean zero, the response pattern obtains as r = f(θ)+ ε, where

f(θ) is the encoding model that defines the tuning function for each neuron and ε is the noise.

We can quantify the information contained in the neural code about the stimulus using the mutual in-

formation or the Fisher information, two measures that have been widely used in computational neu-

roscience. Mutual information (MI) is a key quantity of information theory that measures how much

information one random variable contains about another random variable [86]. The MI I(r; θ) measures

the information the response r conveys about the stimulus θ (Box 1). Computing the MI requires assum-

ing a prior p(θ) over the stimuli, because the MI is a function of the joint distribution p(r, θ) = p(r|θ) · p(θ)
of stimulus and response.

Over the past few decades, MI has been used extensively in neuroscience [87, 88, 89, 90]. For example,

studies have aimed to quantify the amount of information conveyed by neurons about sensory stimuli

[91, 87, 90, 89, 92, 93]. MI has also been used as an objective function to be maximized, so as to

derive an efficient encoding of a stimulus property in a limited number of neurons ([94, 95, 96, 97, 98]).

If a neural code optimizes the MI, the code must reflect the statistical structure of the environment. For

example, in an MI-maximizing code, frequent stimuli should be encoded with greater precision. Once

a prior over the stimuli, a functional form of the encoding, and a noise model have been specified, the

joint distribution of stimulus and response is defined, and the MI can be computed. The parameters of

the encoding can then be optimized to maximize MI [99, 100, 101]. If the tuning functions that maximize

MI match those observed in brains, the function to convey information about the stimulus may explain

why the neurons exhibit their particular tuning [101, 102, 103, 104, 105, 106, 107, 90, 108, 109]. The

applications of information theory in neuroscience have been the subject of previous reviews ([88, 89,
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110]).

The MI provides a measure of the overall information the response conveys about the stimulus. It can

be thought of as the expected value of the reduction of the uncertainty about the stimulus that an ideal

observer experiences when given the response, where the expectation is across the distribution of stim-

uli. However, the MI does not capture how the fidelity of the encoding depends on the stimulus. Some

authors have proposed stimulus-specific variants of MI [111, 112, 16, 113].

Another stimulus-specific measure of information in the neural response is the Fisher information (FI).

The FI has deep roots in statistical estimation theory [85, 114] and plays a central role in the framework

we propose here. The FI captures the precision with which a stimulus property is encoded in the vicinity

of a particular value of the property [115, 116, 117, 95, 109]. An efficient code for a particular stimulus

distribution will dedicate more resources to frequent stimuli and encode these with greater precision. The

FI is a function of the stimulus and reflects the variation of the precision of the encoding across different

values of the stimulus property.

A large body of work has studied how tuning parameters, such as tuning width and firing rate, are related

to the FI [118, 119, 115, 120, 121, 122, 123, 124]. The FI is proportional to the squared slope of the tuning

curve when the noise is Gaussian and additive (Box 1). When the noise follows a Poisson distribution, the

FI is the squared slope of the tuning curve divided by the firing rate. Beyond single neurons and particular

noise distributions, the FI provides a general stimulus-specific measure that characterizes coding fidelity

of a neuronal population under various noise distributions. The FI sums across neurons, to yield the

neural-population FI, if the neurons have independent noise. However, when the noise is correlated

between neurons, the Fisher information is more difficult to compute [125, 126, 127, 128, 129, 130]. This

is still an active area of research [131, 132, 133, 134, 135, 121, 136, 261], and some progress has been

reviewed in [137, 138].

2.2 Tuning determines geometry

A tuning curve describes the encoding of a stimulus property in an individual neuron. When we consider

a population of neurons, we can think of the response pattern across the n neurons as a point in an n-

dimensional space. Let’s assume the tuning curves are continuous functions of the stimulus property. As

we sweep through the values of the stimulus property, the response pattern moves along a 1-dimensional

manifold in the neural response space. Now imagine that stimuli vary along d property dimensions that

are all encoded in the neural responses with continuous tuning curves. As we move in the d-dimensional

stimulus-property space, the response pattern moves along a d-dimensional neural response manifold

(Box 2).
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BOX 2: Neural response manifold
A neural response manifold is a set of response patterns elicited by a range of stimuli [141, 142, 54, 143]. In neuroscience,
we often think of a curved hypersurface of the neural response space within which each stimulus has its unique location.
The mathematical notion of manifold implies that the set of neural response patterns is locally homeomorphic to a Euclidean
space. This notion is particularly helpful when (1) the tuning curves are continuous, (2) the mapping between d-vectors of
stimulus properties and n-vectors of neural responses is bijective, and (3) we neglect the noise. Under these conditions, the
set of neural response patterns is homeomorphic to the particular Euclidean space spanned by the stimulus properties, and
we can imagine mapping the stimulus space onto a hypersurface (which might be nonlinear, but will not intersect itself) in the
multivariate response space.
Consider a pair of neurons encoding orientation with sinusoidal tuning curves. Because both tuning curves are continuous,
the response will vary continuously and cyclicly as the stimulus rotates. When the phases of the tuning curves are offset by
90◦, the response manifold is a perfect circle (a). As the phase offset increases, the manifold gradually morphs into an ellipse
with increasing aspect ratio (b, c). The shape of the manifold depends on the exact shape of the tuning curves. Panel (d)
shows a crescent-like response manifold, induced by two von Mises tuning curves. For certain tuning functions, the response
hypersurface may self-intersect (e). In the neighborhood of the self-intersection, the hypersurface is not homeomorphic to
any Euclidean space, and thus not a manifold. However, adding one additional neuron (neuron 3 in f), disentangles the
hypersurface, and renders it a manifold again. The width of bell-shaped tuning curves (g and h) substantially modulates
the geometry of the manifold, with narrower tuning curves (h) leading to a manifold that is highly curved and requires a
higher-dimensional linear subspace to explain most the variance (Fig. 1, compare rows a and b, rightmost column).
These examples neglect the presence of noise. When the responses are noisy, they may still form a manifold, but not a
d-dimensional manifold, whose dimensions correspond to the d stimulus properties of interest. Despite these caveats, the
notion of manifold appears useful, because it enables us to see the response patterns elicited by a d-dimensional space of
stimuli as a d-dimensional sheet in the multivariate response space [141, 142, 53, 54, 143, 144, 84, 145].
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The concept of a neural response manifold [141, 142] helps us relate a uni-dimensional or multidimen-

sional stimulus space to a high-dimensional neural response space. To understand the code, we must

understand the geometry of the neural response manifold. As we saw above, the FI tells us the magni-

tude of the response pattern change associated with a local move in stimulus space around any given

location θ. To define the representational geometry, however, we need a global characterization. We

need to know the magnitudes of the response pattern changes associated with arbitrary moves from any

stimulus to any other stimulus. The geometry is determined by the distances in multivariate response

space that separate the representations of any two stimuli. The tuning curves define the response pat-

terns, from which we can compute the representational distances.

We could simply use the Euclidean distances d(θi, θj) for all pairs (i, j) of stimuli, which can be computed

on the basis of the tuning functions alone to define the representational geometry:

d(θi, θj) = ‖f(θi)− f(θj)‖. (13)
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However, we would like to define the representational geometry in a way that reflects the discriminabil-

ity of the stimuli. The discriminability could be defined in various ways, for example as the accuracy

of a Bayes-optimal decoder, as the accuracy or d′ of a linear decoder, or as the mutual information

between stimulus and neural response. The Euclidean distance between stimulus representations is

monotonically related to all these measures of the discriminability when the noise distribution is isotropic,

Gaussian, and stimulus-independent. When the noise is anisotropic (and still Gaussian and stimulus-

independent), we can replace the Euclidean distance with the Mahalanobis distance

dMahal(θi, θj) =
√

[f(θi)− f(θj)]TΣ−1[f(θi)− f(θj)] = ‖Σ−
1
2 [f(θi)− f(θj)]‖, (14)

where Σ is the noise covariance matrix. The Mahalanobis distance will be monotonically related to the

discriminability [75].

When the noise is Poisson and independent between neurons, a square-root transform can be used

to stabilize the variance and render the joint noise density approximately Gaussian and isotropic (Box

1, [146]). How to best deal with non-Gaussian (e.g. Poisson) stimulus-dependent noise is an unresolved

issue.

We have seen that the geometry of the representation depends on the tuning and the noise and can be

characterized by a representational distance matrix. Changing the tuning will usually change the rep-

resentational geometry. Consider the encoding of stimulus orientation by a population of neurons that

have von Mises tuning with constant width of the tuning curves and a uniform distribution of preferred

orientations. Since orientations form a cyclic set and the tuning curves are continuous, the set of rep-

resentational patterns must form a cycle (Fig. 1a). However, two uniform neural population codes with

different tuning widths will have distinct representational geometries.

With narrow tuning width (Fig. 1a), a given stimulus drives a sparse set of neurons. For intuition on

this narrow tuning regime, imagine a labeled-line code, where each neuron responds to a particular

stimulus from a finite set (one neuron for each stimulus). As we move through the stimulus set, we

drive each neuron in turn. The set of response patterns, thus, is embedded in a linear subspace of the

same dimensionality as the number of neurons. Note also that narrow tuning yields a “splitter" code,

i.e., a code that is equally sensitive to small and large orientation changes. Orientations differing by 30

degrees (π/6 radians) might elicit non-overlapping response patterns and would, thus, be as distant in

the representational space as orientations differing by 90 degrees (π/2 radians, Fig. 1a, second-to-last

column).

With wide tuning width (Fig. 1b), the geometry approximates a circle. It would be exactly a circle

for two neurons with sinusoidal tuning with a π/4 shift in preferred orientation (where π is the cycle

period for stimulus orientation), and in the limit of an infinite number of neurons with sinusoidal tuning

(with preferred orientations drawn from a uniform distribution). For von Mises tuning curves and finite

numbers of neurons, wide tuning entails a geometry approximating a circle, with most of the variance

of the set of response patterns explained by the first two principal components. Wide tuning yields a

“lumper" code, i.e., a code that is more sensitive to global orientation changes, than to local changes.
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Orientations differing by 30 degrees will elicit overlapping response patterns and would be much closer

in the representational space than orientations differing by 90 degrees (Fig. 1b, right column).

If we make the gain or the width of the tuning curves non-uniform across orientations, the geometry is

distorted with stimuli spreading out in representational space in regions of high Fisher information and

huddling together in regions of low Fisher information (as illustrated in the RDM and MDS in Fig. 1c).

This section explained how a set of tuning functions induces a representational geometry. We defined

the geometry by its sufficient statistic, the representational distance matrix. The distances are measured

after a transformation that renders the noise isotropic. We will see below that the distance matrix then

captures all information contained in the code. Importantly, it also captures important aspects of the

format in which the information is encoded. For example, knowing the geometry and the noise distribution

enables us to predict what information can be read out from the code with a linear decoder (or in fact any

given nonlinear decoder capable of a linear transform).

2.3 Geometry does not determine tuning

We have seen that the set of tuning curves determines the geometry (given the noise distribution). The

converse does not hold: The geometry does not determine the set of tuning curves. To understand this,

let us assume that the noise is isotropic (or has been rendered isotropic by a whitening transform). It is

easy to see that rotating the ensemble of points corresponding to the representational patterns will leave

the geometry unchanged. Such a rotation could simply exchange tuning curves between neurons, while

leaving the set of tuning curves the same. In general, however, a rotation of the ensemble of points will

substantially and qualitatively change the set of tuning curves (Fig. 1, compare b and d). The new tuning

curves will be linear combinations of the original ones and, jointly, will induce the same geometry.

If different sets of tuning curves can give rise to the same representational geometry, what information

about the tuning is lost when considering the geometry? For example, the geometry doesn’t tell us how

the information about a given stimulus distinction is distributed across the neurons. The information could

be concentrated in a small set of selective neurons or distributed across many neurons. However, the

geometry is sufficient for determining how well any given distinction among the stimuli can be decoded

(under the assumption of isotropic, stimulus-independent noise).

In the previous section, we described the geometry as generated by the set of tuning functions. In this

section, we saw that we can, conversely, think of a neuron’s tuning curve as a projection of the ensemble

of representational patterns onto a particular axis in the multivariate response space. Each neuron’s

tuning can be obtained by projecting the geometry onto a different axis. There are many different sets of

axes (neurons) that can span the space and generate the same representational geometry.
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Figure 2: The relationship between manifold geometry, Fisher information, and mutual information. This toy simulation
illustrates the encoding of a one-dimensional stimulus space by six different neural codes (a-f). The neural population comprises
only two neurons, whose activities define the horizontal and vertical dimensions of each panel. For each of 30 equally spaced
points in stimulus space, the mean response is plotted as a red dot. The neural response manifold is a continuous line (not
shown) that passes through the red dots. The response distribution is shown in the background (grayscale) for a uniform prior
over the stimulus space. The neural noise (Gaussian and isotropic here) is low in the top row (a-c) and high in the bottom row
(d-f). The geometry of the manifold and the noise determine the Fisher information (FI) for each stimulus, the total FI, and the
mutual information (MI) between stimulus and response. The total FI is proportional the length of the manifold divided by the
standard deviation of the noise. The length of the manifold is the same in all codes (a-f). The total FI is 30 in the low-noise
codes (a-c) and 6 in the high-noise codes (d-f). Within each noise level (top row, bottom row), the FI is the same, whereas
the geometry and the MI change. This reflects the fact that the FI measures discriminability along the manifold, whereas the
geometry and the mutual information measure discriminability among all stimuli. Folding the manifold (c, f) renders stimuli on
opposite banks somewhat confusable, which lowers MI, but does not affect FI. The FI, thus, does not determine the geometry
or the mutual information. Numerical values (lower right in each panel) show the MI and the total FI.
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2.4 Geometry determines Fisher information and mutual information

Fisher information and mutual information are usually computed based on tuning and noise properties.

However the representational geometry provides powerful constraints on both FI and MI. In fact, if the

noise is isotropic (or has been rendered isotropic by whitening), the geometry alone determines FI and

MI, and we do not require the tuning curves to compute them.

2.4.1 Fisher information

Consider n neurons with tuning functions fi(θ) (expressed as f(θ) for the population) and independent

Gaussian noise. We assume the responses are scaled such that the noise has unit variance, without

loss of generality. The Fisher information can be expressed as:

J(θ) =

n∑
i=1

f ′i(θ)
2 =

∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2
2

(15)

Note that the FI is the squared norm of the gradient of the response pattern with respect to the stimulus

variable θ. The FI, thus, reflects how far we move through representational space per unit of θ. If we

sweep through the values of θ at a constant rate, the FI is proportional to the speed of the corresponding

trajectory along the neural manifold. The representational speed can change with the value of θ, and so

the FI is a function of θ. The representational geometry defines the representational distances between

pairs of stimuli. It therefore defines, in particular, the distance traveled as we move from stimulus value

θi to the next stimulus value θi+1. The representational geometry, thus, fully determines the FI.

So far we have been focusing on the FI as a function of the stimulus θ. The overall FI can be defined

[96, 109] as

Jtot =

∫ √
J(θ)dθ . (16)

This quantity corresponds to the total length of the neural manifold f(θ) which is a 1D curve in the neural

response space (Fig. 2). Because the overall FI is the length of the neural response manifold, it is

invariant to re-parameterization of the stimulus. If the noise were heteroscedastic, this would need to be

taken into account when calculating the FI.

2.4.2 Mutual information

The deterministic tuning functions f(θ) together with a probabilistic noise model define the likelihood

p(r|θ), i.e. the probability of each possible response pattern r given the stimulus parameter θ. We

additionally need to specify a prior p(θ) to define the joint distribution p(r, θ) = p(r|θ)·p(θ). The distribution

of the responses then obtains as p(r) =
∑

θ p(r, θ). The mutual information I(r; θ) between stimulus and

response can be computed using the definition of the entropy and the conditional entropy (Box 1):

I(r; θ) = H(r)−H(r|θ). (17)
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The only transformations of the representation that preserve the geometry are rotations, translations,

and reflections of the neural response manifold. These operations reparameterize r, but not in a way

that changes the set of densities of the joint distribution. Instead the joint distribution is rotated and

reflected with the geometry and the MI, a function of the joint density, is not altered.

Consider the special case of additive isotropic Gaussian noise. It is easy to show that H(r|θ) = H(ε),

which is the entropy of the noise. Thus the MI is equal to the difference between the response entropy

and the noise entropy. In other words, the MI is the portion of the response entropy that is not noise

entropy: the stimulus-related portion of the response entropy. Both the response entropy H(r) and noise

entropy H(r|θ) are invariant to rotations, translations, and reflections of the neural response manifold,

thus all we need to compute the MI is the geometry and the noise.

The geometry of the neural representation can modulate the MI even when the FI is kept constant for all

stimuli (Fig. 2, top row, bottom row). Here, we assume a uniform prior on stimulus θ. We start with a

straight-line neural response manifold (left). We then bend the line segment into a curved line (middle)

and finally into a fold (right), while keeping the length of the manifold fixed and the density of the stimuli

uniform along the manifold. The uniform distribution of the stimuli along the manifold means that stimuli

remain equally discriminable from their neighbors in stimulus space. This is reflected in the FI, which

remains unchanged for all stimuli across the three manifolds for a given noise level (row). However, the

MI gets smaller as we fold over the manifold, because stimuli on opposite banks of the manifold come

closer to each other in representational space and become confusable, especially at high noise (bottom

row).

2.5 Fisher information does not determine geometry

We saw in Fig. 2 that the bending of the neural response manifold, a change of the global geometry,

did not affect the FI. Each row in Fig. 2 shows three different neural codes, progressively bending the

manifold, each of which has the same total FI and the same local FI for every stimulus, but a different

representational geometry. The key insight here is that the FI, though it constrains the local geometry,

does not constrain the global geometry of the manifold.

A complication in relating the FI to the geometry is that the FI is usually defined as a function of a

continuous stimulus parameter, whereas the geometry is usually defined in terms of the distances among

a finite set of stimulus representations. To align these two perspectives, we can consider a discrete

approximation to the FI, based on the finite set of stimuli used to characterize the geometry. The red

dots in Fig. 2, provide such a finite stimulus set. Think of the dots as indexed from 1 to 30, with the linear

interpolation defining the stimulus parameter for the FI. In the context of isotropic Gaussian noise, the FI

is sum of squared slopes of the tuning curves, which is the squared representational distance between

adjacent stimuli along the manifold. The FI as a function of stimulus index, thus, is defined by a subset

of the pairwise distances: those between two stimuli that are adjacent along the manifold. The FI, thus,

only provides partial constraints on the representational geometry. For each stimulus, the FI only reflects
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the magnitude of the local within-manifold gradient of the stimulus parameter, whereas the geometry

characterizes the distance to all other stimuli.

To deepen our intuition, let us return to the examples in Fig. 1 a, b, where homogeneous neural popula-

tions encode orientation. In Fig. 1 a and b, orientation is encoded by narrow (a) or wide (b) bell-shaped

tuning functions. The FI is constant over orientations in both codes, but it is higher (assuming the same

noise level) for narrow tuning. Doubling the width of the tuning curves doubles the number of neurons

that respond to any given stimulus with the stimulus hitting either of the two sensitive flanks of the tuning

curve. All else being equal, having more neurons change their activity with a small change of the stim-

ulus would increase the FI. However, all else is not equal. Doubling the width also divides the slopes of

the tuning curves by two everywhere, and the squared slopes by four. Overall, therefore, doubling the

width of the tuning curves reduces the FI to half, and the total FI (i.e. the integral of the square root of the

FI) by square root of two. For a one-dimensional stimulus space, therefore, narrowing bell-shaped tuning

curves will increase the FI, as long as the population still covers the full range of stimulus values. Note

that, for a two-dimensional variable like the location on a plane, doubling the width of bell-shaped tuning

curves will quadruple the number of responsive neurons while still dividing each neuron’s contribution to

the FI by four. As a result, the FI will be invariant to tuning width for a two-dimensional variable [118].

The geometries induced by narrow and wide tuning are profoundly different (rightmost three columns:

RDM, MDS, and representational distance as a function of orientation disparity). With narrow tuning,

representational distance rapidly grows with orientation disparity (reflecting the high sensitivity to small

changes and high FI). However, the representational distance also saturates quickly (with stimuli whose

orientation differs by π/2 appearing no more distinct than stimuli differing by π/4). With wide tuning,

representational distance saturates more slowly. With narrow tuning, the manifold occupies a high-

dimensional linear subspace. With wide tuning, the manifold geometry approximates a circle, with almost

all of the variance residing in a 2D linear subspace. These features of the geometry could be important

to computation, but are not captured by the FI.

2.6 Tuning determines perceptual sensitivity

To understand neural computation, we must study not only how stimulus information is encoded in a

region, but also how it is decoded by downstream neurons and reflected in behavior. If the population

code we are studying formed the basis for perceptual decisions, we should be able to predict perceptual

sensitivity that an ideal decoder could achieve on the basis of the tuning of the neurons and the noise.

Predicting behavioral sensitivity requires a readout mechanism. We still do not know exactly how the

brain reads out its codes to make perceptual decisions. Various decoders are theoretically possible.

One fruitful and widely used approach is to assume an ideal observer ([148, 149, 107, 150]), in other

words, to assume that the decoder is optimal. This normative approach may not match what the brain

does, but it enables us to predict the limits of behavioral performance given the code.



15

2.6.1 General discrimination and perceptual estimation

Bayesian ideal-observer models have been widely used to explain how perceptual estimates might be

computed on the basis of the activity of a population of tuned neurons. The basic approach is to specify

an encoding model (tuning functions and noise distribution) and simulate stochastic responses r ∼ p(r|θ)
from this model. One can then decode the stimulus from the simulated responses using Bayes rule,

p(θ|r) ∝ p(r|θ)p(θ), with the assumed prior distribution p(θ). One can simulate the ideal observer’s

perceptual estimates across many trials and characterize the estimation bias and variance to generate

experimentally testable predictions [151, 152, 96, 153]. This approach has been studied in computational

work [154, 155, 156, 95] and has been used to understand characteristics of human and non-human

primate perceptual behavior, including its prejudices (bias) and precision (variance) [157, 158, 159, 160,

96]. Beyond predicting behavioral bias and variance, ideal-observer models have been used to explain

the shape of the distribution of behavioral errors in detail, which is important, for example, to account for

working-memory capacity [160, 161, 162].

We may assume that the code is efficient [99] in that it maximizes stimulus-response MI under a set of

resource constraints. A code’s MI is the reduction of uncertainty about the stimulus that the ideal ob-

server experiences upon seeing the neural response pattern (prior entropy minus posterior entropy). The

resource constraints under which MI is maximized could be a limit on the number of neurons and a limit

on number of spikes elicited by a stimulus in each neuron or in the entire population. Limiting neurons

and spikes makes sense because each neuron must be developed, accommodated, and maintained in

the brain, each spike comes at a cost in terms of energy [163, 164, 165], and neurons cannot fire at

arbitrarily high rates.

Finding a population of tuning functions that maximizes MI is a difficult optimization problem. Consider

the case of n neurons and an upper limit on the spike rate for each neuron. Optimizing MI will spread

out the neural response patterns so as to fill the n-dimensional response hypercube. We may need to

specify further that we want the tuning curves to be smooth or that we prefer a code that renders the

ideal observer’s posterior concentrated, so as to ensure that the code also performs reasonably in terms

of the ideal observer’s expected squared estimation error. The optimal code will then map the stimulus

to a neural manifold. For a one-dimensional stimulus space, the manifold would snake through the n-

dimensional hypercube forming a space-filling curve [203]. The optimization will trade off the length of

the manifold against how close the manifold comes to itself as it bends and fills the response space. The

length of the manifold is the total FI, which determines the confusability of similar stimuli. How close the

manifold comes to itself determines the confusability of dissimilar stimuli. Both of these determine the

ideal observer’s ability to estimate and discriminate stimuli, and both are reflected in the MI. The tuning

functions that would emerge from the maximization of MI (and the induced representational geometry)

have yet to be fully investigated.
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2.6.2 Fine discrimination

Fine discrimination tasks enable us to establish thresholds and characterize how frequently similar stimuli

are confused. However, they do not reveal how frequently dissimilar stimuli are confused. The perfor-

mance in fine discrimination tasks is captured by the FI (Box 1). As we have seen above, assuming we

know the noise distribution, the FI of each stimulus is determined by the tuning of the neurons. The-

oretically, the FI provides a lower bound on the discrimination threshold for fine discrimination–a result

that holds for both biased [157] and unbiased [166] decoders. When we consider the FI and discrimina-

tion thresholds, we assume that only local distinctions between stimuli matter. This holds approximately

when the neural manifold is smooth at the scale of the noise and never arcs back in on itself to render

very different stimuli confusable (the scenario illustrated in the top row in Fig. 2).

If we assume a minimal clearance that the neural manifold must maintain to itself as it fills the response

space, there is a limit to the length it can achieve. If we are willing to assume that the confusability of

dissimilar stimuli is negligible and that we can express the resource constraints in terms of a limit on the

length of the manifold, then we can characterize the code in terms of its FI. The length of the neural

manifold is proportional to the total FI Jtot (Eq. 16) when the noise is isotropic and stimulus-independent.

An efficient code will utilize the entire length of the manifold. The optimal mapping will depend on the

frequency of the stimuli in natural experience, ensuring that the square root of the Fisher information is

proportional to the stimulus prior [98, 95, 167, 168]. Stimuli that are more frequent in natural experience,

thus, are granted more territory on the neural manifold, resulting in a uniform distribution of the stimuli

on the response manifold. As a consequence, there is a direct relationship between the discrimination

threshold and the stimulus prior [95, 167]: δ(θ) ∝ 1
p(θ) . This relationship quantitatively captures the

intuition that stimuli that appear more frequently should be better encoded, resulting in greater perceptual

sensitivity. The quantitative predictions might explain, for example, the well-established oblique effect in

orientation discrimination [169].

2.7 Geometry determines perceptual sensitivity

We can estimate the ideal observer’s perceptual sensitivity without knowing the tuning curves. Knowing

the representational geometry is sufficient to predict the ideal observer’s performance in binary discrim-

ination and perceptual estimation tasks. As before, we assume that the distances used to define the

geometry have been measured after a transform of the response space that renders the noise isotropic

and stimulus-independent.

2.7.1 Binary discrimination

The performance of an ideal observer in a binary discrimination task is determined by the representa-

tional distance between the two stimuli. This can be construed as a generalization of signal detection

theory [148] from a univariate to a multivariate response. When the two points are close in the repre-
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Figure 3: The relationships among tuning, geometry, Fisher information, mutual information, fine discrimination, and
general discrimination. This graphical model shows the dependencies among tuning (T), geometry (G), Fisher information
(FI), mutual information (MI), general discrimination (GD), and fine discrimination (FD). A directed edge from A to B means that
A is sufficient to determine B, assuming always that we are given a model of the noise. The absence of a directed edge from B
to A means that B is not sufficient to determine A. Note that the total graph (including all directed edges, solid black and dotted
gray) is acyclic, indicating that there are no equivalence relationships in the graph. The skeleton of solid black directed edges
captures the key relationships. The dotted gray directed edges are implied in the solid black directed edges by transitivity.

sentational space, general discrimination reduces to the special case of fine discrimination. We have

seen above that the geometry determines the FI and that the FI, in turn, determines the ideal observer’s

performance at fine discrimination. However, the geometry determines the discriminability of arbitrary

pairs of stimuli.

Beyond pairs of stimuli, the geometry determines how well any dichotomy of the stimuli can be read

out by an ideal observer or, more generally, by any given more restricted linear or nonlinear decoder

that has access to the entire population and is capable of affine transformations [75]. This holds when

the representational distances have been measured after transforming the space to render the noise

isotropic and stimulus-independent.

2.7.2 Perceptual estimation

We saw above how a Bayesian ideal observer might estimate the stimulus parameter θ from a response

pattern across a population of tuned neurons. To compute the ideal observer’s estimation performance,

we needed to know the tuning functions and the noise distribution, which jointly determine p(r|θ). Once

the response space has been transformed to render the noise isotropic and stimulus-independent, how-

ever, the geometry is sufficient to compute the ideal observer’s performance at estimation.

Any two sets of tuning functions that induce the same geometry are related by a sequence of transla-

tions, rotations, and reflections of the ensemble of representational patterns. If the code is altered by

a sequence of such transformations that maps r → r′, the ideal observer needs to update the readout

model (undoing the transformations by an inverse linear transform), but will then obtain the same poste-

rior p′(θ|r′) = p(θ|r) for any given response pattern. This point is elaborated in Supplementary Section

4.1. The geometry, thus, determines the ideal observer’s error distribution. How the error distribution
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depends on the geometry and the stimulus can be simulated. However, a closed-form expression of this

relationship is not currently available.

One may wonder whether knowing the FI suffices to predict the distribution of estimation error. The an-

swer, in general, is no. The FI provides a lower bound on the variance of the error distribution. However,

the error distribution may not be Gaussian, and FI by itself is insufficient to determine the shape of the

error distribution.

3 Reconsidering notable neural codes from the dual perspective

We now illustrate how the proposed framework (Fig.3) illuminates efficient coding, the coding of one-

dimensional, two-dimensional, and higher-dimensional variables, and the effect of noise correlations.

We use theoretical examples that are relevant for understanding the encoding of perceptual and motor

variables, such as contrast, orientation, spatial frequency, speed, and direction. An additional higher-

cognitive example of particular interest is the encoding of spatial environments by grid cells, which we

address in Supplementary Section 4.2. In all these cases, considering the dual perspective of tuning and

geometry gives us a deeper understanding and interesting insights.

3.1 Efficient coding

A prominent and long-standing hypothesis in neuroscience is that a neural system should adapt to the

statistical structure of the sensory data to achieve an efficient code [99, 171]. A code is considered

efficient if it provides much information about the stimulus (high MI) under constraints on the number of

spikes and neurons. The efficient coding hypothesis provides a rationale that may explain why neurons

employ particular tuning functions to represent a variety of sensory and non-sensory variables [99, 101,

103, 105, 106, 172, 107, 173, 174, 175, 176]. Efficient coding has also helped explain human behavior

in psychophysical tasks [152, 95, 96, 167, 170, 177].

The efficient-coding hypothesis enables us to make predictions about the shape of the tuning functions.

However, it is difficult to jointly optimize all tuning functions for a population of neurons to maximize MI or

FI. Past theoretical studies have therefore introduced simplifying assumptions, including the assumption

of unimodal tuning and particular functional forms for the tuning curves. Consider the challenge of

encoding a cyclic stimulus variable, such as orientation, when the prior is uniform. In this context, it is

often further assumed that the tuning functions are homogeneous: Each unimodal tuning function has

the same shape and the neurons’ preferred stimuli are uniformly distributed. An interesting question is

how such a code should be adjusted when the prior is non-uniform.

Intuitively, an efficient code should allocate more resources to more frequent stimuli (e.g. more neurons,

spikes, or volume within the multivariate response space or neural response manifold). An optimal

allocation can be achieved by nonlinear warping of the stimulus parameterization, so as to render the
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Figure 4: Example applications. (a-e) Efficient coding. (a) A coding configuration with homogeneous, von Mises tuning
curves. Panels (b-e) illustrate four efficient coding schemes for a stimulus prior that is smooth and peaks at π (most frequent
stimuli shown as purple dots). (b) Nonlinear warping of the stimulus space yields asymmetric tuning curves, conserving the
manifold while redistributing the stimuli within it, so as to optimally allocate the FI according to the prior [108]. (c) Increasing
the gain of neurons preferring stimuli close to the peak of the prior, without altering the shape of their tuning, achieves an
identical reallocation of the FI, but manifold geometry and MI differ from (b). (d) The gain is scaled up for neurons that prefer
stimuli closer to the peak of the prior (π). In addition, their tuning is sharpened, so as to conserve the area under each tuning
curve [170]. (e) Sharpening of the tuning of neurons preferring stimuli with higher prior density (without gain adjustment) can
achieve a similar reallocation of the FI [152]. (f-k) Alternative codes for a scalar, non-cyclic stimulus variable. (f) A single-neuron
code with monotonic tuning curve and the corresponding neural manifold. (g) Similar to (f) but for a pair of neurons with shifted
tuning curves. (h) Encoding a scalar with a population of bell-shaped tuning curves. (i) Like (h), but tuning curves don’t tile out
the extremes, so extreme stimuli elicit no response. (j) Tuning curves with preferred stimuli uniformly and completely covering
the entire stimulus domain. (k) A rotated and translated version of the code in (j). The codes in (j) and (k) have different tuning
curves, but identical geometry, FI, and MI. The representational distance grows monotonically with stimulus disparity in codes
(f) and (g), but not in codes (h-k). (l-n) A neural population that jointly encodes stimulus orientation and contrast. (l) Each
neuron exhibits joint tuning for orientation and contrast. (m) The representational dissimilarity matrix (RDM) for a set of 180
stimuli (60 orientations × 3 contrast levels). (n) MDS embedding visualizes the geometry of the joint coding scheme. (o, p)
Geometry and noise correlation. When the two stimulus representations differ along high-variance dimensions of the noise,
the stimuli are less discriminable than when they differ along low-variance dimensions of the noise. (o) For a linear manifold,
the effect of noise correlation on local discriminability (example d(A,A′)) is the same across the stimulus space. The same
goes for global discriminability (example d(A,B)). (p) For a curved manifold, the effect of noise correlation on discriminability
(both local and global) depends on the stimulus values because the signal orientation varies relative to the noise orientation.
Artificially shuffling trials independently for each neuron increases decoding accuracy when the representational difference
vector is oriented along a high-variance dimension of the noise (panel (o) for d(A,A′) and d(A,B), panel (p) for d(A,A′)), and
decreases decoding accuracy when the representational difference vector is oriented along a low-variance dimension of the
noise (panel (p) for d(A,B)).



20

prior uniform for the reparameterized stimuli. The optimal tuning functions will then be homogeneous

for the reparameterized stimuli, and warped for the original parameterization [95]. The warping renders

the shape of the tuning asymmetric and the density of tuning peaks nonuniform, but the optimal code

has constant gain (i.e., all neurons have the same peak firing rate) [95]. Instead of warping (nonlinear

stimulus reparameterization), we can vary the width of symmetric (e.g., von Mises) tuning functions

across neurons [152] or the gain [96], or both [170].

Considering how these different adjustments of the tuning functions affect the representational geometry

reveals their effect on FI, MI, and perceptual discriminability. For each coding scheme, Fig. 4 shows

the tuning curves, the geometry (RDM, MDS), and the FI profile. Interestingly, compared to the ho-

mogeneous population, warping the tuning curves by a nonlinear stimulus reparameterization does not

change the neural manifold. Instead, warping moves the points along the manifold, so as to allocate the

FI according to the prior. Varying the tuning width and gain both change the shape of the neural manifold

relative to a neural population with homogeneous tuning. The adaptive-gain model (Fig. 4d, [170]) can

lead to a prominent expansion of the geometry near the peak of the prior, where the sharpening of the

tuning curves and the increase of the gain coincide (preserving the area under each curve). Even subtle

sharpening and gain increase are very potent in combination, and can enhance FI and MI substantially.

The four schemes of heterogeneous tuning (warping, varying gain, varying width, varying both) all in-

crease the FI around the peak of the prior (Fig. 4b-e, purple dots more widely spaced in MDS). Note

that the warped code and the code with varying gain have identical FI profiles here. However, the shape

of their neural manifolds is distinct, as reflected in the representational geometry. The geometry reveals

different predictions that the codes make about the perceptual discriminability under high noise. For

example, the most frequent orientation will be especially discriminable from the opposite orientation for

the code with varying gain, but not for the warping code (purple dots in MDS in Fig. 4b, c).

3.2 Encoding a non-cyclic scalar variable

The examples considered so far concerned encoding of cyclic variables. Of course, the brain is capable

of representing non-cyclic scalar variables, such as contrast [101, 14], spatial frequency [17, 178], and

the speed of a moving object [22, 179]. In principle, these variables could be represented either by

a single neuron or multiple neurons with monotonic tuning curves (as in the contrast code of a fly H1

neuron [101]) or by a population of neurons with bell-shaped tuning curves (as in the spatial-frequency

code in V1 [17, 178] and the speed code in MT [22, 179]).

What are the implications of these various coding schemes for the representational geometry? First,

if a variable is represented using a single neuron with monotonic tuning, the neural manifold is simply

an interval on a straight line, bounded by the range of the firing rate (Fig. 4f). Varying the shape of the

tuning curve will not change the manifold, rather it will redistribute the points by moving them along the

manifold. With two neurons, each exhibiting a monotonic tuning curve, the representation will be a curved

manifold in general (Fig. 4g). The curvature depends on the overlap of the stimulus domains in which
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the two neurons are responsive. When all tuning curves are monotonic, the representational distance

grows monotonically as we move away from any stimulus on the manifold. Consider the scenario where

the tuning curves are monotonic, smooth, and homogeneous (i.e., tuning curves are all of the same

shape, e.g. sigmoidal, with a uniform distribution of thresholds). As we move away from a stimulus,

the representational distance grows linearly at first, within the range matching the transition width of the

tuning curves. However, as we move further in stimulus space and more and more neurons switch on

(or off), the representational distance grows as the square root of the stimulus disparity (as the disparity

is proportional to the number of additionally activated or deactivated neurons).

Now consider a population of bell-shaped tuning curves encoding a non-cyclic scalar variable. The

resulting neural manifold strongly deviates from linearity (Fig. 4h-j). Small stimulus disparities (relative to

the tuning width) will again be proportionally reflected in representational distances. However, two stimuli

with large disparity will be represented by non-overlapping neural populations, so further increasing the

stimulus disparity will not further increase the representational distance. If the tuning curves tile the

entire domain homogeneously, the representational distance will never drop as we move away from a

stimulus on the manifold. If responses peter out at the extremes of the stimulus domain, however, the

manifold’s extremes will converge in the representational space (Fig. 4h-j). This suggests an intriguing

perceptual hypothesis: that extrema of a stimulus scale are perceptually similar [180]. Bell-shaped tuning

and monotonic tuning, thus, induce fundamentally different representational geometries. Each geometry

reveals how discriminable the code renders different pairs of stimuli, with monotonic tuning emphasizing

the contrast between the extremes.

If we continually change the stimulus, sweeping through its scalar parameter space, the neural response

pattern follows a trajectory that traces out the manifold. Equivalently, we may consider the case where

the non-cyclic scalar variable encoded is time. Each tuning curve then effectively describes the time

course of one neuron’s firing rate. A set of neurons with bell-shaped tuning will be driven in sequence,

waxing and waning in overlapping windows of time [181]. Sequential activation of neurons with sufficient

temporal overlap can yield a rotation-like trajectory (Fig. 4h-j, [182]).

A perfectly circular trajectory traversed at constant rate requires (1) that each neuron’s activity oscillate

sinusoidally at the frequency of revolution and (2) that the sum across neurons of each neuron’s squared

deviation from its mean activity be constant over time (and equal to the squared radius of the circle).

These two properties are both necessary for a perfectly circular trajectory traversed at constant rate, and

jointly sufficient. At a minimum, such exact rotational dynamics requires two neurons (with 90◦ phase

offset between their sinusoidal tuning curves). It can also be achieved with three or more neurons of

varying amplitudes and phases. In particular, a large neural population with sinusoidal tuning of the same

frequency will exhibit circular dynamics when the phases are uniformly distributed and the amplitudes

constant.

Rotation-like dynamics has been reported in motor cortex of macaque monkeys when performing reach-

ing tasks [53, 183]. Neurons ramping up their activity at different latencies will create a curved repre-

sentational trajectory. Rotation-like dynamics obtains when neurons also ramp down again, waxing and
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waning at similar frequency and peaking in sequence at a range of phases (Fig. 4k, which illustrates

rotational dynamics identical to that in panel j [182]).

3.3 Joint tuning of multiple stimulus attributes

Neurons can represent multiple stimulus attributes simultaneously. In primates, for example, many neu-

rons in primary visual cortex (V1) are selective for stimulus orientation, contrast, and spatial frequency

simultaneously [193, 14, 194]; neurons in area MT are jointly tuned to speed and direction of visual

motion [22].

We illustrate the implications of joint tuning on the representational geometry using a neural population

jointly tuned to orientation and contrast. We assume that individual neurons exhibit von Mises (i.e. circu-

lar Gaussian) tuning to orientation for every contrast level, and the gain (but not the preferred orientation)

depends on the contrast. This simple model is consistent with previous experimental studies in macaque

V1 [195, 14]. We simulated representations of stimuli of three contrast levels (low, medium, high) and

60 equally-spaced orientations, resulting in 60× 3 = 180 representational states. We performed MDS to

visualize the geometry (Fig. 4l-n). For each contrast level, the neural manifold encoding the orientation

approximates a circle (Fig. 4n). The roughly circular geometry results from the relatively wide tuning

curves (cf. Fig. 1a,b). Changing the contrast scales the orientation manifold uniformly about the origin

of the response space. The joint manifold for orientation and contrast therefore has the geometry of a

cone. Because high contrast yields a larger circle, the total FI for orientation grows with contrast under

this multiplicative gain model.

Many other forms of joint tuning could be considered. One interesting case is the representation of

composite stimuli, such as compound gratings, by a neural population. Experimentally, it is well estab-

lished that the components of a complex visual stimulus interact with each other. These interactions

have been modeled by various forms of gain control [196, 197, 198, 199, 200, 201, 44, 202, 41, 46],

such as surround suppression and cross-orientation suppression. Recent work investigated how visual

masking affects the representational geometry, leading to the novel insight that the effect of masking can

be captured by an affine transformation of the geometry [203, 204, 84].

3.4 Geometry and noise correlation

Noise correlation (NC) affects the discriminability of stimuli in the neural code. This issue has received

much attention in systems and computational neuroscience during the past two decades [125, 131,

137, 205, 138, 262]. The central insight is that the discriminability of two stimuli depends on the overlap

of their response distributions (p(r|θ1), p(r|θ2)). When the noise is correlated (thus not isotropic), the

discriminability of two stimuli depends not only on the strength of the signal (i.e. the norm of the difference

vector between the two response pattern means), but also on the orientation of signal (i.e. the orientation

of the difference vector) relative to the noise distribution [137, 138]. When we consider fine discrimination,
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the FI depends on the local orientation of the neural manifold relative to the multivariate distribution of the

noise. For fine and coarse discrimination, when the signal is oriented along axes of high noise variance,

NC will reduce the discriminability of stimuli (Fig. 4o, stimuli A and A’). When the signal is oriented along

axes of low noise variance, NC will increase the discriminability of stimuli (Fig. 4p, stimuli A and B).

When we ask how NC affects stimulus discriminability, we are comparing the actual code to an imag-

inary alternative code in which the noise distribution for each neuron is the same, but the noise is not

correlated between neurons. In data analysis, this alternative code without NC can be simulated by shuf-

fling the trials independently for each of a set of simultaneously recorded neurons [137]. Shuffling will

improve linear decoding accuracy when the signal and noise axes are aligned, and it will hurt decoding

accuracy when signal and noise axes are misaligned. In the former case shuffling helps decoding by

providing access to information from multiple trials. In the latter case shuffling hurts decoding by remov-

ing information about simultaneous activity of different neurons, which a linear decoder would have used

to cancel the noise.

The geometrical perspective gives us a simpler understanding of this issue. Rather than considering

an imaginary alternative code in which the response patterns are identical, but the noise has been

artificially decorrelated, we linearly transform the response space (the signal and the noise together ),

so as to whiten the noise [206]. Such a noise-whitening linear transform conserves linear decodability,

FI, and MI, and renders the representational distances monotonically related to the discriminabilities of

the stimuli (Fig. 4o, p). Consider a two-neuron code in which the original neural manifold is a circle,

and there is positive NC between the two neurons (Fig. 4p). How does NC affect the discriminability of

stimuli A and A’? Because the NC is aligned with the signal (response pattern A minus response pattern

A’), the discriminability is smaller than for the shuffled code [137] (Fig 4p, right panel). By contrast, the

discriminability of stimuli A and B is larger than for the shuffled code because the NC is orthogonal to the

signal in this case. Considering the representational geometry (after whitening of the noise, Fig. 4o, p,

left panels) clarifies these effects of the NC. Stimuli separated orthogonally to the axis of highest noise

variance have greater representational distances, revealing their greater discriminability.

NC renders some directions in the response space more noisy than others. To maximize the FI, the neu-

ral manifold should flow along directions of low noise variance. A recent study found evidence consistent

with this idea in mouse V1 [207]. The worst-case scenario is that the manifold is aligned with the noise

everywhere. The displacements caused by noise, then, look just like signal and confound the encoding

as if the noise was already present in the input. In this scenario, the NC for a pair of neurons is pro-

portional to the product of the derivatives of their tuning curves at the stimulus value. Since information

already missing from the input cannot possibly be recovered from the code, such so-called differential

noise correlations limit the FI that the code can achieve, no matter how many neurons we allow [136].

There is some evidence that differential noise correlations are present in mouse V1 [207, 261] and frontal

cortex [208, 209].

The perspective of representational geometry suggests that we should consider not just the orienta-

tion of the manifold (the tangent), but also all other directions along which stimuli are separated (the
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cords) (Fig 4p). The local orientation of the manifold relative to the correlated noise affects the fine

discriminability (as measured by the FI). The orientation of cords relative to the correlated noise affects

the discriminability of stimuli represented in different parts of the manifold (and the overall MI). Neural

manifolds tend to curve, so the effect of NC on local and coarse discrimination can be different and

even opposite [123]. When the response space is high-dimensional [145], in particular, we may need to

consider the full geometry of the neural manifold to understand the effect of NC.

4 Current challenges

Brain computation serves to extract and exploit behaviorally relevant information. The dual perspective

of neural tuning and representational geometry provides a fuller picture of neural codes and how the

encoded information and its format changes across spatial and temporal stages of processing.

We considered the encoding of uni- and multidimensional variables from both perspectives. The tuning

reveals how individual neurons encode information. The geometry abstracts from the particular set of

tuning functions that encode the information. It summarizes the content and format of the code from

the perspective of a downstream decoder that has access to the entire population and is capable of an

affine transform [75]. Whether the geometry is all that matters for computation is an important theoretical

and empirical question. We have seen that two population codes with distinct sets of tuning functions

can induce the same representational geometry, thus encoding the same information in a similar format.

Why then might a brain develop one set of tuning functions rather than another? The particular tuning

curves chosen to implement the representational geometry might matter for the following reasons:

• Hypercubical range: Each neuron has a limited range of firing rates from 0 to some maximum

rate, yielding a hypercubical population response space. The optimal neural manifold geometry

may fit into the hypercubical response space in some orientations, but not in others.

• Metabolic cost: Neural systems may prefer codes with lower metabolic cost [210]. This would

favor tuning functions with lower expected total number of spikes [105] (e.g., Fig. 1b over Fig. 1d),

which nestle the manifold into the corner at the origin of the hypercubical response space.

• Encoding computations: Neural tuning results from feedforward and recurrent computations. The

encoding may be easier to compute or to learn for certain tuning functions. For instance, optimizing

a recurrent neural network to track the animal’s head orientation by angular integration has been

shown to yield bell-shaped head-direction tuning [211].

• Decoding computations: Downstream regions reading the code to generate a percept or motor

response may be better served by certain sets of tuning functions. For example, if readout neurons

can only read a portion of the population, they will benefit from concentration of the information

they need in that portion of the code [75].
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An exciting approach for future studies is to postulate a functional objective and a set of biological con-

straints, and to predict, by optimization, the representational geometry and/or its implementation in a set

of tuning functions. This approach can enable us to address why the brain employs certain geometries

and why it implements these geometries in particular tuning functions.

An important technical and theoretical issue is how to best quantify the representational geometry. If

we transform the responses such that the noise is isotropic, Gaussian, and stimulus-independent, the

Euclidean distance will reflect the discriminability for each pair of stimuli. Current studies use linear

transforms and variance stabilization to render the noise approximately isotropic (Box 1). However,

these transformations do not solve the problem in general. It is presently unclear whether it is always

possible to make the noise isotropic by transforming the responses and how the transformation should

be defined, in particular when the neurons have complex structured noise.

If no transform can be found that renders the noise isotropic, Gaussian, and stimulus-independent, one

way forward is to give up on Euclidean geometry. We may simply define the dissimilarity for each pair

of stimuli as the discriminability of the two stimuli, taking into account the particular noise distributions,

which may differ between stimuli [264]. It is an interesting question how discriminability should be defined

in this context. One could define it as the divergence between the two response distributions associated

with a pair of stimuli (e.g., the Bhattacharyya distance [265] or the symmetrized Kullback-Leibler diver-

gence [266]), or as the accuracy of the Bayes-optimal decoder or of some restricted class of readout

mechanisms (e.g., linear decoders).

Manifold learning techniques may also help improve the characterization of the representational geom-

etry under more relaxed assumptions about the noise [212, 213]. Recently, there has been a surge

of interest in characterizing neural response manifolds without necessarily modeling the tuning of re-

sponses to properties of the stimulus or experimental condition [214, 215, 216, 217, 54, 218, 219, 220].

Some of the methods proposed aim to characterize the topology, rather than the geometry of the mani-

fold. Unsupervised methods can recover the topology of the set of neural population activity patterns

that occur during task performance, wakeful rest, or sleep. In order to characterize the topology, these

methods exploit neighbor relationships in the neural response space (e.g., [221, 222, 223]) and in some

cases also in time (e.g.,[224]) as the animal’s brain traverses its state space.

A promising approach is to estimate the geometry of the high-dimensional neural responses by lever-

aging a low-dimensional latent space [224, 225]. Such methods may enable us to recover the repre-

sentational geometry in the latent space, such that the overlap of stimulus-independent isotropic Gaus-

sian noise distributions in latent space reflects the overlap of the response distributions in the high-

dimensional neural response space. The distances in latent space would then be monotonically related

to the response-pattern discriminabilities.

The representational geometry likely reflects the statistical structure of the world and the behavioral impli-

cations of the represented content. Our examples assumed a uniform prior distribution over the stimulus

variable. However, the brain’s inferences are known to account for non-uniform prior distributions in per-

ception and cognition [149, 226, 227, 228, 229, 230, 151, 152, 96]. Decisions and control, similarly,
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require the weighing of risks and rewards [231]. How prior expectations and reward implications are re-

flected in representational geometries is an exciting direction for future research. A working hypothesis is

that detailed representational geometries arise from a genetically determined blueprint through learning,

and that they come to reflect the statistical regularities of the environment, which might be learned even

without supervision or reinforcement [232, 233, 234, 235, 236], and ultimately the behavioral demands

and the reward structure of the environment [233].

Neural representational geometries may relate to conceptual spaces [237], an abstraction used in cogni-

tive science to capture the structure of mental models [238, 239, 240, 241, 242, 233, 243, 244, 245, 246].

To quantitatively reconstruct conceptual spaces, researchers have used multidimensional scaling based

on generalization behavior and similarity judgements [241, 247, 248, 249, 250, 251, 246, 245, 252, 253,

254]. Neural and cognitive representational spaces should not be naively equated, but it is possible that

they are closely related [255, 256]. Understanding their relationship in particular domains would help

connect cognitive science to neuroscience.

Most studies of neural representation have focused on either tuning or geometry. In this paper, we

clarified the relationship between these two perspectives. Some recent studies consider both tuning and

geometry [257, 143, 144, 73, 258, 204, 84, 145, 259, 260, 220, 263]. We hope this trend continues in the

experimental literature and will be complemented by theoretical work toward a unified dual perspective

on neural codes.
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Figure 5: Encoding 1-d location with grid cells. (a) A grid module for a single scale. (b) Two grid modules for two scales
with a scale ratio of 2. (c) Two grid modules with a scale ratio of 3. (d) Three grid modules with scales [2, 5.5, 8.3].

Supplementary Information

4.1 Rotations, translations, and reflections conserve geometry and information content

Assume that p(r|θ), the probability of response pattern r given stimulus θ, follows an isotropic multivariate Gaussian
distribution N (f(θ), In). For a particular response r, the likelihood function can be written as

L(θ|r) ∝ e− 1
2‖r−f(θ)‖2 (18)

Applying an arbitrary rotation using a rotation matrix A would lead to a new representation N (A · f(θ), In) with
the same geometry. Because the noise is isotropic the rotation of the tuning curves rigidly rotates the entire joint
probability function p(θ, r). For each original response pattern r generated by the original code, there is a new
response pattern r′ = A · r that is equally probable. The likelihood function for the transformed code and response
pattern can be expressed as

L(θ|r′) ∝ e− 1
2‖A·(r−f(θ))‖2 = e−

1
2‖r−f(θ)‖2 (19)

For every value of θ, thus, L(θ|r′) = L(θ|r). This conservation of the likelihood function holds not just for rotations,
but also for translations and reflections: all transformations that conserve the geometry. Because the prior is also
the same, these transformations have no influence on the performance of a Bayesian ideal observer. Choosing a
different code with the same geometry yields the same estimation error distribution.
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4.2 An additional coding example: grid cells

How can a population of neurons encode a position in an extended (and potentially unbounded) 1D or 2D space,
such as the location of a rat in a corridor or 2D environment? For a finite environment, monotonic tuning functions
could encode the coordinates. However, what if the rat keeps running once each neuron’s activity has either
saturated or gone to zero? It seems useful for neurons encoding the position in a large space to come on and
off periodically. This principle is familiar from the way we write numbers (with ten digits advanced in a cycle) and
from the Fourier transform. In both cases, we need multiple scales (digits of different significance and Fourier
components of different frequencies) to disambiguate the code.

An encoding of 2D space is provided by grid cells. Originally discovered in rats [29, 30] and later in humans and
other animal species [184, 185, 186, 187, 188, 189, 190], grid cells provide a code of 2D position. A given grid cell
will fire at locations clustered around the vertices of a triangular lattice over the environment. Different cells will
fire around the vertices of triangular lattices of different phases and spatial scales [30, 191], collectively forming a
multiscale code for location. To illustrate the representational geometry resulting from multiscale, periodic tuning
functions, let us consider, for simplicity, a code for a 1D environment, such as a corridor (Fig. 5).

We assume that each grid cell has a periodic tuning function, and different grid cells can have different phases
and spatial scales. A population of grid cells with the same scale, where each neuron encodes a different phase,
results in a cyclic representational geometry [192] (Fig. 5a). As the animal keeps moving in the same direction,
the population activity pattern traverses this cyclic path over and over. We can add another population, a second
module, to encode a second scale. Two modules for different scales already result in a complex geometry that
forms a cycle whose period is the least common multiple of the periods of the two modules (Fig. 5b, c). The
representational geometry is sensitive to the scale ratio between the different modules (compare Fig. 5 b and c,
which have scale ratios of 2 and 3, respectively). For these codes, the representational distance is a smooth (albeit
not a monotonic) function of the distance between two locations.

Fig. 5d shows an example with 3 grid modules. The representation is highly distorted, and the representational
distance is no longer a smooth function of the distance between two locations. Interestingly, most pairs of the
points are well separated (Fig. 5d, right), unlike the previous cases. This is due to the greater spread (higher
entropy) of the response patterns (Fig. 5d, third column), which increases the informational capacity of the code.
As neighboring points along the manifold (corresponding to neighboring locations along the corridor) become
more distinct in the representation, the FI increases. As pairs of points, in general, become more distinct, the MI
increases. Maximizing the encoding capacity, thus will require spreading out the manifold to increase its length,
corresponding to the total FI and, in case we desire high MI, to avoid its coming close to itself. There is likely a
tradeoff between maximizing some notion of encoding capacity (e.g., FI or MI) and maintaining a simple (e.g., near
monotonic) relationship between environmental and representational distance.
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