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Abstract
Scientists debate where, when, and how different visual, orthographic, lexical, and semantic features are
involved in visual word recognition. In this study, we investigate intracranial neurophysiology data from
151 patients engaged in reading single words. Using representational similarity analysis, we characterize
the neural representation of a hierarchy of word features across the entire cerebral cortex. We �nd
evidence of both feed-forward and feedback processing, with early representation of visual and lexical
information in lingual gyrus followed by lexical representation in fusiform gyrus and semantic sensitivity
in inferior frontal gyrus, with letter representation emerging later in fusiform gyrus. Furthermore, we
observed a variety of anatomically heterogeneous temporal response shapes, and these functional
populations had signi�cant feature sensitivity. Taken together, our results demonstrate the early in�uence
of lexical, phonological, and semantic features in visual word recognition and reveal feed-forward, feed-
back, and anatomically distributed processing mechanisms that contribute to visual word recognition.

Introduction
Visual word recognition, the process of mapping the written form of an individual word to its underlying
linguistic item, is a building block of �uent reading and critical to successful written communication.
Although reading has been a major topic of research in human neuroimaging studies for decades, the
neural mechanisms of visual word recognition are not yet fully understood. Behavioral studies have
demonstrated that many features of a word may be relevant to its recognition, including its low-level
visual contours; the identity of its letters in an alphabetic language (orthography); knowledge of how it
would be pronounced aloud (phonology); information about the word’s frequency of occurrence, similar
words, and composition (lexical features); and its semantic meaning 1. Of particular debate is the extent
to which the process is feed-forward and sequential, �rst decoding visual features into a speci�c written
item before processing higher-order features 2–6, or connectionist, processing visual, lexical, semantic,
and other information concurrently to reach a decision about word identity 7,8.

A majority of visual word recognition studies to date have used noninvasive neuroimaging methods in
humans to identify when and where different word features are represented in the brain. Studies using the
high spatial resolution of fMRI and PET have implicated dorsal regions including occipital lobe,
supramarginal gyrus, angular gyrus, and pars opercularis in inferior frontal cortex, and ventral regions
including left fusiform gyrus, middle and anterior temporal lobe, and pars triangularis in inferior frontal
cortex 8,9. Of particular debate is the role of left fusiform gyrus, which shows selectivity to words and
pseudowords over false fonts and consonant strings 2,10−13. It has been hypothesized to contain an
abstract representation of visual word identity and named “visual word form area” (VWFA) 2,14−16. Some
studies suggest that it decodes this identity in bottom-up fashion from orthography alone 2–6,16−20.
However, mounting evidence suggests it receives additional top-down linguistic input as well 7,21−23.
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Meanwhile, EEG and MEG studies have produced some evidence of the putative timecourse of visual
word recognition. The event-related potentials N150 in EEG and M170 in MEG are sensitive to
orthographic stimuli over symbols in normal readers 24–26 but not in dyslexic children 27–30, while N250 is
modulated by orthographic similarity and the phonological content of letters 24,31−34, and N400 is
sensitive to semantics 35.

Although the literature paints a detailed picture of visual word recognition in either anatomical space or
over time, the lack of simultaneous spatiotemporal resolution has left the �ow of information through the
brain subject to debate. Furthermore, individual studies rarely manipulate or explore a full hierarchy of
word features (visual, phonological, lexical, semantic) at the same time, so theories of how these
hierarchical features interact are often patched together from separate experiments.

To address these gaps, high simultaneous spatial and temporal resolution is required. Intracranial
neurophysiology provides a direct measure of neural activity at this resolution by recording from
electrodes implanted in the awake behaving human brain, either on the surface under the dura
(electrocorticography, ECoG) or through the depths of the brain (stereotactic electroencephalography,
sEEG); together these techniques are referred to as intracranial electroencephalography (iEEG). Existing
iEEG studies of reading have shown gamma band activation to visually presented words 10,11,19,36−38 and
have begun to exploit its high spatiotemporal resolution to investigate interactions between brain
areas39,40. However, small patient populations and sparse anatomical coverage are a major limitation of
most intracranial neurophysiology studies, as access to patients is limited and electrode placement is
determined by clinical rather than research factors.

In this study, we address these limitations by investigating a large dataset of human intracranial
recordings of 151 patients with extensive surface and depth coverage across occipital, temporal, parietal,
and frontal lobes as they read 300 individual words. Furthermore, we simultaneously investigate the
encoding of visual, phonological, lexical, and semantic word features, enabling direct comparison of
these features in a single experiment. With these approaches, we propose to characterize the brain
network underlying visual word recognition at high resolution to clarify the �ow of information through
the brain.

Results
We recorded intracranial electroencephalography (iEEG) from 151 subjects as they engaged in a free
recall task designed to study memory. During the encoding phase of the task, subjects viewed twenty-�ve
12-word lists for a total of 300 unique words. Each word was presented for 1600 ms, followed by a
jittered interstimulus interval (ISI) between 750-1000 ms (1A). After each list, the subjects engaged in a
distractor math task for 20 seconds, then had 30 seconds for free recall. All 151 subjects included in this
study completed the entire experiment at least once. We excluded electrodes that showed pathological
activity or were located outside of occipital, temporal, parietal, and frontal lobes, leaving 10,949
electrodes considered for analysis. A map of electrode coverage (1B, subject coverage S1A) shows broad
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coverage across all areas, with up to 45 subjects and 80 electrodes per 1cm3 in high-density areas such
as inferior temporal lobe.  

To investigate the neural response during visual word recognition, we �rst extracted the high gamma
power (70-150Hz) of each electrode and z-scored these responses to baseline (when the screen was
blank). To test task responsiveness, we ran a t-test between high gamma activity during word
presentation and a blank screen. Electrodes with p<1e-8 were considered “task responsive” and kept for
further analysis; 2775/10949 electrodes (25.34%) �t this criterion (S1B/C). We then calculated the
average magnitude t-value and percentage of electrodes above threshold by anatomical subregion, where
areas with at least 50 task-responsive electrodes were considered for further analysis. We observed task-
responsive electrodes across all four lobes, with the strongest average responses and highest proportion
of electrodes over threshold in occipital lobe. Cuneus had the highest percentage of task-responsive
electrodes (72.55±4.44%), followed by lingual gyrus (70.11±4.94%) and middle occipital gyrus
(69.86±3.81%); these regions are signi�cantly higher than all others (S1E/F, unpaired t-test with FDR
correction q = 0.05), but not signi�cantly different from each other. Our observations that a large
percentage of occipital lobe electrodes are task-responsive while task response is sparse across temporal,
parietal, and frontal lobes are consistent with a previous memory study using an overlapping portion of
this dataset41. Middle occipital gyrus had the highest average t-value (39.37±3.97), followed by cuneus
(36.20±4.44) and lingual gyrus (21.48±2.46; 1C/D). Next-highest was fusiform gyrus (10.70±0.86),
followed by additional parietal, frontal, and temporal areas with signi�cantly lower average t-values (S1D,
unpaired t-test with FDR correction q = 0.05). 

Having identi�ed these 2775 task-responsive electrodes, we investigated their average response to word
presentation. A vido (SV1) of the average response of each electrode projected on the cortical surface
shows activity beginning in occipital areas before the rest of the brain. Notably, our task-responsive
electrodes include both those that show increased high gamma power to word presentation, referred to as
“enhanced” responses (red values), and those that show decreased high gamma power to word
presentation, referred to as “suppressed” responses (blue values). The video shows primarily enhanced
responses in occipital lobe, with mixed responses in the rest of cortex. 

Quantitative analysis of electrode latency (measured as the point that the average word response reached
its absolute maximum) corroborated our observation that occipital subregions respond fastest; middle
occipital gyrus peaks �rst (243.27±17.34ms), followed by cuneus (304.72±26.56ms), fusiform gyrus
(352.15±20.95) and lingual gyrus (433.46±51.67ms). Additional temporal, parietal, and frontal regions
respond signi�cantly later (S2B, unpaired t-test with FDR correction q = 0.05), with average latencies
between 500-750 ms. This sequence of latencies, progressing roughly from posterior to anterior
subregions, is again consistent with a previous memory study using an overlapping portion of this
dataset41. We also quanti�ed the percentage of electrodes with enhanced versus suppressed responses
in each anatomical area. Lingual gyrus (94.23±3.26%), middle occipital gyrus (92.86±2.61%), and
fusiform gyrus (92.36±2.22%) skewed overwhelmingly to enhanced responses (S2C, unpaired t-test with
FDR correction q = 0.05).  Cuneus, parietal, and temporal subregions follow, with frontal regions lowest.
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Superior frontal gyrus is the only subregion favoring suppression at 35.27±3.33% enhanced, signi�cantly
lower than all others (3C/D). 

While latency and peak analyses quantify major features of each electrode’s response, they do not fully
describe the shape of the response over time. To fully exploit the high resolution of iEEG, we wanted to
qualitatively assess the diversity of neural responses beyond their sign and latency. To do so, we
conducted agglomerative hierarchical clustering of our task-responsive electrodes’ average word
responses. This algorithm employs a bottom-up, data-driven approach, building a hierarchy by initially
considering each electrode to be its own cluster, then progressively merging clusters until all observations
have been united. We observe nine clusters with a remarkable diversity of temporal response shapes,
shown in a raster of all electrodes sorted by cluster (3A), as well as the average response of each cluster
(3B). Among this rich variety of temporal response shapes, we see onset responses, responses sustained
for the duration of the word, and transient responses at a variety of latencies. We further investigated the
distribution of response shapes within each anatomical area (Fig. 3C) and found that occipital responses
are concentrated in the early, enhanced clusters 1 and 2, and 44.76% of fusiform gyrus electrodes belong
to cluster 2. Additional temporal, parietal, and frontal subregions are heterogeneous across response
shapes, with no more than 35% of electrodes belonging to a single cluster (3C, S3B). Further, each cluster
is anatomically heterogeneous, spread across many subregions (S3A). Because clinical factors dictate
electrode coverage, no single subject has electrodes in all subregions. However, we do observe
heterogeneous response shapes across regions within individuals as well (S3C-F).

Previous iEEG studies have demonstrated language-related stimulus encoding, including representation
of the phonetic features of speech in superior temporal gyrus 42 and of individual letters in occipital
cortex 43. To investigate how the words were encoded in different brain areas at different time points in
our data, we used representational similarity analysis (RSA 44) to interrogate stimulus representation in
different anatomical areas over time. First, we collected a hierarchy of feature information about each
word (see methods), including its bitmap (the image presented on screen), letters (a count of how many
times each letter occurred in each word), phonemes (a count of how many times each phoneme occurred
in each word), number of close orthographic neighbors (the number of words that can be created by
changing a single letter, also known as orthographic neighborhood density), word frequency (how often it
occurs in the English language), and semantic content (represented by the word2vec pre-trained word
embedding) (4A-F). These features were selected to span visual, phonological, lexical, and semantic
domains, and to minimize inter-feature correlations (S4). For each feature, we calculated the pairwise
distances between stimuli to create a feature representational dissimilarity matrix (RDM). We also
calculated neural RDMs across time for each anatomical area, taking pairwise distances across all task-
sensitive electrode responses at each timestep. Lastly, we calculated the Spearman correlation between
each neural RDM and each feature RDM; signi�cant correlations suggest that the neural response
contains information about the corresponding feature. Results are shown in Fig 4G-L; signi�cant values
are outlined in black (permutation with FDR correction q = 0.05).  
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This analysis allows us to evaluate feature sensitivity across the population of each brain area with high
temporal resolution. Signi�cant processing of the bitmap begins in lingual gyrus at 40 ms and is quickly
followed by activation of orthographic neighborhood at 80 ms, earlier than previously reported (150 ms
45). The next signi�cant sensitivity to emerge is to word frequency at 120 ms in fusiform gyrus, in the
same range as previously seen in ERPs 46–48, representing an early in�uence of lexical information. Next,
semantic sensitivity begins in inferior frontal gyrus at 240 ms, later than the earliest reports of 160 ms 48–

50, but compatible with the hypothesis that M250 could be an underlying component of the semantically-
sensitive N400 51. From 280-360 ms, frequency information cascades through precentral, inferior frontal,
and postcentral gyri (areas previously implicated in frequency processing 22) while phoneme and letter
information emerge in fusiform gyrus. After 400 ms, we observe a few distinct stages of processing: 1)
late activation of low-level and orthographic visual features in middle occipital gyrus from 400-550 ms; 2)
semantic representation in frontal lobe and middle temporal gyrus from 600-1000 ms; and 3) along the
lateral sulcus, early frequency sensitivity is followed by letter, neighborhood, and bitmap information in
postcentral gyrus, and by letter and phoneme information in precentral gyrus. This analysis provides a
detailed account of feature encoding across anatomical areas in time. Notably, RSA allows us to
interrogate the time course of feature sensitivity directly rather than relying on the latency of the high
gamma response. For example, the average latency in fusiform gyrus is ~350 ms, but our results show
that feature encoding begins much earlier for word frequency at ~120 ms. 

Having observed a wide variety of temporal response shapes in our clustering analysis, we hypothesized
that they could be functionally relevant to stimulus encoding. To test this hypothesis, we repeated our
RSA analysis, this time segmenting electrode populations by their temporal response shape rather than
their anatomical location (4M-R), again outlining signi�cant values in black (permutation with FDR
correction q = 0.05). We observe multi-feature representation in the fast, enhanced, occipital-heavy
clusters. Cluster 1 represents phoneme at 60 ms, letter at 500 ms, and neighborhood at 820 ms. Cluster 2
displays signi�cant sensitivity to bitmap, neighborhood, and phoneme within 100 ms of onset followed
by frequency sensitivity at 200 ms, raising the possibility that it may serve as an early hub of multi-
feature information. We also observe feature-speci�c sensitivity in the later, enhanced, transient clusters
4, 5, and 6: cluster 4 represents word frequency beginning at 160 ms; cluster 5 represents semantics at
180 ms; and �nally, cluster 6 represents phoneme and letter more than a second after word onset. The
suppressive clusters show only sparse signi�cant representation, most notably to semantics in cluster 8
beginning at 400 ms. Interestingly, sustained clusters 3 and 9 show no signi�cant sensitivity to any of our
selected features. These results demonstrate that anatomically distributed electrode populations can
carry stimulus information and suggest that distributed networks may play an important role in visual
word recognition.

Discussion
Summary of �ndings 
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We found electrodes responsive to visual word presentation across occipital, temporal, parietal, and
frontal lobes with a wide variety of response shapes, including both increases (enhancement) and
decreases (suppression) in high gamma power. Responses in occipital lobe and fusiform gyrus were
strongest, fastest, and had the highest percentage of enhanced responses, while frontal subregions had
the slowest responses with the lowest percentage of enhanced responses. We further analyzed the
diversity of temporal response shapes among electrodes using agglomerative clustering and found both
sustained and transient responses at a variety of latencies. Last, we analyzed neural sensitivity to a
hierarchy of word features including visual, phonological, lexical, and semantic features to provide a
detailed account of stimulus encoding over time and space. Anatomically, we found early occipital
representation of visual features, concurrent in lingual gyrus with sensitivity to word neighborhood size,
followed shortly by sensitivity in fusiform gyrus to frequency, letter, and phoneme, sensitivity in inferior
frontal gyrus to frequency and semantics, and late representation of several features along the lateral
sulcus. Furthermore, we found that electrode populations with different temporal response shapes
revealed in our clustering analysis showed signi�cant encoding of stimulus features; we found a broadly-
sensitive, enhanced cluster with early representation of visual, phonological, and lexical features; three
separate mid-latency enhanced clusters with specialized sensitivity to frequency, semantics, and
phonemes and letters, respectively; and sparse representation of semantics in a mid-latency suppressed
cluster. Taken together, our results provide evidence of both feed-forward and feed-back processing
during visual word recognition and demonstrate that stimulus encoding can be achieved by anatomically
distributed networks. 

Spatiotemporal feature sensitivity

Our results provide a detailed map of feature representation in time and space that builds upon an
extensive literature of visual word recognition. To that end, it is useful to note how our
observations compare with previous �ndings. Previous studies had implicated occipital lobe, fusiform
gyrus, and the N150 in orthographic processing; we found low-level visual sensitivity occurring within 100
ms in lingual gyrus and in the early, enhanced functional cluster 2, which might underlie an early
orthographic-speci�c ERP, though we do not see letter sensitivity in fusiform until 380 ms. Our
observation of early phoneme sensitivity is plausibly consistent with the �nding that the N250 is
modulated by phonological content 24,31–34, while late phonological encoding in precentral gyrus is
consistent with literature suggesting its involvement in phonological decoding 6,9,52. Notably, we �nd that
phonological sensitivity is similar but not precisely overlapping with letter sensitivity, and in fact precedes
letter sensitivity in most areas. These similarities could be driven by the relatively high correlation
between letter and phoneme information in English generally and in our stimulus set speci�cally (S3); a
larger set of test words exhibiting contrasting attributes of each hierarchical type could better tease these
factors apart in future study. 

We observe substantial lexical sensitivity both for orthographic neighborhood size and word frequency.
Neighborhood sensitivity largely overlaps with bitmap sensitivity in lingual gyrus and the broadly
representative cluster 2, suggesting that visual processing may coincide with the activation of
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orthographically similar words, at higher spatial resolution and shorter latency than previously found (150
ms 45). Our measure of frequency sensitivity is consistent with previous studies implicating word
frequency in fusiform gyrus 22,53 and inferior frontal gyrus 22, and in the range of 100-200 ms 46–48. We
further demonstrate that frequency sensitivity is speci�cally represented by the anatomically distributed
cluster 4 at 160 ms. Our results suggest that lexical features are represented early, robustly, and
distributed across multiple brain areas. 

Anatomically, semantic sensitivity is observed in areas that are reliably implicated in semantic
processing, including inferior frontal gyrus, superior frontal gyrus, and middle temporal gyrus 9. Further,
we observe semantic sensitivity as early as 180 ms in the anatomically heterogeneous functional cluster
5, which could suggest an anatomically distributed semantic encoding as suggested by recent landmark
neuroimaging studies 54,55. This timing precedes the extensively-studied, semantically-sensitive N400
ERP 35, and is early enough to be compatible with the hypothesis that the N400 is the summation of
M250 and M350 51. 

Interestingly, our analyses revealed several anatomical areas and a few clusters that did not show
signi�cant sensitivity to any of the selected features. There are several possible explanations for this.
First, this may re�ect a limitation of the experimental design; while the electrodes kept for analysis
strongly respond to word presentation, our lack of a control task means that this activity may not be
speci�c to word presentation, but may rather re�ect more general visual or cognitive processing.
Secondly, our analysis across time, space, and subjects with varying levels of noise may simply lack the
statistical power to detect all effects in our data. Third, our feature list is not exhaustive, and it is possible
that these areas are sensitive to aspects of the stimulus that were not tested here.

Feed-forward vs. connectionist 

Evaluating the simultaneous spatiotemporal resolution of a hierarchy of features allows us to evaluate
the �ow of information through the brain and contribute to the debate between the feed-forward and
connectionist accounts of visual word recognition. The strictest form of the feed-forward model posits a
functional cascade in which visual features are �rst decoded into letters, then mapped to an item in the
orthographic lexicon (likely in fusiform gyrus) before additional representations can be activated 2–6.
Notably, a study using an overlapping portion of this dataset found that the subsequent memory effect
does appear to be distributed in a hierarchical, feed-forward stream41. However, our anatomical results
are incompatible with such a strict feed-forward view of visual word recognition in several ways: 1) we
observe phonological sensitivity as early as visual sensitivity; 2) sensitivity to orthographic neighborhood
size occurs very shortly following bitmap sensitivity and preceding letter sensitivity; 3) fusiform gyrus
shows frequency sensitivity at 180 ms, followed by sensitivity to phoneme at 280 ms and only then to
letter at 380 ms. Additionally, in our analysis of cluster sensitivity, neighborhood and frequency sensitivity
preceded letter sensitivity. Contrary to the strict feed-forward model, these results suggest an early role for
lexical and phonological representations, especially in occipital cortex and fusiform gyrus. However,
neither do our results suggest a completely integrated response, as we do observe some systematic
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separation of features in time and anatomical location. Anatomically, we see bitmap, neighborhood, and
phoneme representation emerge within 100 ms, followed shortly by frequency encoding at 180 ms,
semantic encoding at 240 ms, and letter encoding at 380 ms. Functionally, we observe clusters with early
multi-feature representation, but also individual clusters with feature-speci�c sensitivity at middle
latencies. Overall, these results suggest that the mechanisms underlying visual word recognition include
both feed-forward and feed-back processing. 

Role of fusiform gyrus

Fusiform gyrus has received special attention in the reading literature and as the center of two major
debates: �rst, whether its function is speci�c to visual word processing and selective to word identities
2,8,11–15,56, and second, whether it serves as a strictly feed-forward hub of orthographic information
2,3,23,28,53,57,4–7,19–22. In this study, we �nd signi�cant fusiform sensitivity to frequency (consistent with
previous studies22,23,53) as early as 120 ms, phoneme as early as 280 ms, and letter at 380 ms. Further
study is needed to determine whether this lexical and phonological sensitivity arises from top-down or
bottom-up in�uences on fusiform gyrus, but our results demonstrate that fusiform is not limited to
encoding orthographic information. This result may be consistent with its role as sensitive to individual
words. Further ECoG research using traditional false font paradigms could address this question more
directly.  

Anatomically distributed feature encoding

The spatiotemporal resolution of iEEG allowed us to decouple encoding networks in our data from
anatomical boundaries. Using clustering analysis, we uncovered a variety of anatomically-heterogeneous
temporal response shapes. Moreover, these functional populations had signi�cant feature sensitivity,
suggesting that anatomically-distributed networks can in fact be relevant to stimulus encoding. We �nd
evidence for an early “hub” cluster which represents a combination of visual, phonological, and lexical
features within 100 ms of word onset, which may feed forward to other functional groups. By 180 ms,
both frequency and semantic information have been decoded in separate populations. Either by
concurrent calculation or feedback, by 200 ms the hub cluster 2 has also represented word frequency.
After this early, rapid processing, additional feature sensitivity emerges that could represent late-stage
checking of the word identity 58. Notably, we observed clusters that encode multiple features across
different timepoints as well as clusters with sensitivity to speci�c features. The notion of distributed
encoding has gained recent traction in the human language literature, especially in the semantic
domain54,55,59. Further, distributed encoding could help explain the wide range of locations and
timepoints implicated in our anatomical sensitivity analysis and in any literature that analyzes data by
region of interest; if a particular feature is encoded by a network of similarly-behaving neurons spread
across multiple areas, anatomical analyses may detect feature encoding in several involved areas.

Limitations & future work
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Limitations of this work include nonuniform coverage across subjects and brain areas, limitations
inherent to invasive neurophysiology in humans. Due to the limited time for testing and the experiment’s
dual role as a memory test, the range and quantity of stimuli were limited, and many subjects saw each
word only one time; further work with repeated trials would enable useful decoding and reliability
analyses. The task demands on the subject- to recall each list of words- may also impact the neural
response; comparison with lexical decision or other reading tasks would allow assessment of the task
impact on processing. Including useful controls such as false fonts, consonant strings, or pronounceable
pseudowords would allow more �ne-grained study of particular word features and neural mechanisms.

Conclusion
In this work, we studied visual word recognition in a large cohort of neurosurgical patients to characterize
the �ow of information in the brain. By analyzing electrode response properties and population sensitivity
to a hierarchy of word features, we created a high-resolution map of stimulus encoding during single-
word reading and showed evidence that anatomically distributed populations can encode word features.
Our results suggest that feed-forward, feed-back, and distributed processing mechanisms contribute to
visual word recognition.

Materials Methods
Intracranial recordings 

Over a period of several years, patients undergoing chronic intracranial monitoring as treatment for
pharmacologically intractable epilepsy were recruited to participate in the DARPA Restoring Active
Memory program, a multi-center collaboration of neurology and neurosurgery departments across the
United States. The research protocol was approved by the institutional review board at each hospital, and
informed consent was obtained from all participants or their guardians. 151 subjects were included in
this study. Clinical need determined the electrode number and placement for each subject; depending on
patient need and technology speci�cations at each hospital, grid, strip, and depth electrodes were
implanted and recorded with Bio-Logic, Natus, Nicolet, Grass Telefactor, or Nihon-Kohden EEG systems at
200, 256, 400, 500, 512, 1000, 1024, or 2000Hz. Electrodes were identi�ed as hyperdense foci on the post-
op CT scan and these points were then aligned to the MRI using Advanced Normalization Tools (ANTS,
http://stnava.github.io/ANTs/). The cortex was parcellated using Freesurfer according to the Desikan–
Kiliany atlas. To correct for post-operative brain shift, subdural electrode locations were projected to the
cortical surface using the method of Dystra et al (https://pubmed.ncbi.nlm.nih.gov/22155045/). The
automated anatomic parcellation and electrode localizations were con�rmed by a neuroradiologist. We
excluded electrodes located outside of brain tissue, showing pathological activity, or in limbic and
sublobar regions. A total of 10949 eligible electrodes in occipital, temporal, parietal, and frontal lobes
were considered for this study.  

Behavioral task
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Subjects completed a delayed free recall task. Each task session consisted of 25 12-word lists per
session for a total of 300 words. Each word was presented in white, 70-point Verdana font on a black
background for 1600 ms with a jittered 750-1000 ms ISI. After each list, subjects completed a distractor
math task for 20 seconds, then had 30 seconds to verbally report as many words as they could remember
from the last list. Patients who completed at least one complete task session in English were included in
this study for a total of 151 subjects. 

Neural data preprocessing

The amplitude of the high gamma (HG, 70-150Hz) response of each electrode was extracted using the
Hilbert transform, then resampled to 100Hz. For subjects who completed the task more than once, data
was averaged over repetitions after resampling. Finally, for clustering, latency, and peak calculation, each
electrode’s data were normalized by z-score to the response while viewing a blank screen; for sensitivity
analyses, each electrode’s data were normalized by z-score to its entire response. 

Task responsiveness

At each electrode, we ran a t-test between the HG response during word presentation and the HG response
when the screen was blank. We took the absolute value of all t-values to include electrodes with both
enhanced and suppressed responses to word presentation; electrodes with p < 1e-8 (2775/10949) were
considered “task responsive” and kept for further analysis. The percentage of task-responsive electrodes
in each region was calculated as the ratio of electrodes with p < 1e-8 to the total number of electrodes in
each region; subregions with at least 50 task-responsive electrodes were considered for further analysis.
The average t-value was also calculated by subregion.  

Brain plots

All brain plots were generated with Brainstorm 60, which is documented and freely available for download
online under the GNU general public license (http://neuroimage.usc.edu/brainstorm). All plots used the
Freesurfer average brain. For plots including all 10949 electrodes, electrode density was high enough that
smoothing created a more intelligible plot (e.g. 1D vs S1B), so each electrode location was �rst converted
from MNI to voxel space in nilearn 61 (https://nilearn.github.io/authors.html) before smoothing data over
1 cm3 spans and converting back into MNI space. For coverage plots (1B, S1A), we counted the number
of electrodes or subjects included in each 1 cm3 and smoothed over .5 cm3 before converting back to
MNI space. The t-value plot (1D) was calculated in the same fashion, except values were averaged within
each 1 cm3. For remaining brain plots, only task-responsive electrodes were included, so voxel conversion
was unnecessary. Instead, each individual electrode location was projected to the cortical surface of the
average Freesurfer brain and plotted as a sphere using Brainstorm.

Latency and peak analysis

http://neuroimage.usc.edu/brainstorm
https://nilearn.github.io/authors.html
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We calculated the peak amplitude of each electrode’s average word response as the absolute maximum
or minimum of the response, whichever was of greater magnitude. Latency was calculated as the sample
after word onset where each electrode’s average response reached its peak value. Histograms of latency
and peak amplitude are plotted in S2A/C. Electrodes with positive peak values were classi�ed as having
an enhanced response, while those with negative peak values were classi�ed as suppressive. We
calculated the average latency (2A) and average enhancement vs. suppression ratio (2C) in each
anatomical subregion, reporting standard error of the mean and conducting unpaired t-tests with FDR
correction for statistical analysis (S2B/D). We plotted raw latencies and peak values on the brain using
Brainstorm (2B/D).

Clustering analysis of temporal response shapes

To investigate the range of responses in the data, we averaged each electrode’s HG response over words
and conducted unsupervised agglomerative clustering (ward linkage, Euclidean distance) on the
responses from 450 ms before word onset to 400 ms after word offset, smoothing with an 80 ms
hanning window. Empirical inspection of different numbers of clusters revealed that using more than 9
clusters led to over clustering, with one or more clusters being further split into groups showing very
similar response types. As gap, elbow, and other optimization methods attempted were unsuccessful,
suggesting either 2 clusters or the maximum number tested, we chose to continue our analysis with 9
clusters. Clusters were �rst separated into enhanced and suppressive groups, then ordered by latency
within each group. We plotted a raster of all electrodes organized by cluster (3A) as well as plots of each
average cluster’s waveform with standard deviation error bars (3B). We also calculated and plotted the
percentage of electrodes in each anatomical lobe that belonged to each cluster, normalized by the total
number of electrodes in each lobe (3C), as well as the percentage of electrodes in each cluster that
belonged to each lobe, normalized by the total number of electrodes in each cluster (S3A). We plotted
each electrode’s cluster ID on the brain using Brainstorm, both for all subjects (S3B), as well as four
example subjects with varying coverage, including right hemisphere (S3C), left hemisphere (S3D),
bilateral (S3E), and occipital lobe implants (S3F). 

Word feature catalog and feature RDMs

We collected feature data for all 300 words. Bitmaps were constructed by recreating exact images of
each word that had been presented to the subjects (70-point white Verdana font on a black background,
centered on the screen,) cropping to the smallest image where the longest word could still be fully
captured, and resizing to a 6x29=174 pixel image. To create the feature RDM, each word’s image was
unrolled into a vector of length 174. Letter vectors were generated as a count of how many times each
letter occurred in each word, deleting any letters that occurred fewer than 5 times across the entire
stimulus set for a vector of length 23. Analogously, phoneme vectors were a count of how many times
each phoneme occurred in each word as listed in the P2FA dictionary62, deleting any phonemes that
occurred fewer than 5 times across the entire stimulus set for a vector of length 34. Orthographic
neighborhood size, also called number of neighbors, is de�ned as the “number of words that can be
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obtained by changing one letter while preserving the identity and positions of the other letters” and was
collected from the English Lexicon Project63. Frequency data were also collected from the English
Lexicon Project, using Hyperspace Analogue to Language (HAL) frequency norms based on
approximately 131 million words64. Semantic content was represented by Google word2vec embeddings
(https://code.google.com/archive/p/word2vec/ accessed using gensim
https://radimrehurek.com/gensim/index.html), using 300-dimensional vectors pre-trained on Google
News (100 billion tokens). These features were selected to span visual, phonological, lexical, and
semantic domains, and to minimize inter-feature correlations.

For each feature, we calculated the pairwise distances between stimuli using cosine distance for multi-
dimensional features (bitmap, letters, phonemes, semantics) and squared Euclidean distance for one-
dimensional features (neighborhood, frequency) to create a feature representational dissimilarity matrix
(RDM) with which to conduct representational similarity analysis (RSA 44). We calculated the inter-feature
correlations as the Spearman correlation between each pair of feature RDMs (S4).

Feature sensitivity

We conducted RSA using our feature RDMs for different electrode populations over time. To balance
temporal resolution with computation time, responses were downsampled to 50Hz after smoothing with
a 250 ms hanning window. For each anatomical area and timestep, we computed a neural RDM on the
basis of all task-responsive electrodes in that area. The neural RDM for each timestep contains the
response-pattern distances (Pearson correlation distance) for all pairs of stimuli. Next, we calculated the
Spearman rank correlation between each neural RDM and each feature RDM. We used rank correlation to
avoid the assumption of a linear relationship between the predicted and measured dissimilarities44. To
conduct statistical inference, we permuted the stimulus labels 1000 times, recalculated neural RDMs with
each permutation, and calculated the correlation between each permuted neural RDM and each intact
feature RDM to obtain a permutation distribution of correlation values for every timestep, area, and
feature. We used a generalized Pareto distribution to estimate the tail of each distribution to obtain a
precise p-value for each comparison 65,66, then corrected for multiple comparisons by setting the false
discovery rate across all areas, features, and timesteps to 0.05. Data were displayed by image, setting
negative correlations to 0 (negative RSA correlations signify low representational similarity) and
indicating signi�cant values with a black box. Lastly, we repeated the entire procedure, this time
segmenting electrodes into populations by temporal response shape (as assigned by the agglomerative
clustering analysis) rather than by anatomical area.  
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Figure 1

Visual Word Recognition Task Response in Human Cerebral Cortex:: A. Task schematic. Subjects viewed
single words in white text on a black background for 1600 ms followed by a jittered 750-1000 ms ISI.
Words were presented in 12-item lists with 25 lists per session for a total of 300 words. B. Electrode
coverage. Count of electrodes (within 1cm3) across 151 subjects displayed on the Freesurfer average
brain. Areas with no coverage shown in gray. C. Average t-value between blank screen and word
presentation by anatomical subregion. Regions with at least 50 electrodes with p < 1e-8 were considered
for analysis. Bars are color-coded by the lobe that most electrodes within that subregion belong to;
occipital is green, temporal blue, parietal yellow, and frontal red. Error bars are standard error of the mean.
D. t-values between blank screen and word presentation displayed on the Freesurfer average brain,
averaged within 1cm3. Areas with no coverage shown in gray.



Page 20/23

Figure 2

Response Latency and Peak Amplitude: A. Average latency by subregion, measured as the �rst timebin
where each electrode reaches half of its absolute maximum. Bars are color-coded by lobe. B. Latency
values displayed on the average Freesurfer brain. C. Percent enhanced responses by subregion. Dotted
line marks a 50%, a balanced ratio; greater than 50% favors enhancement, while less than 50% favors
suppression. D. Peak amplitude (in arbitrary units) of each electrode’s average word response after z-
scoring to baseline, displayed on the average Freesurfer brain; values above baseline (enhanced) are red,
while values below baseline (suppressed) are blue.
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Figure 3

Hierarchical Clustering of Temporal Response Shapes: A. Raster of each electrode’s average word
response organized by cluster (unsupervised agglomerative clustering), normalized to response at blank
screen. In the colormap, red indicates an increase in high gamma power from baseline, while blue
indicates a decrease. Horizontal dotted lines separate clusters. Black vertical dotted line marks word
onset and gray vertical dotted line marks word offset. B. Average response of each cluster across
electrodes. Error bars are standard deviation, colored red for enhanced clusters (increase from baseline)
and blue for suppressed clusters (decrease from baseline). Black vertical dotted line marks word onset
and gray vertical dotted line marks word offset. Horizontal dotted line indicates baseline. C. Distribution
of each anatomical region across temporal response shapes (rows sum to 100%).
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Figure 4

Feature Sensitivity Over Time. Feature sensitivity by neural population over time. Features for ten
example words are displayed in A-F: A. Word bitmap, a downsampled version of the exact image
presented to the subject. Here bitmaps are displayed as 6x29-bit images; for RSA, each bitmap was
unrolled into a vector of length 174. B. Letters, a count of how many of each letter was in each word
(keeping only letters with at least 5 occurrences across the word set). C. Phonemes, a count of how many
of each phoneme was in each word (keeping only phonemes with at least 5 occurrences across the word
set). D. Number of orthographic neighbors, the number of words that can be created by changing a single
letter. E. Word frequency, a count of how many times the word occurs in the language (x-axis scale is
logarithmic). F. Semantic meaning as represented by the pre-trained, 300-dimensional word embedding
word2vec. Sensitivity to each of these features is displayed by anatomical subregion in G-L, and by
temporal response shape in M-R. Colormap indicates the strength of the RSA correlation at each
timepoint; negative values have been set to 0 and signi�cant values are indicated with black boxes. The
black vertical dotted line marks word onset, and the grey vertical dotted line marks word offset. For
results by anatomical subregion (G-L), horizontal dotted lines separate subregions by lobe, and subregion
labels are color-coded by lobe (occipital green, temporal blue, parietal yellow, frontal red). For results by
temporal response shape (M-R), the horizontal line separates enhanced and suppressed clusters, each
cluster’s average word response is displayed next to its label, and cluster labels and shapes are color-
coded by enhanced (red) and suppressed (blue).
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