
An ecologically motivated image dataset for deep
learning yields better models of human vision
Johannes Mehrera, Courtney J. Spoerera, Emer C. Jonesa, Nikolaus Kriegeskorteb, and Tim C. Kietzmanna,c,1



aMRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF Cambridge, United Kingdom; bDepartment of Psychology, Zuckerman Institute,
Columbia University, New York, NY 10027; and cDonders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, Netherlands

Edited by J. Anthony Movshon, New York University, New York, NY, and approved January 12, 2021 (received for review June 13, 2020)

Deep neural networks provide the current best models of visual
information processing in the primate brain. Drawing on work
from computer vision, the most commonly used networks are
pretrained on data from the ImageNet Large Scale Visual Recog-
nition Challenge. This dataset comprises images from 1,000 cate-
gories, selected to provide a challenging testbed for automated
visual object recognition systems. Moving beyond this common
practice, we here introduce ecoset, a collection of >1.5 million
images from 565 basic-level categories selected to better capture
the distribution of objects relevant to humans. Ecoset categories
were chosen to be both frequent in linguistic usage and concrete,
thereby mirroring important physical objects in the world. We test
the effects of training on this ecologically more valid dataset using
multiple instances of two neural network architectures: AlexNet
and vNet, a novel architecture designed to mimic the progressive
increase in receptive field sizes along the human ventral stream.
We show that training on ecoset leads to significant improve-
ments in predicting representations in human higher-level visual
cortex and perceptual judgments, surpassing the previous state of
the art. Significant and highly consistent benefits are demon-
strated for both architectures on two separate functional magnetic
resonance imaging (fMRI) datasets and behavioral data, jointly
covering responses to 1,292 visual stimuli from a wide variety of
object categories. These results suggest that computational visual
neuroscience may take better advantage of the deep learning
framework by using image sets that reflect the human perceptual
and cognitive experience. Ecoset and trained network models are
openly available to the research community.

human visual system | deep neural networks | computational
neuroscience | ecological relevance | computer vision

Training deep neural networks (DNNs) end to end on large-
scale datasets has led to dramatic advances in computer vi-

sion. Computational neuroscience, in turn, found that the rep-
resentations in these task-trained models exhibit striking
similarities to those in the primate visual system (1–3). Although
hierarchical convolutional network architectures were inspired
by the primate visual system, such similarities are surprising as
the images used for network training are selected to serve as a
computer vision benchmark. For example, the 1,000 categories
to be distinguished in the commonly used 2012 ImageNet Large
Scale Visual Recognition Challenge, referred to as ILSVRC
2012 for brevity (4), include 120 different dog breeds but lack
categories for humans. In contrast, the human visual system
contains multiple regions with a strong preference for human
faces and body parts (5). This observation suggests that com-
putational modeling of the human visual system may benefit
from novel datasets that more closely mirror the human expe-
rience to take full advantage of the deep learning framework
(6–9). Here, we introduce ecoset, a large-scale image dataset
designed for human visual neuroscience, which consists of >1.5
million images from 565 basic-level categories (only 12.7% of
ecoset images also appear in ILSVRC 2012). Category selection
was based on English nouns that most frequently occur in spoken
language [estimated on a set of 51 million words obtained from

American television and film subtitles (10)] and concreteness
ratings from human observers (11). Ecoset therefore consists of
basic-level categories (including human categories man, woman,
and child) that describe physical things in the world (rather than
abstract concepts) that are important to humans (Fig. 1, see
Materials and Methods for details on category and image selec-
tion procedures). To test whether training DNNs on ecoset
rather than ILSVRC 2012 might help to better explain cortical
representations in human higher-visual cortex, we train various
network instances on both ecoset and ILSVRC 2012 and com-
pare their internal representations against data from two inde-
pendent functional magnetic resonance imaging (fMRI) studies
of human vision (12, 13) as well as human behavioral data (14).

Results
To quantify the agreement between representations found in
DNNs and the brain, we use representational similarity analysis
(RSA; 15), which characterizes a system’s population code by
means of a representational dissimilarity matrix (RDM, corre-
lation distance). DNNs were shown the same stimuli as human
observers (>1,200 images of various object categories), and the
resulting network RDMs were compared to RDMs extracted
from higher-level visual cortex (HVC) of individual human
observers.
A good neural network model of a given brain region should

exhibit the same distribution of computational features and
thereby predict the representational geometry (16) as captured
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by the brain RDM. We therefore did not perform any model
fitting [i.e., reweighting (1) or linear encoding of the DNN ac-
tivation profiles (3)], which would enable a model with a dif-
ferent distribution of features to nevertheless perform well (17).
The effects of training on ecoset rather than ILSVRC 2012 were
tested using two separate network architectures: AlexNet (ver-
sion 2, 18), one of the most frequently used computer vision
networks in computational neuroscience, and vNet, a novel
10-layer convolutional DNN that mimics the progressive increase
in foveal receptive field sizes along multiple areas of the human
ventral stream (V1, V2, V3, hV4, LO, TO, pFUS, and mFUS;
seeMaterials and Methods) as previously estimated by population
receptive field mapping (19, 20). While computer vision net-
works, engineered for task performance, exist in large variety and
complexity, testing ecoset on biologically more realistic models
brings both the architecture and training set into closer align-
ment with the task of modeling brain function. Such networks
thereby constitute a more rigorous test for the effects of
changing the training data. To account for individual differences
among DNNs (21), 10 network instances per architecture, each
initialized with different random weights, were trained on each
dataset (see Materials and Methods).
Analyses of the learned network features via RSA revealed

significant benefits in predicting human higher-level visual rep-
resentations when training on ecoset rather than ILSVRC 2012.
This was true for both architectures and both fMRI datasets
tested (Fig. 2 A and B and SI Appendix, Fig. S1). For fMRI
dataset 1 (12), which comprises cortical responses to 1,200 nat-
ural scenes recorded from each of five human participants, later
networks layers exhibited the best match to HVC. This is in line

with the literature, which commonly relies on these layers for
modeling higher-level visual computations (1, 12, 22). When
training AlexNet with ecoset, we found layers six and seven to be
more similar to human HVC than their ILSVRC-trained coun-
terparts (permutation test, P < 0.01, Bonferroni corrected for the
number of network layers; see Materials and Methods for details,
please note the effect reversal observed in earlier layers, all of
which, however, provide an overall worse model of HVC). De-
spite no parameter fitting, the predictive power of layer seven of
ecoset-trained AlexNet was on par with human observers
(matching the lower bound of the noise ceiling, i.e., the predic-
tive performance of the grand average computed over all other
participants). Similar effects were observed for vNet, which ex-
hibits significantly higher alignment with HVC representations
when trained on ecoset in layers eight to 10 (permutation test,
P < 0.01, Bonferroni corrected; peak similarity at layer eight,
98.3% of the lower bound of the noise ceiling). In the final
network layers, ecoset training led to an increase of up to 13
percentage points in the explained proportion of explainable
variance (the latter estimated as the lower bound of the noise
ceiling) for AlexNet and 17 percentage points for vNet (the total
variance explained increased by 15% for AlexNet and up to 21%
for vNet).
FMRI dataset 2 (13) consists of cortical responses to 92 ob-

jects from a diverse set of categories shown against a gray
background, recorded from each of 15 human participants.
Testing against these data revealed that layers five to seven of
ecoset-trained AlexNet more closely mirrored HVC represen-
tations (permutation test, P < 0.01, Bonferroni corrected,
Fig. 2B, middle row). For vNet, significant benefits for ecoset

A B

C

D E

Fig. 1. Ecoset overview. (A) Flow diagram depicting the steps taken during dataset creation. This includes category selection and curation as well as image
processing (search/download, duplicate removal, and label-cleaning procedures). (B) Example images from the six categories with FCI (shown in decreasing
order from left to right). (C) Superordinate category overview. (D) Distribution of the number of images per category. (E) Distribution of image sizes
(log-transformed width and height).
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training were observed in layer 10 (permutation test, P < 0.01,
Bonferroni corrected). Layer 10 of ecoset-trained vNet per-
formed at 59.3% of the lower bound of the noise ceiling (i.e., the
predictive performance of the average of 14 held out partici-
pants) and layer seven of AlexNet performed at 54.8%. In the
final network layers, ecoset training led to an increase of up to 12
percentage points in the explained proportion of explainable
variance for AlexNet and 9 percentage points for vNet (the total
variance explained increased by 70% for AlexNet and 37% for
vNet). Together, the benefits of training with ecoset, as observed
for both architectures and both datasets, are consistent with the
interpretation that the visuo-semantic representations of human
HVC in part reflect the distribution of categories in human
language (see SI Appendix, Fig. S2 for results on early visual
cortex [V1-V3] and visual areas V4/LO1-3, while benefits of
ecoset training generalize to visual areas of intermediate

complexity, no coherent difference in performance across
training sets was observed for early visual areas).
To exclude explanations based on dataset differences in the

number of categories and number of images per category, we
created “trimmed” versions of both ecoset and ILSVRC 2012
while controlling for these factors. We then trained 10 vNet in-
stances on each and compared their internal representations
analogous to the original analyses. Replicating our previous re-
sults in this more conservative control, we observed significant
benefits of training vNet with ecoset compared to ILSVRC 2012
in layers seven to 10 for both fMRI datasets 1 and 2 (Fig. 2 A and
B, bottom row, all P < 0.05, Bonferroni corrected).
Next, we compared our ecoset-trained networks (AlexNet v2

and vNet) against high-performance, large-scale computer vision
DNNs that represent the state of the art in computational neu-
roscience (1–3). These included the original, pretrained AlexNet
(23), VGG-19 (24), and DenseNet-169 (25). Compared to vNet

BA C

D

Fig. 2. Training on ecoset rather than ILSVRC 2012 improves the alignment between DNN representations and human HVC as well as with human perceptual
similarity judgments. (A) Data for fMRI dataset 1. (A, middle row) Benefits of training on ecoset were true for both architectures tested (AlexNet, shown in
red, as well as vNet, shown in blue). Lower bound of the noise ceiling shown as the lower edge of the gray bar, stars indicate significant differences at P <
0.01, Bonferroni corrected for the number of network layers. To estimate statistical significance, each network instance of a given architecture was correlated
with data from each human participant. To summarize the performance of a network instance, the average match across all human individuals was com-
puted. Based on these data, permutation tests were performed comparing network instances trained on either ecoset or ILSVRC. Error bars indicate 95% CI
across network instances (see Materials and Methods for further details). (A, bottom row) Benefits of training on ecoset persist when controlling for the
number of images and the number of categories in the two training datasets. (B) Effects obtained for fMRI dataset 1 replicate in a separate fMRI dataset
(dataset 2). (C) DNNs trained on ecoset also exhibit better alignment with human perceptual similarity judgments (behavioral dataset, ecoset-trained network
shown in black, ILSVRC 2012 in gray). (D) The model fit between HVC and human behavior exhibits a strong positive relationship (data for various vNet
network layers shown as data points).
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(10 layers, 28 M parameters), VGG-19 and DenseNet-169 are
deeper, and AlexNet and VGG-19 have substantially more pa-
rameters (61 M for the original AlexNet and 144 M for VGG-19
because of their fully connected layers, which contain 96% and
86% of parameters for the original AlexNet and VGG-19, re-
spectively). For each DNN, we selected the layer that best pre-
dicted the fMRI data for further analyses (all possible layers
used as candidates for AlexNet and VGG-19 and all concate-
nation layers for DenseNet-169). We find that ecoset-trained
vNet and ecoset-trained AlexNet v2 significantly outperformed
all tested pretrained computer vision models in terms of pre-
dicting human HVC representations (P < 0.05, bootstrapped
CIs, Fig. 3). This was true for both fMRI datasets tested.
To better understand why ecoset-trained DNNs perform bet-

ter in predicting human HVC, we separately compared the
representational dissimilarities of each experimental stimulus to
all other experimental stimuli across DNN models and brain data
[i.e., we performed the previous analyses on each column of the
respective RDM separately instead of on the whole RDM at
once (26)]. Focusing on the final layers of AlexNet and vNet,

which had previously shown clear improvements for both fMRI
datasets, we found significant predictive advantages for animate
objects (human and animal) over inanimate objects (manmade
and natural objects). That is, ecoset training resulted in better
alignment of the representational dissimilarities for animate
objects, including the relations among animate objects as well as
the relations to inanimate objects. This effect was highly con-
sistent across both network architectures and datasets (permu-
tation tests of the interaction effect, testing whether the benefits
of ecoset training were larger for predictions of representational
dissimilarities of animate rather than inanimate objects, all P <
0.01; see SI Appendix, Fig. S3 and Supplementary Text for details).
These results indicate that ecoset training may yield more brain-
like representations for animate object categories as well as their
relation to inanimate objects, mirroring large-scale organiza-
tional principles found in the human ventral stream (26, 27).
Interestingly, this effect arises despite ILSVRC having a higher
percentage of animate objects (39% in ILSVRC versus 19% in
ecoset). This raises the possibility that the advantage of using
ecoset originates from a more appropriate selection of object

B

A

Fig. 3. Comparing ecoset-trained DNNs to the state of the art. (A) Target RDMs from human HVC shown together with RDMs extracted from various deep
neural network models (best layer selected for each with dataset 1 on the left and dataset 2 on the right). (B) Agreement with human HVC plotted against
model parametric complexity. vNet and AlexNet v2, both trained on ecoset, significantly outperform state of the art DNN models pretrained on ILSVRC 2012
(DenseNet-169, VGG-19, and the original AlexNet). Error bars shown in blue and red indicate 95% CI.
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categories as well as from the requirement for object categori-
zation on the basic level instead of a larger set of subordinate
category distinctions.
Expanding our previous analyses of cortical representations in

human HVC to behavior, we tested whether ecoset training also
yields network internal representations that more closely mirror
human perceptual judgments. We used behavioral data obtained
via inverse multidimensional scaling (inverse MDS), a task in
which participants perform multiple two-dimensional (2D) ar-
rangements of real-world objects to indicate their perceived
similarity (14, 28). The stimulus set used in this experiment was
equivalent to the stimuli from fMRI dataset 2. For each partic-
ipant, inverse MDS results in a perceptual RDM of equivalent
format to the previously analyzed dissimilarity matrices. Mir-
roring our previous analysis approach, no model fitting was
performed to align DNN and behavioral data. Ecoset-trained
networks significantly outperformed ILSVRC-trained network
instances in their alignment with human perceptual judgments
(Fig. 2C). This was true for both AlexNet (significant benefits in
layers four to seven, permutation test, P < 0.05, Bonferroni
corrected; peak similarity at layer seven, 62.1% of the lower
bound of the noise ceiling) and vNet (significant benefits in
layers eight to 10, permutation test, P < 0.01, Bonferroni cor-
rected; peak similarity at layer 10, 59.5% of the lower bound of
the noise ceiling). In the final network layer, ecoset training led
to an increase of 6.8 percentage points in the explained pro-
portion of explainable variance for AlexNet and 5.7 percentage
points for vNet (the total variance explained increased by 21%
for AlexNet and 19% for vNet). Significant benefits in later
network layers were also observed for vNets trained on the
trimmed ILSVRC and ecoset datasets, which control the number
of images and categories (SI Appendix, Fig. S4). Moreover, in
line with previous reports of alignment between perceptual
judgments and human inferior temporal cortex (14), we find a
significant correlation between our networks’ ability to mirror
human HVC and human perceptual judgments [vNet rho =
0.996; AlexNet rho = 0.987; both P < 0.001; robust Pearson
correlation (29); Fig. 2D].
Finally, the human visual system contains multiple higher-level

visual regions in which neurons exhibit selectivity for images of
faces (5). To test in how far face selectivity is mirrored in our
network models, we searched for face-selective units by running
in silico electrophysiology experiments in which we contrast the
units’ responsiveness to images showing either faces or places
and computed the percentage of units with significant face se-
lectivity for each network layer and network instance (see Ma-
terials and Methods). Although faces are not a separate object
category, we reasoned that the existence of related ecoset cate-
gories, such as woman, man, and child, would naturally lead to
the more prominent emergence of face-selective units in higher-
level network representations. Indeed, we observe that the
deepest network layers of both architectures exhibit both the
highest percentage of face-selective units as well as a significant
increase when training on ecoset rather than ILSVRC (Wilcoxon
signed-rank test across network instances, P < 0.05, Bonferroni
corrected for the number of layers per network, SI Appendix, Fig.
S5). For AlexNet, the average percentage of face-selective units
increased from 9.3 to 12.2%, and for vNet, we observed an in-
crease from 4.3 to 6.9%.

Conclusions
Ecoset provides an alternative to ILSVRC 2012 by featuring a
more ecologically valid distribution of categories based on spo-
ken word frequency and human concreteness ratings. We have
shown that training deep neural networks on ecoset, instead of
the commonly used data from ILSVRC, produces DNN repre-
sentational spaces that are not only more consistent with those
found in human HVC but that also align better with human

perceptual judgments. The size of these statistically significant
benefits is modest, but as we have shown here, they replicate
across two architectures, trained instances of these architectures,
two brain-activity data sets, and human similarity judgments.
Moreover, the observed benefits for predicting representational
geometries of animate objects (including response similarities
among animate objects as well as between animate and inani-
mate objects) was consistent across network architectures
and datasets.
As a step in the direction of increasing the biological plausi-

bility of deep network architectures, we here designed vNet such
that the model receptive field sizes mirror the progression of
foveal receptive field sizes across the human visual hierarchy.
Future work should explore in how far the interplay of ecoset
and the introduction of further biological details, such as re-
currence (30–34), skip connections, and more biologically more
realistic learning rules can further improve model predictions (6,
8). Another aspect worth considering is the learning objective.
We here trained all DNNs to optimize for categorization per-
formance. While this task is undoubtedly of ecological relevance,
the explanatory power of unsupervised objectives (35–37), se-
mantically better-informed training targets, and their interplay
with ecoset will be worth considering going forward.
To test our networks against brain data, we here focused on

similarities between representations learned by DNNs and the
ones found in human HVC across two separate and diverse
fMRI datasets. Whereas dataset 1 focused on stimulus variety
(1,200 natural scenes shown to each participant), dataset 2 relied
on high repetition rates for fewer stimuli (92 segmented objects).
We think that this dataset diversity is an important aspect for
evaluating new computational resources, such as ecoset and
vNet. Although we observed significant benefits of training on
ecoset in all cases, it should be noted that the lower bound of the
noise ceiling of dataset 1 in particular is comparably low, likely
due to individual differences among the small number of par-
ticipants and because of our choice of using single-trial responses
to individual images rather than averaging images showing the
same object categories. The resulting variability in lower-bound
estimates needs to be taken into account when interpreting the
observed high network performance. Individual differences also
exist among DNNs (21), and it will be of interest to relate these
two phenomena.
In addition to acquiring better fMRI datasets to further un-

derline the generality of the effects observed [more data per
subject, more stimulus variety including diverse object poses and
orientations (38), higher field, higher contrast-to-noise ratio], a
promising avenue of future research is large-scale, in silico
neurophysiology, which could be used to better understand how
unit selectivity changes as a result of training with ecologically
more valid input statistics. Here, we presented a first foray into
this domain by showing that ecoset training leads to an increase
in face-selective units in final network layers. Moving further into
the domain of behavior, it will be of interest to perform in-depth
tests of ecoset-trained networks (supervised or unsupervised) to
compare their task performance and error distributions against
human behavioral data (39–42).
To enable rapid adoption by the community, ecoset is openly

available for research purposes at https://dx.doi.org/10.24433/
CO.4784989.v1. We also provide all trained vNet and AlexNet v2
instances along with a web interface that allows users to extract
activation patterns and RDMs in response to their own stimulus
sets. In addition to use cases in computational neuroscience, we
expect ecoset to be useful to the machine learning community
where it provides a challenging computer vision benchmark.
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Materials and Methods
Ecoset Dataset.
Overview. This section provides an in-depth description of ecoset category
and image selection procedures. Please refer to SI Appendix, Table S1 for a
list of all 565 ecoset categories together with their word frequency, con-
creteness rating, frequency concreteness index (FCI), and the corresponding
number of images.

Ecoset was created as a large-scale image resource for deep learning and
human visual neuroscience more generally (see ref. 43 for a related dataset
designed for experimental work in psychology and neuroscience). A total of
565 categories were selected based on the following: 1) their word fre-
quency in American television and film subtitles (SUBTLEX_US, 10), 2) the
perceived concreteness by human observers (11), and 3) the availability of a
minimum of 700 images. Images were sourced via the overall ImageNet
database (the same resource used for ILSVRC 2012) or obtained under
CC BY-NC-SA 2.0 license from Bing image search and Flickr. Thorough data
cleaning procedures were put in place to remove duplicates and to assure an
expected misclassification rate per category of <4%.
Category selection. The aim of ecoset was to provide the community with a
dataset that contains ecologically more valid categories than typical com-
puter vision datasets that were designed toward engineering goals. Starting
from all nouns in the English language, two parameters were used to guide
the selection process. First, the frequency at which a given noun occurs in a
linguistic corpus of spoken language was used as a proxy for concept im-
portance. Second, human ratings of each noun’s concreteness were used to
focus on categories that have a physical realization and which can therefore
be readily visualized (compare for example the nouns “strawberry” and
“hope,” which are at opposing ends of the concreteness spectrum). Only
nouns with an associated concreteness rating of 4.0 or higher were consid-
ered for inclusion. We then combined the two selection parameters, fre-
quency, and concreteness by defining an FCI (defined below). This enabled
us to focus on the most common, most concrete nouns of the
English language.

Estimates of noun frequency were based on a linguistic corpus consisting
of American television and film subtitles (SUBTLEX_US, 10). Concreteness
estimates were publicly available (11). These data were collected via Amazon
Mechanical Turk, asking participants to rate words (40,000 total) with regard
to their concreteness on a five-level Likert scale. Frequency estimates and
concreteness ratings were each standardized to a range between 0 and 1.
FCI was subsequently defined as the average standardized frequency and
concreteness. It ranges from 0 to 1. We computed the FCI for all words
contained in the concreteness rating dataset (11) and processed the 3,500
nouns with the highest FCI rating in depth.

FCI = 0.5 *
wordf   requency

max word   frequency( ) + 0.5 *
concreteness

max concreteness( )
Only nouns that describe basic-level categories were considered for inclusion.
Please note that the definition of basic-level categories is a matter of an
ongoing scientific debate, and basic-level judgments can vary across indi-
viduals (44). Because of its inherently subjective nature, the classification of
nouns that constitute basic-level categories was performed repeatedly across
the whole set by the authors, and the selection was subsequently verified by
two project independent researchers.

In detail, category selection was performed using the following criteria:
First, nouns describing subordinate and superordinate categories were ex-
cluded in favor of basic-level categories (for example, “terrier” and “animal”
were excluded in favor of “dog”). Moreover, only single-word concepts
were included as candidates, excluding separated compound nouns as their
own entities (e.g., “sail boat,” “fire truck,” etc.), as these are often part of a
basic-level category (in the previous example “boat” and “truck,” respec-
tively). Third, we excluded nouns describing object parts (e.g., “wheel,”
“roof,” or “hand”), as they constitute parts of objects in other basic-level
categories, thereby rendering the image categories ambiguous. Moreover,
although the human brain exhibits visual areas that appear uniquely selec-
tive to certain categories, such as body parts [faces, hands, etc. (5)], such
selectivity should ideally emerge as a result of network training according to
an externally defined objective. Including them as explicit training targets
would prohibit analyses of such emergent phenomena. Fourth, synonyms
were combined into a single category (e.g., “automobile” and “car” are
summarized into a single “car” category). The resulting set of nouns de-
scribes basic-level categories for which the resulting images can be ascribed
to a single category as commonly used in many one-hot encoded deep
learning applications. The final set of ecoset categories is distinctively dif-
ferent from the category selection ILSVRC. First, ecoset focuses on basic-level

categories rather than category labels from various levels of categorical
abstraction. Second, only 24% of categories in ecoset have a matching
ILSVRC category. As a more conservative estimate, we furthermore included
comparisons across category levels by including all WordNet hyponyms of
each ecoset category for comparisons (e.g., counting the ILSVRC category
“Brittany spaniel” as a match to ecoset’s “dog”). Please note that this match
across category levels (i.e., matching basic-level ecoset categories to subor-
dinate categories in ILSVRC) is quite conservative, as the underlying cate-
gorization task is different. Nevertheless, we find only 16% of ecoset
categories to have a matching WordNet hyponym in ILSVRC.
Image selection and technical validation. Most images (∼94%) were sourced
from the ImageNet database [of which the well-known ILSVRC 2012 dataset
with its 1,000 object categories is a subset (4)]. To compute the actual image-
based overlap between ecoset and ILSVRC, we ran a similar analysis used for
duplicate removals, as described in detail below, across both datasets (ecoset
and ILSVRC). We find that only 12.7% of images in ecoset also appear in
ILSVRC 2012, indicating little overlap between the two datasets. To find
images matching a given ecoset category, we used the ImageNet web in-
terface to manually search for appropriate WordNet synsets to be included.
Multiple synsets could be selected as sources for a given category.

As additional resources for finding images, we used Bing and Flickr image
searches based on the category names, synonyms, and their translations into
other languages (French, Spanish, Italian, and German). Image search via
Flickr and Bing was constrained to images under CC BY-NC-SA 2.0 license. For
the Flickr application programming interface (API), we chose option one
(NonCommercial-ShareAlike License), and for the Bing API we chose the
option “share,” both referring to CC BY-NC-SA 2.0. In the final ecoset
dataset, 5.1% of images were obtained via Bing and 1.4% were obtained
via Flickr.

To maximize the probability that all images in the ecoset dataset are
unique, a duplicate removal procedure was implemented. This was designed
to not only spot exact duplicates but also more subtle variations, including
different sizes or different aspect ratios. Duplicate removal was performed
for each category separately. First, we cropped the center square of all images
of the category, resized them to 128 × 128 pixels, and performed a principal
component analysis (PCA) preserving 90% of the variance across all images
of that category. The similarity of all image pairs was computed based on a
Pearson correlation between their respective PCA component loadings.
Based on 10 exemplary categories, we established a cutoff value above
which a pair of images was labeled as duplicate (Pearson r > 0.975). If
multiple duplicates per category instance existed, only the image with the
largest resolution was kept for ecoset.

We performed a manual image inspection procedure to ensure that the
ecoset images were correctly classified. All images sourced via Bing and Flickr
(97,379 images in total) were visually inspected, and misclassified instances
were removed. For images obtained via ImageNet, we visually inspected 100
randomly sampled instances from each ecoset category. If more than four of
those 100 images were found to bemisclassifications, the whole category was
manually cleaned. Otherwise, all images were included. As a result of this
cleaning procedure, we expect the error rate of all ecoset categories to be
lower than 4%.

Due to the large-scale sampling of images via the web required for ecoset,
some of the images used to train the DNN models contained nudity. These
images were removed in creating the publicly available version of ecoset to
allow for more straight forward adoption by all community members. Im-
ages were marked for removal if the probability of containing not safe for
work (NSFW) material exceeded 0.8, estimated using a DNN trained for
NSFW detection [Yahoo (45), https://github.com/yahoo/open_nsfw]. Note
that only 118 (out of >1.5 million) images had to be removed.
Trimmed dataset versions. Ecoset and ILSVRC 2012 differ in the number of
categories (565 versus 1,000) and in the distribution of the number of images
per category. These differences might confound their ability to predict neural
data. To control for this possibility, we created “trimmed” versions of both
datasets that are identical in the number of categories and the distribution
of the number of images per category. For this, we selected all 565 cate-
gories from ecoset and a subset of 565 randomly chosen categories from
ILSVRC 2012. To hold the number of images per category equal across
trimmed image sets, while retaining the maximally possible number of im-
ages, the following procedure was implemented. First, we ordered the 565
categories of ecoset and trimmed ILSVRC 2012 according to category size
and paired the categories from the sorted list across images sets (e.g.,
pairing the largest category of ecoset with the largest category of ILSVRC).
For each category pair, one from each dataset, we then selected the larger
category and randomly removed images to match the number of images in
the smaller category. As a result, trimmed ecoset and trimmed ILSVRC both

6 of 9 | PNAS Mehrer et al.
https://doi.org/10.1073/pnas.2011417118 An ecologically motivated image dataset for deep learning yields better models of human

vision

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

F
eb

ru
ar

y 
18

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011417118/-/DCSupplemental
https://github.com/yahoo/open_nsfw
https://doi.org/10.1073/pnas.2011417118


contain 565 categories and follow the same distribution of category sizes
with minimally 600 to maximally 1,300 images per category in the respective
training sets.
Limitations of ecological validity. As stated above, the category selection of
ecoset was based on human concreteness ratings and word frequencies in a
corpus consisting of American television and film subtitles. This undoubtedly
biases the category selection toward Western cultures. Image inclusion was
based on the availability via Bing/Flickr search results as well as the existence
of relevant ImageNet categories. Images depicting people, specifically the
categories “man,” “woman,” and “child,” were not sampled according to
census distributions (age, ethnicity, gender, etc.). Moreover, ecoset image
and category distributions do not reflect the naturalistic, egocentric visual
input typically encountered in the everyday life of infant and adults (46, 47).

Deep Neural Network Architectures.
vNet. The vNet architecture, as introduced here, was designed such that the
effective kernel sizes across network layers mirror the progressive increase of
average receptive field (RF) sizes along multiple areas of the human ventral

stream (Fig. 4A). As model targets, we chose human V1, V2, V3, hV4, LO, TO,
pFUS, and mFUS. As a substantial part of the human ventral stream lies
anterior to these eight regions, including object- and concept-selective re-
gions (48–50), we included two more layers to the final network while fol-
lowing the same incremental trends in RF size. The network’s total field of
view was set to 3° of visual angle, and the human receptive field sizes were
defined based on population receptive field estimates obtained at an ec-
centricity of 0.75° visual angle to mirror the average foveal RF size (19, 20).
Each vNet layer consists of a convolution operation, dropout, max pooling,
group norm, and a ReLU nonlinearity (no max pooling for the input and
layers [1, 2, 5, and 6]). Each of 10 network instances per training set was
trained for 80 epochs using Adam as optimizer, group normalization, a
minibatch size of 256, and dropout with a probability of 0.2. The networks
reached an average top-one test performance of 65.3% for ecoset and
59.3% for ILSVRC 2012. A weighted loss was used to correct for dataset
imbalances in the number of images across object categories.
AlexNet v2 (retrained). To compare the effects of training on ecoset versus
ILSVRC 2012 on more commonly used deep neural network architecture, we

B

A

Fig. 4. vNet design and statistical procedures. (A) The vNet architecture was designed such that the effective kernel sizes across its layers approximate the
progressive increase in average RF sizes in the central 3° of visual angle along human ventral stream areas. (B) To compare the representations learned by
DNNs and the ones found in human HVC, all network instances were shown the same stimuli as the human observers to extract their activation patterns.
Based on these patterns, RDMs were computed, one per layer and network instance. These dissimilarity matrices were then compared to the HVC RDMs of
each individual participant using Spearman’s correlation. We used the average of the individual participant correlations to estimate the predictive perfor-
mance of a given network instance and layer (see section Statistical Comparisons between Human IT and DNN Representations for details). The data noise
ceiling was computed by comparing individual participant RDMs to the average RDM of all remaining participants, again using a Spearman’s correlation.
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retrained AlexNet in its 2014 refined version (18). The most important dif-
ference of this version, apart from slightly different numbers of feature
maps in the first two layers, is the use of data instead of model paralleli-
zation. All training hyperparameters were chosen as closely as possible to
the original publication (learning rate 0.01, dropout 0.5, minibatch size 128,
momentum 0.9, and weight decay 0.0005). Varying the random seed for the
initial network weights, we trained 10 network instances each on both
datasets. Networks were trained for 90 epochs. The retrained AlexNet in-
stances reached an average top-one accuracy of 63.8% on ecoset and 58.1%
on ILSVRC 2012. A weighted loss was used to correct for dataset imbalances
in the number of images across object categories.
Off-the-shelf computer vision networks (original AlexNet, Densenet, VGG19). In
addition to training refined AlexNet (v2) and vNet instances on ecoset and
ILSVRC 2012, we tested other commonly used network architectures from the
domain of computer vision for their ability to mirror representations in
human HVC. These included VGG19 (24), DenseNet-169 (25), and the original
2012 AlexNet architecture (23). DenseNet and VGG19 were obtained via
Keras applications. Original AlexNet was obtained via the Caffe model zoo
(“bvlc_alexnet”).
DNN RDM extraction. To compare the network internal representations to
those observed in human ventral stream areas, we presented the networks
with the same two stimulus sets that were presented to the human partic-
ipants in the imaging experiments. We then computed layer-based network
RDMs for each instance by calculating all pairwise distances between the
high-dimensional network responses (using correlation distance as for the
fMRI data).
DNN in silico electrophysiology. We estimated the percentage of face-selective
cells in each layer of vNet and Alexnet by contrasting, for each network
layer, the units’ responsiveness to images showing either faces or places (50
stimuli each, taken from the ecoset test set). Units were deemed face se-
lective if they exhibited a significantly higher response to faces than places
(Wilcoxon rank-sum test P < 0.05, false discovery rate (FDR) corrected across
all units across the whole network). For each network layer, we then test for
significant differences in the percentage of face-selective units, using net-
work instances as observations (results Bonferroni corrected for the number
of layers per network at P < 0.05).

fMRI Data.
Overview. Data from human early visual cortex (EVC) and HVC were obtained
from two fMRI datasets (12, 13). Acquisition and preprocessing details can be
found in the corresponding publications. RSA was used to characterize hu-
man ventral stream representations in both regions of interest (ROIs). RDMs
were computed for each participant and ROI using correlation distance.

To estimate observation noise in the respective fMRI dataset and ROI, the
RDM of each participant was individually compared to the grand average
RDM of the remaining participants. The average of these correlations is
equivalent to the lower bound of the noise ceiling (1).
Dataset 1. This dataset consists of data from five healthy participants pre-
sented with a set of 1,200 photographs of natural objects with natural
background. Stimuli were presented at 12° of visual angle (12). A total of 312
stimuli contain animate objects (eight humans) and 888 inanimate objects
(64 plants). See Fig. 2 (left column) for exemplary images from this set. Low-
level visual cortex was defined to include areas V1 to V3. HVC was manually
delineated on the flattened surface of the individual participants to include
the lateral occipital complex (LOC), fusiform face area (FFA), and para-
hippocampal place area (PPA).
Dataset 2. This dataset consists of data from 15 healthy participants who were
presented photographs of 92 objects shown against a gray background (see
Fig. 2, right column for examples). Stimuli were presented at 2.9° visual

angle (13). The 92 images were sampled from human (12) and nonhuman
faces (12) and bodies (12 and 12 each) as well as natural and manmade in-
animate objects (23 and 21 images, respectively). EVC included areas V1 to
V3, as defined in the Glasser atlas (51). HVC was defined to include regions
along the IT and parahippocampal cortex, as defined in (30). For both ROIs,
EVC and HVC, the 500 most visually responsive voxels were selected for
subsequent analyses.

Statistical Comparisons between Human IT and DNN Representations. The
following procedure was implemented to test whether training on ecoset
rather than ILSVRC 2012 leads to network internal representations that more
closely mirror the ones found in early and high-level regions of the human
ventral stream. For each dataset, we extracted brain RDMs from each par-
ticipant and ROI as well as DNN-based RDMs for each network architecture,
instance, and layer. For each ROI and dataset, we then iterated through all
participants and correlated the upper triangle of the corresponding brain
RDM with the network RDMs using the Spearman’s rank correlation coef-
ficient (see Fig. 4B for a graphical depiction of the analysis pipeline for a
single participant). As a summary statistic, we averaged the correlation
values from all participants for each network instance and layer. This value
describes the average RDM similarity of a given network instance and layer
with all human participants. To test whether training on ecoset rather than
ILSVRC 2012 led to significant differences in model alignment with repre-
sentations in human IT, we took the RDM correlations obtained for each
model instance and performed a permutation test in which we shuffled the
dataset labels across network instances (10,000 iterations for vNet and all
possible 252 permutations for AlexNet v2). The test was performed for each
network layer, architecture, and fMRI dataset separately. To control the
family-wise error rate, we used a Bonferroni correction for the number of
network layers (i.e., the number of tests performed for each network ar-
chitecture, ROI, and dataset; vNet: 10 and AlexNet v2: seven). Moreover, we
estimated the 95% CIs for the predictive performance of both architectures
using bootstrapping of the network instances (1,000 samples).

Human Behavioral Data. In addition to testing our models against represen-
tations found in human HVC, we compared our network internal repre-
sentations for their agreement with behavioral data, obtained from human
similarity judgments (14, 28). Using the same stimulus set as in fMRI dataset
2, participants were asked to communicate perceptual object similarity by
arranging sets of multiple object images in 2D on a computer screen by
mouse drag and drop. Combining data from multiple trials of this ar-
rangement task, a perceptual similarity matrix can be computed for each of
16 participants. This matrix has the same format as the RDMs used previ-
ously. Statistical comparisons between perceptual and DNN dissimilarity
matrices were performed in analogy to the previous fMRI analyses. The data
were previously presented in ref. 14.

Data Availability. All materials presented in this paper (ecoset dataset, pre-
trained networks, and test stimuli) are openly available for research purposes
via CodeOcean (52): https://dx.doi.org/10.24433/CO.4784989.v1.
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