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Vision gives us a rapid sense of our surroundings that exceeds 
the information in the retinal image and provides a struc-
tured understanding of the scene. The structure imposed on 

the basis of prior knowledge is central to perception as an inference 
process1,2 and to a causal and compositional understanding that 
enables us to consider counterfactuals and act intelligently3. The 
basic building blocks of our perceptual representation are objects. 
Our percepts include parts of objects that are occluded by other 
objects or behind us. Out of sight, for a mature primate, is not out of 
mind4. Relevant objects that become invisible remain represented, a 
memory trace, and may even be animated in our minds according 
to a rough approximation of the laws they obey in the world.

Human behavioural researchers have quantitatively investigated 
these phenomena using a wide range of ingenious experimental 
paradigms. They have condensed the insights gained from the data 
in cognitive theories, which describe separate mechanisms for see-
ing ‘stuff ’5 and seeing ‘things’6. Stuff has come to refer to parts of 
the visual scene represented in terms of summary statistics7–9 that 
capture textures, materials and perhaps categories at an aggregate 
level. Things are the objects that our brains pick out for individu-
ated representation. An object representation may explicitly bind 
together the parts of each object and the image features that each 
part accounts for10. An object’s missing information may be filled 
in by inference using prior information11. Cognitive scientists have 
described how bottom-up and top-down processes interactively 
determine the formation of a limited number of object representa-
tions that are accessible to higher cognition12.

The object representations may have a life of their own, simulat-
ing trajectories and interactions among objects to predict the future. 
Short of foreseeing the future, even being on time in representing 
the present requires prediction to compensate for signalling delays 
in the nervous system. The perceived world emerges from the con-
fluence in the inference process of prior information and present 
sensory signals13,14. Our brains combine past experiences over mul-
tiple time scales to best predict the present and the future1,2,15,16.

Cognitive scientists want to understand these dynamic and con-
structive inferences and the representations of objects in the human 
mind. Object representations abstract from the sensory features and 
cast the world as a composition of entities that can be acted on and 
named. This places object representations at the nexus of percep-
tion, action and symbolic cognition (Fig. 1).

Engineers may not be interested in modelling the human mind. 
However, engineering also benefits from models that have concepts 
of objects because they promise, for example, to enable a robot to 
understand the structure of the world, and to reason, plan and act on 
this basis. For humans and machines alike, decomposing the world 
into objects may facilitate the modular reuse of learned knowledge 
and simplify complex inferences. An object-based representation 
provides a radical abstraction from the stream of sensory signals, a 
predictable scaffold of reality and a basis for causal understanding. 
Building models with object-based representations is therefore a 
crucial challenge for engineering17,18 as well as for cognitive science.

Parsing the world into objects requires an operational definition. 
What is an object? A key criterion is physical cohesion19. As written 
previously20, “If you want to know what an object is, just ’grab some 
and pull’; the stuff that comes with your hand is the object.”. This 
operational definition grounds objects in the physical structure of 
the world. Sensorimotor interactions, such as grabbing and pull-
ing, may help us to acquire the perceptual ability to parse the world 
into objects in early development4. They also continue to serve us in 
maturity, enabling us to confirm, through direct experimentation, 
our perception that something is an object. The operational ‘what 
if ’ nature of this definition reveals that objects are rooted in a causal 
understanding of physical reality3.

Object-based representations carve the scene at its physical 
joints. Reducing a million retinal signals to a few behaviourally rel-
evant objects requires prior knowledge of the physical world, prior 
percepts from the present scene and selection of what is relevant in 
light of the current behavioural goals. The present sensory evidence 
does not solely determine the percept; it is just one of a number of 

Capturing the objects of vision with neural 
networks
Benjamin Peters   1 ✉ and Nikolaus Kriegeskorte   1,2,3,4 ✉

Human visual perception carves a scene at its physical joints, decomposing the world into objects, which are selectively 
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constraints. Thus, object representations untether and emancipate 
perception from the stream of sensory signals.

Engineering has made substantial inroads towards this type 
of dynamic and constructive perceptual inference. The integra-
tion of sensory data over multiple timescales is captured by the 
Bayes filter, a recurrent mechanism that stores a compressed rep-
resentation of recent experience for optimal representation of the 
present moment21. Recurrent neural networks (RNNs) provide 
a universal model class for such inferences that can implement 
Bayes filters22. However, getting RNNs to perform this kind of 
inference for natural dynamic vision (video) remains challenging. 
Computer vision therefore heavily relies on feedforward convolu-
tional neural network (CNN) models, which analyse each frame 
separately through a hierarchy of nonlinear transformations23,24. 
Feedforward deep CNNs can learn static mappings from images 
to category labels or structural descriptions of the scene. However, 
the representations in these models remain tethered to the input 
and lack any concept of an object. They represent things as stuff25. 
They cannot combine information over time such as to condition 
current perceptual inferences on past observations. They may also 
not be ideal for parsing scenes into objects. These limitations may 
explain why the performance of feedforward convolutional net-
works is brittle, breaking down when the models must generalize 
across domains26. The models lack what humans have—a genera-
tive structural and causal understanding of the world—to stabilize 
their perception27–29.

A generative mental model is a model of the process that gen-
erates the sensory data. A mind that uses a generative model is 
challenged to comprehensively explain all aspects of the sensory 
data, rather than taking a shortcut and selectively extracting only 
behaviourally relevant information30. In the context of a generative 
model that captures our prior assumptions about the world, per-
ception can be conceptualized as inference1. Probabilistic inference 
provides a normative perspective on how perception should work 
to make optimal use of limited sensory data. In particular, human 
vision is often conceptualized as an approximation to probabilistic 
inference on a generative model2,16,31. However, given limited neural 
hardware and compute time, it is difficult to implement the norma-
tive ideal. The cognitive theories and neural network mechanisms 

that we review here can be understood as heuristic approximations 
to inference on a generative model.

Cognitive scientists and engineers have begun building models 
that can maintain an internal state and dynamically map the sen-
sory input to internal object representations that have their own 
persistence and dynamics. Brains and models must decide what 
qualifies two bits of the visual image to be grouped together as 
parts of the same object32,33. Containment within a closed contour 
and persistence over time of shape, colour and motion are key fac-
tors that determine how humans segment a scene into objects19,20. 
These factors are encapsulated by the more general notion of spa-
tiotemporal contiguity, which provides evidence for an underlying 
physical property—cohesion. But how are the sensory indications 
of spatiotemporal contiguity combined and their conflicts resolved? 
How are the object representations untethered from the sensorium, 
and made to persist when the object disappears behind an occluder? 
How are they animated jointly by sensory data and generative mod-
els of the world? These remain computational mysteries of the 
human mind and brain.

The focus of this Review is on the general computational mech-
anisms of object-based representations, which are generative and 
recurrent and complementary to the discriminative feedforward 
mechanism underlying the initial sweep of activity through the 
visual hierarchy. We describe these mechanisms in the context of 
generic rigid bodies. However, these general mechanisms could be 
replicated in the brain in domain-specific modules that are adapted 
to the particular properties of behaviourally important objects. 
Similar to the feedforward mechanisms that learn the appearance of 
objects in different domains (such as faces, people, animals, build-
ings, food and tools), the object-based mechanisms will also adapt 
to the behaviour of the objects, including their ways of moving (for 
example, facial expressions), their rigidity (for example, for rocks 
and buildings) or articulation (as for bodies and tools), their inter-
actions with other objects (be it according to the laws of classical 
mechanics or theory of mind) and their behavioural relevance.

We first review behavioural phenomena and cognitive theo-
ries of human object representations, and then the current state 
of neural network modelling. Our goals are to highlight parallels 
between cognitive concepts and neural network model mechanisms 
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Fig. 1 | Stages of untethering human visual object perception from the sensorium. As the golden ball moves behind the blue box (left; top to bottom),  
it is first unoccluded, then partially occluded and finally fully occluded. It remains represented at the level of its object file even when fully invisible.  
The initial segmentation parses the scene into groups of features, each corresponding to one of the objects. Amodal completion may occur for partially 
occluded objects, completing the invisible portion of the object on the basis of short-term or long-term memory of its shape. A subset of the objects 
may be encoded in a non-retinotopic object-based representation (for example, object files). Object files can sustain information about the presence and 
properties of objects across temporary occlusions, untethering the object representations from the sensorium. Untethered object representations can be 
considered to be an interface between perception and symbolic thought, prediction, mental planning and action.
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and to discern what characteristics of human object representa-
tions are missing in current neural network models. We hope that 
this Review will (1) help modellers to understand the behavioural 
literature, (2) help behavioural researchers to understand the com-
putational literature and (3) help both groups to develop tasks that 
can serve simultaneously as probes of human cognition and as  
benchmarks for computational models.

Cognitive theories
Cognitive scientists have explored object vision with behavioural 
experiments, and their concepts and theories summarize the insights 
gained (Fig. 1). Grouping of visual features and amodal completion 
yield a rapid initial scene segmentation that transcends the static 
filters of the feedforward visual hierarchy, but remains tethered to 
the retinal reference frame. This retinotopic representation forms 
the basis for selection of a limited set of objects for representation 
in an object-based reference frame, known as object files or slots. 
At this level, object representations are untethered from the retinal 
reference frame and may enter central cognition34–36 and interaction 
with other cognitive systems37,38. To date, the cognitive concepts that 
we review here lack full mechanistic specification. However, they 
help to summarize the behavioural phenomena, decomposing the 
cognitive processes and providing essential stepping stones towards 
their implementation in neural network models.

Tethered to the retinal reference frame: pixels to proto-objects. 
Grouping features. The simplest way to combine evidence over space 
is using static filter templates. This is the mechanism of models of 
V1 simple and complex cell responses39. A hierarchy of such filters40 
yields texture statistics at different spatial scales, as used in convo-
lutional feedforward neural networks23. However, there is evidence 
that the visual system also uses lateral recurrent signal flow to relate 
collinear edges41–44. Dynamic recurrent processing through lateral 
interactions may provide a more flexible mechanism for grouping 
features at larger scales. Imagine, for example, the set of all smooth 
closed contours. The combinatorics of feature configurations form-
ing a smooth closed contour may render the representation of this 
set with a basis of static filters unrealistic. However, the regularity 
of smooth continuation can be exploited by a model using lateral 
recurrent connectivity.

Principles of perceptual grouping were first identified by Gestalt 
researchers45–47, who noted that people perceive visual elements as 
grouped by principles including continuity, proximity, similarity, 
closure, prägnanz and common fate. One of these principles, conti-
nuity, involves the detection and integration of contour elements42, 
and the computation of border-ownership for the creation of surface 
representations48. Feedforward49 as well as recurrent operations50,51 
that incrementally group contours by spread of activation52 have 
been proposed. Perceptual grouping is influenced by several factors, 
such as binocular disparity53, textures7, temporal coincidence54 and 
knowledge about object appearances55.

Local integration processes may give rise to a mosaic stage56, in 
which each connected set of visible parts of an object forms a group. 
The mosaic stage is similar to Marr’s57 full primal sketch, in which 
contour integration gives rise to an initial grouping. In Marr’s theory, 
the primal sketch is followed by the 2.5-dimensional sketch, which 
represents the visible portions of objects as surfaces and assigns a 
depth to each patch of the image. Once surfaces and depth rela-
tionships are represented in the 2.5-dimensional sketch, the visual 
system can infer how objects may extend behind occluders. Disjoint 
mosaic pieces belonging to the same object (disconnected by occlu-
sion) can be grouped together and the occluded parts filled in.

Amodal completion. Visual scenes often contain objects that are 
partially occluded by other objects. Moreover, objects always 
occlude their own back sides. We nevertheless perceive them as 

three-dimensional wholes. It has been proposed that this subjec-
tive experience might result from a process that explicitly fills in 
the missing parts of an object in our mental representation. The 
process has been called amodal completion58 because, in contrast to 
perceptual filling-in (that is, modal completion)59, it transcends the 
sensory modality—the occluded part or back side of an object is not 
visually perceived, yet it is part of the percept.

Beyond the phenomenology of subjective experience, the hypoth-
esis of an amodal completion process suggests testable behavioural 
predictions. A partially occluded object should elicit priming effects 
that match those elicited by its complete form, rather than those 
elicited by its visible fragments (Box 1). This prediction has been 
confirmed in behavioural experiments56. Similar predictions have 
been confirmed for discrimination60 and visual search tasks61,62. 
These studies have also shown that it takes time for amodal comple-
tion to emerge, suggesting that it relies on recurrent processing56,60.

Amodal completion must rely on prior knowledge. It could use 
general knowledge about the statistics of images (for example, the 
knowledge that edges tend to extend smoothly) or about the shape 
of objects (for example, the knowledge of the shape of an occluded 
part of a letter). It could also rely on knowledge gleaned moments 
earlier from having observed the now occluded parts of the object. 
There is evidence that amodal completion extends edges behind 
occluders if a continuous smooth connection exists63. Amodal 
completion is also thought to fill in missing parts of surfaces61 and 
volumes64. Local completion extends and connects object contours 
mostly linearly according to the Gestalt principle of good continu-
ation (Fig. 2b). Global completion refers to completion that prefers 
symmetric solutions65 (Fig. 2c) probably occurring in higher visual 
areas such as the lateral occipital complex66,67. More generally, the 
term perceptual closure68,69 refers to completion based on prior 
knowledge about the shape or appearance of an object (Fig. 2d).

Amodal completion may best be construed as an inference pro-
cess—the visual system’s best guess about the missing part, given the 
current evidence and prior knowledge. The computational function 
of making the inferred information explicit might be to support fur-
ther inferences about the object.

Proto-objects. The initial input segmentation occurs in parallel and 
pre-attentively across the visual field35,70. These processes are largely 
independent of conscious cognition, in the sense that our conscious 
thoughts cannot penetrate and interfere with them71. For example, 
consciously thinking that the horse pattern in Fig. 2e should extend 
regularly behind the occluder does not prevent the visual system 
from generating the percept of an elongated horse.

These initial segmentations are thought to be tethered to the  
retinal reference frame. As a consequence, they are subject to change 
whenever we move our eyes or the world evolves. Moreover, the 
grouping of features might not yet be definitely established at this 
early stage. It might be best understood as a set of tentative feature 
associations than a full parse of the scene into object representa-
tions72. Thus, these representations have been termed proto-objects12, 
to acknowledge their volatile and tentative nature. Transforming a 
proto-object representation into a stable and spatiotemporally coher-
ent object-based representation will require selection by higher cog-
nitive processes and untethering from the retinal reference frame.

Untethered from the retinal reference frame: object files and 
pointers. To individuate objects and combine the distributed evi-
dence about them, the visual system has to overcome a fundamental 
challenge—how to group the spatiotemporally disjoint pieces into 
a coherent object representation? In the retinal reference frame, 
the pieces had to be grouped in space. Now the grouping prob-
lem extends in space and time. Rather than segmenting retinal 
space, the system must carve out a ‘space–time worm’20 from the  
spatiotemporal input (Fig. 2f)).
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How does the visual system link distinct sensory inputs across 
occlusions or saccades to a single object-centred representation? In 
many situations, this correspondence problem73 is solved by assess-
ing the spatiotemporal continuity of objects20,74,75. A notable exam-
ple is the ‘tunnel effect’76. An object that moves behind an occluder 
and reappears with a different appearance (such as a different colour 
or even category) may still be considered to be the same object by 

the visual system instead of two different ones11,77. A single object is 
more likely to be perceived if the pre-occlusion stimulus is similar 
to the post-occlusion stimulus78,79, suggesting a general mechanism 
that flexibly weighs object feature dimensions to infer correspon-
dence80. If correspondence is inferred, we perceive a single object 
of which the appearance combines pre- and post-occlusion sen-
sory signals. The post-occlusion appearance of the object is biased 

Box 1 | Probing human perception of untethered objects through tasks in behavioural experiments

Cognitive scientists have developed a variety of ingenious tasks to examine human perception of untethered objects with behavioural 
experiments. a–d, Grouping tasks. Four different tasks for contour integration and grouping. a, Decide as fast as possible whether two 
dots lie on the same or different lines265. b, Decide whether the dot lies inside a closed contour264. c, Decide whether both red dots lie 
on the same object291. d, Detect the direction of the horizontal offset between the central vertical lines in the presence of flankers. The 
task is more difficult if the flankers are also isolated (crowding, left) and is easier if the flankers are part of a coherent object (uncrowd-
ing, right)241. e, Amodal completion. A partially occluded shape (here, a circle) is presented as a prime. Subsequently, the participants 
are presented with two shapes and have to decide whether they are identical56. Responses are faster if these shapes match the percept of 
the prime (for example, the circles if the percept was amodally completed). f, Object-reviewing paradigm. In a typical object-reviewing 
trial85, two objects containing a letter are presented during the previewing display. In the test display, only one letter is presented and 
needs to be identified. Reactions are faster if the letter is in the same object as in the previewing frame. Here, the objects also switch posi-
tions. g, Object-based attention. In the object-based attention task100, one end of one object is briefly flashed to attract attention to this 
position. After a brief delay, the participants have to react as quickly as possible to a target (red dot). Reactions are faster when the target 
appears in the same object (top) as the flash compared with when the target appears in the other object (bottom). h, Multiple-object 
tracking. A set of targets is flashed initially and has to be tracked among identical distractors. After the tracking phase, participants have 
to select the identity of the tracked targets91. i, Violation of expectation. Violation of expectation to study object permanence and physi-
cal reasoning. Here, a solid ball disappears behind a wall that subsequently folds down. The observer’s surprise is measured (for example, 
by measuring the looking time) in response to this physically impossible sequence of events107. j, In the block–copy task, participants 
have to reconstruct a model visual pattern in a workspace area using building blocks from the resource area266.
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towards the pre-occlusion stimulus81,82. Similarly, eye-movement 
studies83 suggest that both the locations and appearances of stimuli 
are used to establish correspondences across saccades84.

Correspondence computations support stable internal repre-
sentations of individuated, untethered object representations that 
transcend the retinal or spatial reference frame. Different cognitive 
theories have been proposed that encapsulate empirical findings of 
how object representations might interact with the retinal bound 
proto-object representational level12,85,86. These theories emphasize 
the importance of space over other features to individuate and keep 
track of objects. Different objects tend not to occupy the same por-
tion of space simultaneously. The natural domain to uniquely track 
objects across time is therefore the spatial domain. Feature inte-
gration theory suggests that segregation of the input into objects 
and binding of object features to coherent representations occurs 
through space70. Pylyshyn86 proposed an indexing system that indi-
viduates and tracks objects through spatial pointers or indices. 
Although visual indexes are pointers to locations, they themselves 
encode no object properties. Thus, Pylyshyn termed his theory fin-
gers of instantiation (FINST), as indices work like physical fingers; 
without knowing anything about the tracked (pointed to) object, 
spatial information such as a location or spatial relations between 
different fingers can be extracted.

Similarly, Kahneman et al.85 proposed that our visual system 
individuates each object by creating an object file that groups a sub-
set of the proto-objects carved out in the retinal reference frame 
on the basis of spatiotemporal factors. In contrast to visual indices, 
object files are thought to also store information about the proper-
ties of the object (such as colour and shape), therefore rerepresent-
ing and binding essential sensory information in a coherent object 
representation85. This process is termed identification because the 

feature information defines the identity of each object. Evidence for 
separate processing of object features bound into a coherent object 
representation comes from studies in which humans perceive illu-
sory conjunctions of features of two different objects72 under some 
conditions, demonstrating the failure of the process. The individ-
uation of an object is thought to precede the identification of its 
appearance, as famously captured by the observation of Kahneman 
et al. (p. 217 of ref. 85) that humans can conceive of something as 
the same thing while its identity remains in flux and might change 
substantially over time: “Onlookers in the movie can exclaim: ‘It’s a 
bird; it’s a plane; it’s Superman!’ without any change of referent for 
the pronoun”.

One of the hallmark features of human cognition is that the 
number of simultaneously maintained object files is highly limited. 
These capacity limitations are often phrased in terms of limited 
attentional resources. Spatiotopic maps may encode the distribution 
of attention over the visual field. These spatial attention maps87 may 
be the access point of the spatial indexing system in which object 
files could be created from saliency peaks by centre-surround inhi-
bition. Multiple object files can then each be tracked by top-down 
attention in the spatial attention map88. A mechanistic explanation 
for the capacity limitation of the object-file system is therefore sur-
round inhibition89 between spatial pointers in these maps90. One 
influential class of tasks that now has been used in hundreds of 
empirical studies is multiple-object tracking91 (Box 1h). Humans 
can track a limited number of objects (perhaps three or four) even 
through full occlusions91–94. Subsequent research found that the 
tracking limitations can be better described by a flexible resource95 
that is independent across hemifields88. For example, if a slower 
object speed reduces spatial crowding, up to eight objects can  
be tracked96.

Time
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Fig. 2 | Completion phenomena. a, There appears to be a solid white triangle occluding the black contours of another triangle. The percept of the  
occluding white triangle is an example of modal completion, because the inferred contours appear as though they were present in the visual modality.  
The percept of the occluded black triangle is an example of amodal completion, because the missing black contours are perceived to exist, but are 
not visually perceived283. b, The bottom black line segments appear to be connected behind the grey box. This is an example of amodal completion 
because the inferred continuation is not perceived as visible in the image. c, A complete grey square appears to be present. This is an example of amodal 
completion on the basis of global shape cues. d, We perceive a face lit from the right. This is an example of perceptual closure68. e, People may perceive 
a giraffe-like rider (top left black box) or an elongated horse (bottom right black box)284. These percepts are inconsistent with both the global repetitive 
pattern and our prior knowledge about the anatomy of horses and people. Such illusions demonstrate that local cues can override global cues and prior 
knowledge in the perceptual inference process. f, We perceive a single golden object extending behind the blue occluder (left). This is an example of 
amodal completion that requires grouping of all of the golden bits across space. Perceptual inference can also group bits of visual evidence across space 
and time simultaneously. Right, frames of a video in which a golden ball oscillates behind a blue occluder. When watching such a video, we perceive a 
persistent object, the presence of which continues across periods of total invisibility. Our visual system groups the golden bits into a space–time worm. 
This is an example of spatiotemporal amodal completion.
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The selection of an object for tracking entails a processing 
advantage for all of its elements and for the spatial positions it 
occupies94,97. This manifests in faster and more accurate detection 
of targets that appear on tracked compared with untracked objects. 
The processing advantage extends across the whole representation 
and suggests that objects are the fundamental units of attentional 
selection98. Object-based attention benefits both dynamic and static 
objects34,99–102, objects that are only partially visible and completed 
amodally103, and even objects that are completely invisible and 
retained in memory for a brief duration104,105.

Object permanence, visual working memory and mental simu-
lation. Objects can transiently cease to elicit retinal responses, for 
example when they become occluded and when we shift our gaze. 
However, internal object representations can remain stable even 
with their links to the input momentarily severed. The knowledge 
that out of sight is not out of mind has been termed object per-
manence by Piaget4. In infants, artificial stimuli that violate object 
permanence elicit longer looking times, consistent with surprise 
(violation of expectation; Box 1i). The results of such experiments 
support the idea that a kernel of object permanence may be either 
innate or established within 3 or 4 months after birth106–108. However, 
the ability to represent objects that are not currently in view prob-
ably matures over early development109–111.

Adults can track objects through full occlusions without notice-
able performance decrements93. This suggests a remarkable ability 
of our visual system to attribute spatiotemporally disjoint sensations 
to the same coherent object representation. An object representa-
tion can better track the sensory signals elicited by its object if it 
captures the dynamics of its object and predicts its future location 
and state27. Evidence for mental simulations of object dynamics 
comes from studies of representational momentum, which show 
that people incorrectly estimate the angle of a suddenly disap-
pearing rotating object as slightly advanced along the rotational 
motion trajectory112. The mental simulations seem to be confined to 
first-order dynamics: humans appear to use velocity, but not accel-
eration, to simulate objects behind occluders113,114. From a norma-
tive perspective, prediction of the dynamics should be important for 
an object representation to track its object through longer periods 
of occlusion so as to find the sensory signals elicited by the object as 
it re-emerges. However, in most real-world scenarios that humans 
encounter, a coarse approximate prediction of the dynamics might 
potentially suffice to successfully track objects. Indeed, psychophys-
ical evidence suggests that human perceptual inferences rely heavily 
on coarse spatiotemporal heuristics115.

The fact that object representations can bridge occlusions 
implies that some information about the object is stored during 
occlusion. But what is the nature of this internal untethered rep-
resentation? Another frequent event that momentarily severs the 
object representations from the sensorium is the saccade, during 
which input into the visual system is suppressed (saccadic suppres-
sion116). Asking people to detect changes in visual patterns across 
saccades reveals that their transsaccadic memory is capacity-limited 
and does not retain detailed spatial information but rather abstract 
and relational information83,117.

The limits of human object representations are also evident 
in multiple-object tracking tasks. When the objects are suddenly 
occluded, people can recall location and velocity (including direc-
tion) information, but not the detailed identifying features of the 
objects118,119. In particular, shape and colour are difficult to con-
sciously recall a moment later120, although information about 
them (along with location and velocity) is maintained across 
occlusions78,79.

These findings suggest that the human visual system does not 
maintain an object representation that fully specifies all its features. 
Instead—for the purpose of bridging disruption of the input as 

caused by saccades or occlusions—only a small subset of the fea-
tures of an object is maintained.

A candidate system that can encode and maintain visual infor-
mation for a limited amount of time during occlusions or sac-
cadic remapping is visual working memory77,121,122. This system is 
severely limited in its capacity. Visual working memory capacity 
was originally conceptualized as a limited number of slots for indi-
vidual objects (similar to object files)123–126. Subsequent research has 
questioned strong versions of the slots hypothesis. For example, 
remembered objects do not fail as a unit—rather, object features 
and their bindings to the object can be forgotten independently 
for the same object127,128. The memory representations may better 
be characterized as hierarchically structured feature bundles129 in 
which bindings and features can fail independently. The capacity 
of visual working memory has also been characterized as a lim-
ited continuous resource that can be divided up among the objects 
with a different portion allotted to each130–132. A related hypothesis 
is that the object representations interfere with each other within 
the same substrate133,134. Importantly, the concept of working mem-
ory goes beyond mere storage. The ‘working’ part refers to flexible 
access and control of information for the purpose of higher-order  
cognitive processes such as visual reasoning135–137.

Neural network models
The cognitive theories capture the human behavioural phenom-
ena and provide a blueprint for computational models. However, 
they fall short of fully specifying the algorithm or how it might be 
implemented in a neurobiologically plausible way. We now discuss 
attempts to implement untethered object representations in neural 
network models. Ever since the inception of the first artificial neu-
ron models138, researchers have studied how cognitive capacities can 
arise from the interaction of neurons in a network139. The classic 
models were designed for small toy problems, raising the question 
of whether their computational mechanisms scale to real-world 
vision. Modern computer hardware and software enable us to test 
these mechanisms in large-scale models that perform real-world 
visual tasks. A successful example is the deep convolutional mecha-
nism, which was first implemented in the neocognitron24 40 years 
ago and which, in the past decade, has enabled deep neural net-
works to perform image recognition23,140.

Neural network mechanisms and cognitive phenomena. 
Multilayer perceptrons141–143 and their convolutional variants24, 
including modern deep CNNs23, lack mechanisms for untethered 
object representation. However, the classic literature also has a rich 
history of models that implement mechanisms for untethered object 
representations, such as completion, grouping, object files and 
working memory. We first outline some elemental mechanisms for 
associative completion, gating, routing and grouping and describe 
how neural networks may represent untethered objects and per-
form probabilistic inference. We then consider how these elements 
may interact to implement the cognitive functions of modal and 
amodal completion, object files and slots, and object permanence.

Associative completion. If a neuron or model unit were to implement 
a feature detector, it would be useful for it to listen to its neighbours 
for evidence that its feature is present or absent. When two features 
are correlated in natural visual experience, bidirectional connec-
tions with equal weights between the neurons representing the 
two features can help both neurons to detect their features in the 
presence of noise (Fig. 3a). Such connectivity could be acquired by 
Hebbian learning144.

The prevalence of smooth contours in natural images renders 
approximately collinear edge detectors correlated under natural 
stimulation43. There is evidence that V1 neurons selective for col-
linear edge elements are preferentially connected by excitatory  

Nature Human Behaviour | VOL 5 | September 2021 | 1127–1144 | www.nature.com/nathumbehav1132

http://www.nature.com/nathumbehav


Review ArticleNaTure Human BehaviOur

synapses44. The lateral connections may implement a diffusion pro-
cess that regularizes the representation, shrinking it back towards 
a prior over natural images or collapsing behaviourally irrelevant 
variability, so as to ease the extraction of relevant information by 
downstream regions.

Symmetric lateral connectivity can also implement autoas-
sociative completion of complex learned patterns145. The weight 
symmetry enables us to understand the dynamics of the network 
in terms of an energy function. An activity pattern far from all of 
the learned patterns will have high energy. From such a point in 
state space, the dynamics will descend the energy landscape until it 
reaches a fixed-point attractor, a local minimum of the energy func-
tion, corresponding to one of the learned patterns146. Associative 
completion can more generally be understood as predictive regu-
larization. When the predictions are not only across space (as in 
the example above) but also across time, they can approximate a 
Bayes filter, which optimally combines past and present evidence. 
The connection weights between two units will not be symmetric 
and the dynamics, rather than converging to fixed-point attractors, 

can model the dynamics of the environment22. Such a mechanism 
might implement the cognitive phenomenon of representational 
momentum112.

Associative completion processes could be used not only 
within, but also across levels of the visual hierarchy. In either case, 
associative completion involves interactions between units that  
directly adjust what we may think of as the units’ representational 
content. We next consider a complementary set of mechanisms that 
operate at a higher level—modulating interactions between units, 
rather than unit activity, so as to gate, route and group the represen-
tational content.

Gating, routing and grouping. Object representations could be 
inferred from the input by a set of static filters. However, this 
approach would require filters for all possible shapes, sizes and loca-
tions of objects and their interactions when one partially occludes 
another. A more efficient solution with respect to the number of 
units needed is to use static filters for parts (in particular, parts 
that are frequently encountered) and to dynamically compose the 
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parts to represent a given object. The composition can be imple-
mented by selectively routing lower-level part representations to 
the higher-level representation of the object. Architectural con-
nections in a neural network between units representing parts are 
therefore potential connections, a subset of which is instantiated 
to represent a specific object. This requires a routing mechanism: 
a rapid modulation of the connectivity between units at the time 
scale of inference147. An example of routing is a neural-shifter circuit 
that dynamically maps retinal input from varying locations into a 
location-invariant (that is object-centred) representation148–150.

Routing can be implemented by multiplicative modulation of 
the input gain to a unit151,152. During grouping, units can influence 
the gain functions of other units that compete to explain the same 
lower-level input. The unit that wins responsibility for the input 
may end up closing the gate between the input and the other com-
peting units (Fig. 3b).

Instead of attenuating the connectivity between units, a neural 
network might also use explicit tagging of messages. For example, 
the message that a neural activation conveys (for example, the pres-
ence of a feature) could be tagged with a signal indicating which 
group it belongs to153. A receiving unit could then selectively com-
bine information over inputs with the relevant tag (Fig. 3b). One 
such mechanism that has been investigated in neuroscience is 
binding-by-synchrony, in which a temporal tag is provided by the 
time of firing, and units that fire synchronously are considered to be 
signalling features of the same object33,154–156.

Another form of gating is subtractive gating, whereby input to 
a unit is cancelled by inhibition from a gating unit. For example, 
predictive coding157 uses a process of subtractive explaining away, 
whereby higher-level units explain their lower-level input and 
subtract their predictions out of the lower-level representation  
(Fig. 3b). What remains are the unexplained portions of the 
lower-level representation, the residual errors, which continue to 
drive the higher-level units. The resulting recurrent dynamics can 
implement an iterative inference process, in which higher-level 
units converge to a state in which they jointly account for the input. 
A higher-level unit that explains a part of the input (for example, an 
object that clutters or partially occludes another object) will explain 
away its portion of the image, preventing that portion from inter-
fering with the recognition of the other portions. Predictive cod-
ing combines forms of routing and grouping, processing the image 
in parallel, but successively accounting for more of the objects and 
their interactions as it progresses from the easy to the difficult parts.

Untethered representation of objects. We refer to object representa-
tions as untethered if they are free from immediate control by the 
sensory stimulus. Untethered representations can combine infor-
mation over time scales, including recent sensory information (for 
example, about the trajectory of an object as it moved behind an 
occluder) and prior knowledge (for example, about the behaviour 
of objects of a category). To exploit the objects’ relative indepen-
dence in the world, untethered object representations must disen-
tangle the information about different objects158. One approach is to 
dedicate a separate set of units, a neural slot, to the representation of 
each object. Alternatively, multiple objects can be represented in a 
shared population of units as distributed representations. Each unit 
might have mixed coding for different objects, but the information 
about different objects could still occupy separate linear subspaces. 
For both slot and mixed representations, the object representations 
may be distributed across hierarchical levels that jointly encode a 
scene-parsing tree,10,155,159 with lower levels encoding detailed fea-
tures and higher levels more abstract aspects of the object.

Probabilistic inference on a generative model. A neural network 
implementation of probabilistic inference on a generative model 
must combine probabilistic beliefs160 about the latent variables 

(the prior) with the probability of the sensory data given each pos-
sible configuration of latents (the likelihood)16,157,161. The generative 
model would need to specify the prior over the object-level repre-
sentation and how to generate an image from that representation. 
Perception then amounts to inversion of the generative model, 
inferring the object-level representation from an image. Assuming 
that we are given the generative model, we might train a feedfor-
ward neural network to approximate the mapping from data to pos-
terior, using training pairs of images and latents obtained either by 
drawing latents from the prior and generating images162 or using 
a generic inference algorithm to infer latents from images drawn 
from some distribution. Speeding up inference by memorizing past 
inferences is called amortization163. A feedforward neural network 
can memorize frequently needed inferences and generalize to new 
inferences to some extent. However, for complex generative mod-
els, the stochastic inverse may not lend itself to efficient representa-
tion in a feedforward network with a realistic number of units and 
weights. Fully leveraging the generative model for generalization 
may require generative model components to be explicitly imple-
mented and dynamically inverted during perceptual inference, 
which requires recurrent computations164. Challenges with proba-
bilistic inference include the acquisition of the generative model 
and the amount of computations required for inference. Brains and 
machines must strike some compromise, combining the statistical 
efficiency of generative inference with the computational efficiency 
of discriminative inference. For example, instead of evaluating the 
likelihood at the level of the image, the inference may evaluate the 
likelihood at a discriminatively summarized higher level of repre-
sentation. Furthermore, short of inference of the full posterior, a 
network may use a generative model to infer only the most prob-
able latent variable configuration for a specific input, the maximum 
a posteriori estimate157. One approach is to seed the inference with 
a first guess about the objects and their locations computed by a 
feedforward computation. The initial estimate can then be itera-
tively refined towards the maximum a posteriori estimate. At each 
step, the likelihood can be evaluated by synthesizing a reconstruc-
tion of the sensory data using a top-down network that implements 
the generative model.

Inferring object properties beyond the visible input. The associative 
completion described above can fill-in missing pieces or otherwise 
repair a representation corrupted by undesirable variability (includ-
ing internal and external noise, as well as behaviourally irrelevant 
variation of the objects). Perhaps surprisingly, elaborating the rep-
resentation through memory regularizes the representation and, 
therefore, reduces the information about the stimulus. This may 
be desirable if the information lost is not relevant. If associative 
completion is to collapse undesirable variability, it should overwrite 
the sensory representation. This may explain illusory contours and 
other modal completion phenomena165 (Fig. 3a). Associative com-
pletion might also contribute to amodal completion. For example, 
the occluded portion of a contour of a simple convex shape could be 
extrapolated locally using prior assumptions about contour shape 
(for example, an assumption of smoothness). However, whether 
associative completion can by itself explain amodal completion phe-
nomena is questionable166. An associative mechanism for amodal 
completion would require dedicating a different set of units to the 
inferred, but invisible, features. Separate units for inferred features 
would enable the system to represent the occluder and the occluded 
parts of the back object simultaneously in different depth planes. 
More generally, separate units for inferred features might help a 
probabilistic inference process to avoid confusing inferred features 
for independent sensory evidence.

Alternatively or in addition to associative completion, amodal 
completion phenomena may arise through the representation of the 
object as a whole at a higher level. The same mechanisms167–170 that 
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group the visible features, by combining priors about object shape 
with sensory information, might also give rise to the percept of an 
amodally completed object. Higher-order priors on object shape 
can be implemented in a hierarchical neural network. For example, 
a hierarchical neural network based on the neocognitron24 has been 
shown to infer occluded contours through feedforward and feed-
back interactions171.

When we conceptualize the visual system as performing gen-
erative inference2, amodal completion can be considered to be an 
emergent phenomenon that results from inference about whole 

objects from partial input. Here, gating and routing mechanisms 
that instantiate dynamical assignments during hierarchical, iterative 
inference are particularly important. Lower-level units that respond 
to the visible parts of a partially occluded object activate units at the 
next higher level that represent the hypothesis that the object is pres-
ent. The likelihood of this hypothesis can be evaluated by feedback 
connections that predict the presence of the full object at the lower, 
part level172. Such predictions will not match the evidence at the site 
of occlusion, unless the representation of the occluder explains away 
the occluded portion173,174. Alternatively, a feedback-controlled gat-
ing mechanism could restrict the evaluation of the likelihood of the 
presence of the partially occluded object to the unoccluded portion. 
With either mechanism, the occluder-induced gating prevents the 
absence of evidence for the object where it is occluded from being 
misinterpreted as evidence of absence of the object. This is consis-
tent with the fact that occlusions, but not deletions, induce amodal 
completion175.

Representing and tracking multiple objects. When multiple objects 
need to be represented or tracked by object-based representations, 
an accounting mechanism may be helpful that ensures a one-to-one 
mapping between slots and objects. Ensuring a one-to-one map-
ping prevents interference between features of different objects (the 
superposition problem; Box 2). This can be implemented by differ-
ent routing mechanisms. One approach is temporal multiplexing—
the separation of different objects in time. Temporal multiplexing 
can operate at a fine temporal scale, with precise spike synchrony154 
or a shared oscillatory phase153,156, indicating that two signals belong 
to the same object. Alternatively, temporal multiplexing can oper-
ate at a coarse temporal scale, for example, when covert or overt 
attention sequentially selects different objects148,176–178. As an alter-
native to temporal multiplexing, a unique frequency179 can be used 
to tag an object slot and avoid interference with objects represented 
by other slots. For any of these tagging mechanisms, an inhibitory 
mechanism between slots can ensure that each slot is assigned a 
unique tag. In the framework of predictive coding, one-to-one map-
pings can dynamically emerge through error representations and 
explaining away. Tracking of objects across time can be achieved 
by combining the prior prediction of the object’s position with the 
incoming sensory evidence.

Bridging spatiotemporal gaps. As an object moves, it might become 
occluded by other objects. When it disappears behind an occluder 
and reappears on the other side later on, the spatiotemporal gap 
in the stream of visual evidence may be too large for local mech-
anisms—such as lateral associative filters—to bridge. The gap 
induced by a full occlusion of the object also severs the established 
routing between the sensory signals and the object-based represen-
tation. How can an object slot re-establish its correspondence to the 
sensory evidence after such a gap?

An object could be tracked through occlusion via a model-based 
temporal filter that continuously simulates its hidden state (includ-
ing its motion and other property transformations) through the 
period of full occlusion. At the same time, a mechanism is needed 
that prevents the visual input from the occluder from interfering 
with the representation of the hidden object. This can be accom-
plished by a gating mechanism or by recurrent dynamics that sepa-
rate sensory and mnemonic contents into different linear subspaces 
of a neural representation180. Correspondence with the sensory 
stream could be re-established if the object reappears within the 
margin of error of the simulated position.

A short-term memory mechanism can maintain the hidden 
object state while the object is occluded. Several mechanisms have 
been proposed to explain how information is maintained in a net-
work over a limited amount of time181,182. The most popular class 
of model proposes that recurrent dynamics retain information in 

Box 2 | The binding problem

The binding problem refers to a set of computational challenges 
of how different elements can be flexibly and rapidly linked to 
each other in a network, in which connections change only at 
the slow time scale of learning. Binding has often been studied 
in the context of vision, in which it refers to the binding of parts 
and properties of objects, objects to locations and objects across 
time32. Binding is not a problem that is intrinsic to vision but 
results from the specific implementation of a visual system. For 
example, when different features of the same object (for exam-
ple, colour and shape) are preferentially analysed in separate, 
specialized regions, they might need to be linked or recombined 
together subsequently again. Several solutions to the binding 
problem in neural networks have been proposed18,33,292,293. For ex-
ample, specialized neurons could signal the presence of specific 
feature combinations (that is, conjunction coding)294. However, 
this approach is limited due to the combinatorial explosion of 
possible feature combinations and the fact that only previously 
learned combinations can be represented. Humans however can 
perceive and act on arbitrary and previously unseen feature com-
binations (for example, “Consider seeing a three-legged camel 
with wings, or a triangular book with a hole through it” (p. 108 
of ref. 295)). Distributed representations of conjunctions that en-
code feature combinations in a coarse code296 or through ten-
sor product coding297, or dynamic interunits298, could alleviate 
these downsides. Instead of using feature combination detectors, 
a network could dynamically adapt its weights to bind features 
of the same object together147. Another binding challenge aris-
es when simultaneously perceiving multiple objects. As a con-
sequence of increasing receptive field sizes, higher-level visual 
neurons receive input from the full visual field and potentially 
from multiple objects at the same time. This superposition in 
neuronal populations is problematic if the information cannot 
be uniquely attributed to the different objects (that is, the super-
position catastrophe299). How does the brain distinguish between 
these multiple objects in a distributed representation? One solu-
tion may be to sequentially process individual objects148,177,300. In 
the brain, such temporal multiplexing of object representations 
could be implemented in theta rhythmic neural activity156. Fur-
thermore, this selective processing of individual proto-objects 
might be necessary to bind constituent features into a structural 
description of the object41,70,72. A prominent and highly debated 
proposal of how the brain solves the binding problem is the idea 
that binding is expressed through correlated activity of neural as-
semblies that encode the same object33,154,155. Neurons could op-
erate as coincidence detectors of synchronous incoming spikes 
of feature detectors that represent parts that should be bound 
together, temporarily increase synaptic efficacy for these inputs 
and decrease sensitivity to asynchronous inputs (although see 
ref. 301). The temporal phase at which feature detectors spike then 
represents a dimension that labels the temporary grouping that 
a neuron belongs to.
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attractor states183–186. Such mechanisms have been used to model 
object permanence in infants. The mechanism predicts the disap-
pearance of an object behind an occluder, dynamically maintains 
the representation of the object while it is invisible and predicts its 
reappearance187,188.

Short-term memory is a central requirement not only for object 
tracking but also for many cognitive tasks. An alternative to active 
maintenance is activity-silent storage, which could be supported by 
short-term plasticity of connections. The activity representing the 
object can be restored after retrieval189,190. Recently, both active and 
activity-silent mechanisms have been shown to dynamically inter-
act in short-term memory depending on task demands191.

Beyond information storage, short-term memory also needs 
to support flexible updating of content, retrieval of a subset of the 
information for ongoing computations and selective deletion192. 
Similar to object tracking, these operations require a gating mecha-
nism193–195 that can rapidly grant access to a stored memory or pro-
tect its content from interference (Fig. 3d). The long short-term 
memory152 and related gating mechanisms have been successfully 
used to address this problem.

Modern deep neural networks as models of human object vision. 
The neural network mechanisms for untethered object perception 
described in the previous section were often implemented in small 
models that could handle only toy tasks. Candidate mechanisms 
for explaining human vision need to scale to real-world tasks. The 
breakthroughs with deep CNNs140,196 and the associated hardware 
and software advances have provided the technological basis for 
addressing this challenge197,198.

Modern deep neural network models are typically constructed 
by training an architecture on a particular objective using back-
propagation. The neural mechanisms emerge from the interplay of 
the architecture, the optimization objective, the learning rule and 
the training data. On the one hand, learning is necessary for a com-
plex model to absorb the knowledge and skills needed for success-
ful performance under real-world conditions. A vision model, for 
example, needs to learn what things look like. On the other hand, 
the fact that the neural mechanisms emerge through learning ren-
ders a trained model with millions of parameters mysterious, moti-
vating post hoc investigations into its mechanism199. Modellers do 
exert control over the mechanisms, but at a more abstract level—by 
designing the architecture, the optimization objective, the learning 
rule and the training experiences200.

It is an open question whether brains can use backpropagation or 
a related error-driven learning rule201–206. Whether or not it is bio-
logically plausible, backpropagation can serve as a tool to set the 
parameters of models meant to capture the computations underly-
ing perceptual performance. When we use it as such, we forgo any 
claims as to how the interaction of genes, development and experi-
ence produced such solutions in humans.

Modern deep neural networks scale up many of the known neural 
network mechanisms. Feedforward CNNs have been very success-
ful in tasks such as visual object recognition140,207. The architecture 
of CNNs23,24 is inspired by the primate visual hierarchy. CNNs 
capture many aspects of cognitive and neuroscientific theories of 
pre-attentive parallel visual processing. They integrate information 
over a hierarchy of spatial or spatiotemporal filters, with filter tem-
plates replicated across spatial positions. When trained to recognize 
object categories, their internal representations are similar to those 
of the human and non-human primate ventral visual stream208–212.

To date, the best computer-vision models for object recognition 
are deep CNNs. However, CNNs lack many of the mechanisms of 
human object perception. For example, it has been shown that these 
networks rely more strongly on texture than humans, whose rec-
ognition prominently depends on global shape information25,213,214. 
CNNs see the image in terms of summary statistics that pool local 

image features, which provides a surprisingly powerful mechanism 
for discriminating between object categories. However, they do not 
decompose the scene into objects, or objects into their parts, as is 
required for the model to understand the structure of the scene 
(artificial intelligence (AI) objective) and to explain human cogni-
tive phenomena, such as amodal completion and object files.

Computer vision must solve many tasks beyond texture-based 
recognition, such as localization, instance segmentation215,216 and 
multiple-object tracking (for example, of pedestrians, sports play-
ers, vehicles or animals)217. Like the human visual system, these 
models must localize, individuate, identify and keep track of mul-
tiple objects. They use computational strategies that are broadly 
similar to those in the cognitive literature. For example, object 
localization models218 use region-proposal methods, a strategy 
that is similar to the saliency maps of the visual system176,219, and 
sequential instance segmentation and recognition of objects220,221  
(Fig. 3e), which resembles the cognitive theory of sequential indi-
viduation and identification85. Computer vision also uses global 
shifts of attention as a form of temporal multiplexing to infer mul-
tiple objects222. Computer-vision systems often combine learned 
CNN components with hand-crafted higher-level mechanisms such 
as physics engines223, providing interesting hybrid (cognitive and 
neural) models that could be tested formally as models of human 
vision. However, it is also important to pursue more organically 
integrated RNN models that can maintain representations over 
time, sequentially attend to different portions of the visual input, 
and individuate, identify and track multiple objects.

Models that are more consistent with human object vision can 
be developed by introducing constraints at each of Marr’s three lev-
els of analysis57: the level of biological implementation, the level of 
representation and algorithm, and the level of the computational 
objective. We consider these three levels in turn.

Constraints from neurobiology. Deep CNNs provide a coarse 
abstraction of the feedforward computations performed by the 
human visual system. However, they do not have lateral and 
top-down recurrent connections and therefore lack the ability to 
maintain representations over time164. RNN models trained on 
object recognition provide better models of human brain repre-
sentations and behaviour compared with deep feedforward net-
works224–227. Segmentation, identification and amodal completion 
of object instances are naturally solved by iterative algorithms that 
can be implemented in recurrent networks. This may explain why 
neural networks endowed with recurrence yield better performance 
in object recognition under challenging conditions such as occlu-
sions224,228,229. Biologically inspired gating of lateral connections has 
been shown to yield more sample-efficient training during tasks 
such as segmentation230. Neurobiology continues to provide rich 
inspiration for modelling work that will explore the computational 
benefits of more realistic model units, architectural connectivity 
and learning rules.

Constraints on representations and algorithms. The space of pos-
sible solutions that an RNN may implement for a particular task is 
large. Object-based representations or generative inference do not 
automatically emerge through task training. Modellers have there-
fore endowed their architectures with representational structure 
thought to reflect aspects of the generative structure of the world. 
For example, models use neural slots at the latent level for inference 
in static images and in dynamic tasks220,222,223,231–233. Slots are attrac-
tive because they are interpretable and provide a strong inductive 
bias for task-trained models. However, slots may fall short in cap-
turing phenomena such as illusory conjunctions72 or the capacity 
limitations of human cognition124,126, which can manifest in gradual 
degradation of the fidelity with which objects are represented as the 
number of objects grows130–132. Representing a variable number of 
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objects in a shared neural population resource133,234–236 combined 
with binding mechanisms (Box 2) promises to explain these cogni-
tive phenomena.

Modellers can also constrain the inference algorithm by imposing 
hierarchical representations237,238. Inference in capsule networks237,239 
is based on the idea that the visual input can be segmented into hier-
archical groupings of parts. The recurrent inference process decom-
poses a scene into a hierarchy of parts10,155,159. This is accomplished 
by a routing mechanism that enhances the connectivity between 
the lower-level capsule and the corresponding higher-level capsule 
while attenuating connectivity to competing higher-level capsules 
thereby implementing explaining away. Humans and feedforward 
neural network models both struggle to recognize objects in visual 
clutter, a phenomenon that is known as visual crowding240 (Box 1d). 
However, human recognition of the central object is undiminished 
if the visual clutter can be explained away as part of other objects. 
This uncrowding effect241 has recently been demonstrated for cap-
sule networks242, which separate the clutter from the object by  
representing each in a different capsule.

Discrete relational structures can be expressed in a graph, in 
which objects and parts are nodes and edges represent relations. 
Graph neural networks provide a general and powerful class of 
model that can perform computations on a graph using neural 
network components243,244. A softer way to impose structure is to 
encourage the emergence of a disentangled representation through 
a prior on the latent space158,245. A key question for current research is 
how structured representations and computations may be acquired 
through experience and implemented in biologically plausible  
neural networks246.

Constraints on the computational objective. Recent modelling work 
has moved beyond supervised training objectives, such as mapping 
images to labels. Rooted in theories of biological reinforcement 
learning, deep reinforcement learning requires weaker exter-
nal feedback (just a reward signal), making it more realistic as a 
model of how an agent might learn through interaction247,248. In the 
absence of any feedback, an agent can use unsupervised learning, 
aiming to capture statistical dependencies in the sensory data. An 
agent interested in all regularities, not just those that are useful for a 
specific task, will learn a generative model of the data and can base 
inferences on the more comprehensive understanding provided by 
such a model1,16,157. To learn all kinds of regularities, an agent may 
challenge itself with its own games of prediction. In self-supervised 
learning, the model learns to predict portions of the data from other 
portions across time and space (for example, the future from the 
past and vice versa, the left half from the right half and vice versa)249. 
The ability to learn without any feedback may be essential for acqui-
sition of knowledge that generalizes to new tasks.

Self-supervised learning techniques have reinvigorated the con-
struction of complex generative models of images and videos250–252. 
Although the true generative model of visual data is intractable, 
these models learn rich compositional structure to meet their train-
ing objectives, such as predicting upcoming video frames. Object 
representations provide a natural way to compress and predict 
the physical world, rendering compression and prediction prom-
ising objectives for unsupervised learning of object representa-
tions197. Nevertheless, learning object-based representations by 
self-supervision still appears to require strong structural inductive 
biases on the generative model253.

Even for a simplified generative model of real-world visual data, 
inferring the posterior over the latents is intractable. Most deep gen-
erative models amortize the inference into a feedforward recogni-
tion model. The human brain most likely uses a balance between 
amortized inference using a feedforward mechanism and iterative 
generative inference using a recurrent mechanism164. Neural net-
work models with object representations that combine amortized 

and generative inference233,254 may more closely capture the infer-
ence dynamics of the human visual system. Discovering good latent 
representations and approximate inference algorithms will require 
bringing together the perspectives of engineering, neuroscience and 
cognitive science.

Towards neural network models with untethered object 
representations
The cognitive and modelling literatures present the pieces of the 
puzzle: the cognitive component functions and potential neural 
mechanisms. Now we have to put the pieces together and build 
models of how humans see the world as structured into objects 
under natural conditions. This will require a new scale of collabora-
tion among cognitive scientists and engineers.

Two key components of this endeavour are tasks and benchmarks. 
A task is a computer-simulated environment that an agent (a human, 
other animal or computational model) interacts with through an 
interface of perceptions and actions. Computer-administered tasks 
give us control of all aspects of the interaction. We can design the 
task world: its perceptual appearance, the set of actions available 
and the objectives and rewards.

Tasks lend direction to cognitive science and AI by posing 
well-defined challenges that provide stepping stones and enable 
us to measure cognitive performance. In cognitive science, a task 
carves out what behaviours are under investigation. In AI, a task 
defines the engineering challenge. If cognitive science and engineer-
ing are to provide useful constraints for each other, it will be essen-
tial that they engage a shared set of tasks. Tasks should be designed 
and implemented for use in both human behavioural experiments 
and neural network modelling255,256. To enable the training and 
testing of models, stimuli and task scenarios should be procedur-
ally generated to enable the production of an infinite number of  
new experiences.

Tasks form the basis of behavioural benchmarks for mod-
els: model evaluation functions that define progress and enable 
us to select and improve models. We now discuss how new tasks 
and benchmarks shared among cognitive scientists and engineers  
can drive progress.

Tasks to train and test untethered object perception. Cognitive 
scientists and engineers tend to design tasks by different criteria, 
resulting in little overlap in the tasks used. Engineers have focused 
on tasks that are relevant to real-world applications, often engag-
ing complex natural stimuli and dynamics257–259. Modelling per-
formance under natural conditions is the ultimate goal. However, 
complex models are slow to train and difficult to understand. Thus, 
engineers should also engage simplified tasks that focus on par-
ticular computational challenges. Cognitive scientists often strive 
to carve cognition at its joints, guided by assumptions about the 
mind. This has classically led to tasks stripped down to the essen-
tial elements required to expose some cognitive component. Simple 
controlled tasks promise to isolate the primitives of cognitive func-
tion91,132,260,261, rendering behaviour directly interpretable in terms of 
cognitive theory (Box 1). However, we must also engage complex 
and naturalistic tasks to understand how the primitives interact 
and scale to real-world cognition. Although behaviour in complex 
tasks is harder to interpret per se, it can be used to adjudicate among 
explicit computational models. Neural network models therefore 
relax the constraint for our tasks to isolate cognitive primitives, lib-
erating us to explore more complex naturalistic tasks. Even if our 
tasks do not carve cognition at its joints, they can usefully focus 
our investigation on a subset of cognitive phenomena, the computa-
tional mechanisms of which are within our reach of understanding.

Cognitive scientists and engineers can then benefit from 
co-opting each other’s criteria for a good task. As the former are 
looking to engage cognition under natural conditions and the  
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latter are seeking to discover the computational components miss-
ing from current AI models, both fields should engage the whole 
spectrum of tasks, from simple toy tasks to natural dynamic tasks. 
This strengthens the motivation to collaborate across disciplines on 
a shared set of tasks.

Cognitive tasks such as segmentation, visual search, 
multiple-object tracking, physics prediction or goal-oriented 
manipulation are good starting points because they focus on plau-
sible cognitive primitives. The world in each of these tasks is a scene 

composed of persistent objects that can occlude each other and may 
obey some approximation to Newtonian physics. Here we propose 
to push tasks toward greater complexity along three particularly 
important axes: naturalism, interactive dynamism and generaliza-
tion challenge (Fig. 4).

Naturalism. Naturalism refers to the degree to which the simulated 
task world resembles the real world. Although abstract stimuli are 
useful for adjudicating among simple models262, the ultimate goal 
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Fig. 4 | Space of tasks for untethered object perception. Three particularly important dimensions of the space of tasks are naturalism, interactive 
dynamism and generalization challenge. Naturalism (x axis): tasks can be rendered naturalistically or abstracted to their essence. Tasks used in cognitive 
science (1–3) and machine learning (4–6) tend to concentrate at opposing poles of the naturalism axis. Computer-simulated environments and virtual 
reality enable us to bridge this gap (10 (ref. 285) and 11, DeepMind Lab286; 12, A2I-THOR287). Interactive dynamism (y axis): this axis summarizes the degree 
of dynamism of the stimuli (for example, video versus static image) and responses (for example, motion trajectory versus button press) and the degree 
of interactivity (that is, the rate and balance of sensory and motor information flow). Static stimuli as in grouping (1) and segmentation (4) tasks288, 
dynamic stimuli as in multiple-object tracking tasks (2 and 5)289, interactive tasks as in the block-copy tasks (3)266 or box-picking tasks (6, a robot arm 
has to pick objects from a box with objects)290 are indicated. Generalization challenge (z axis): tasks can be loosely ordered by the degree to which stimuli 
are representative of situations encountered during training, be it evolution and learning for the human visual system or the training set used to optimize 
a neural network model. Tasks that confront the system with untypical (that is, out-of-training-distribution) situations (7–8; 9, Objectnet268) have high 
generalization demands and can help to reveal the inductive biases of the visual system29. MOT, multiple-object tracking.
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is to explain perception under natural conditions263. A synthesis of 
these two complementary approaches is provided by methods that 
optimize stimuli to adjudicate among complex models29, yielding 
synthetic stimuli that reflect the natural image statistics the models 
have learned. Similarly, for object-based vision, tasks should achieve 
various degrees of naturalism while enabling us to adjudicate among 
models that implement alternative computational theories. We can 
develop these tasks towards greater naturalism by replacing abstract 
shapes with photos or 3D models of objects. Incorporating different 
object categories into these tasks enables us to study the domain 
specialization of the mechanisms of object perception. For example, 
tracking of humans and inanimate objects may rely on separate 
replications of these mechanisms (independent slots) that bring  
in particular prior knowledge about humans, animals and inani-
mate objects.

Interactive dynamism. Object representations support continuous 
interaction with a dynamic world (Fig. 1). Perception operates at 
multiple time scales, supporting higher cognitive functions, includ-
ing memory, prediction and planning. We therefore need tasks that 
probe performance in dynamic and interactive settings. Cognitive 
science originally investigated untethered object perception with 
tasks in which a predefined set of static stimuli presented on sepa-
rate trials elicited a button-press response100,264,265 (Fig. 1). However, 
more dynamic tasks such as multiple-object tracking85,91 and inter-
active tasks such as reproducing an arrangement of blocks266 (Fig. 1) 
have also been developed. In non-interactive tasks, the initial state 
is controlled by the experimenter in each of a sequence of trials, 
rendering behavioural responses easier to analyse and more directly 
interpretable. However, when our theories have been expressed in 
computational models, we can also use interactive dynamic tasks 
to adjudicate among theories. In fact, interactive dynamic tasks will 
often have a higher bit rate of recorded behaviour, promising greater 
constraints on theory, in addition to enabling us to understand how 
agents engage dynamic, interactive environments. Tasks can be 
pushed from simple toy tasks towards greater interactive dynamism 
by giving the objects dynamic trajectories and recording responses 
such as mouse-pointer or eye movements continuously.

Generalization challenge. New experiences require generalization 
and are often particularly revealing of the computational mecha-
nism and inductive bias used by a perceptual system. By probing a 
model with parameters of the task-generative world that differ from 
the training distribution, we can generate generalization tests that 
reveal a model’s inductive bias26,267. To probe untethered object rep-
resentations, we can present humans and models with new objects 
(for example, procedurally generated 3D models) or with known 
objects in new poses or contexts253,268 and study whether task per-
formance generalizes. Tracked objects may change their appear-
ance and shape across time269, which may be difficult for models 
that track by appearance, but easy for humans who primarily track 
objects based on spatiotemporal properties20,74–76. We may also use 
Gestalt stimuli that elicit grouping in humans (for example, point 
light displays of biological motion270). We may push our notion of 
generalization even further to scenarios in which there may be no 
objectively correct response. For example, there is no objectively 
correct inference to perceive either one or two distinct objects 
during the tunnel effect76). However, humans perceive a single 
object when the spatiotemporal dynamics are consistent with the 
motion of a single object, revealing the implicit prior assumption 
that objects are more likely to change than to vanish and appear. 
Cognitive scientists have probed human perceptual inductive biases 
with hand-designed stimuli and controlled tasks. These form the 
basis for generative models of stimuli and tasks that will enable us 
to comprehensively test and compare generalization behaviour in 
humans and machines.

Benchmarks to evaluate models. Tasks form the basis for defin-
ing behavioural benchmarks for models. A benchmark is an evalu-
ation function that enables us to select and improve models and to 
define progress. Engineering has relied on overall task-performance 
benchmarks257. However, a benchmark can also be defined to mea-
sure how close a model comes to emulating human patterns of suc-
cess and failure across different stimuli and contexts29,256,271–275. For 
dynamic interactive tasks, each behavioural episode of a human or 
model generates a unique trajectory of stimuli and responses. A 
major challenge is to define useful summary statistics that enable 
comparisons among humans and models.

Summary statistics can be based on patterns of responses or 
the performance in a task, such as multiple-object tracking, physi-
cal reasoning276, physical scene understanding277–280, goal-directed 
manipulation of objects276,281 or navigation282. A qualitative descrip-
tion such as ‘performs mental physics simulation’ or ‘can do object 
tracking’ provides only a coarse characterization of a cognitive pro-
cess. Benchmarks should be based on summary statistics that pro-
vide rich quantitative signatures of behaviour (for example, tracking 
performance as a function of the number of objects to be tracked 
and other context variables), revealing how humans differ from 
models278,281. Psychophysics and cognitive psychology have devel-
oped an arsenal of ingenious methods to probe object perception in 
humans (Box 1), providing much inspiration for the development of 
benchmarks measuring the behavioural similarity between models 
and humans267,274.

Conclusion
Perceiving the world around us in terms of objects provides a 
powerful inductive bias that links perception to symbolic cogni-
tion and action, and forms the basis of our causal understanding 
of the physical world. Object percepts form through a constructive 
process of interaction among stages of representation. Deep neural 
network models have begun to capture components of the process 
by which object percepts emerge, including grouping, segmentation 
and tracking. They do not yet capture the interplay between these 
components and the powerful abstract inductive biases of human 
vision. A common set of tasks and benchmarks will help cognitive 
scientists and engineers to join forces. For our models to achieve 
human-level performance, we will need to be interested not only in 
the successes, but also in the detailed patterns of failure that charac-
terize human vision.
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