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Abstract

Deep feedforward neural network models of vision dominate in both computational neuro-

science and engineering. The primate visual system, by contrast, contains abundant

recurrent connections. Recurrent signal flow enables recycling of limited computational

resources over time, and so might boost the performance of a physically finite brain or

model. Here we show: (1) Recurrent convolutional neural network models outperform feed-

forward convolutional models matched in their number of parameters in large-scale visual

recognition tasks on natural images. (2) Setting a confidence threshold, at which recurrent

computations terminate and a decision is made, enables flexible trading of speed for accu-

racy. At a given confidence threshold, the model expends more time and energy on images

that are harder to recognise, without requiring additional parameters for deeper computa-

tions. (3) The recurrent model’s reaction time for an image predicts the human reaction time

for the same image better than several parameter-matched and state-of-the-art feedforward

models. (4) Across confidence thresholds, the recurrent model emulates the behaviour of

feedforward control models in that it achieves the same accuracy at approximately the

same computational cost (mean number of floating-point operations). However, the recur-

rent model can be run longer (higher confidence threshold) and then outperforms parame-

ter-matched feedforward comparison models. These results suggest that recurrent

connectivity, a hallmark of biological visual systems, may be essential for understanding the

accuracy, flexibility, and dynamics of human visual recognition.

Author summary

Deep neural networks provide the best current models of biological vision and achieve the

highest performance in computer vision. Inspired by the primate brain, these models

transform the image signals through a sequence of stages, leading to recognition. Unlike
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brains in which outputs of a given computation are fed back into the same computation,

these models do not process signals recurrently. The ability to recycle limited neural

resources by processing information recurrently could explain the accuracy and flexibility

of biological visual systems, which computer vision systems cannot yet match. Here we

report that recurrent processing can improve recognition performance compared to simi-

larly complex feedforward networks. Recurrent processing also enabled models to behave

more flexibly and trade off speed for accuracy. Like humans, the recurrent network mod-

els can compute longer when an object is hard to recognise, which boosts their accuracy.

The model’s recognition times predicted human recognition times for the same images.

The performance and flexibility of recurrent neural network models illustrates that

modeling biological vision can help us improve computer vision.

Introduction

Neural network models of biological vision have a long history [1–3]. The recent success of

deep neural networks in computer vision has led to a renewed interest in neural network mod-

els within neuroscience [4–6]. Contemporary deep neural networks not only perform better in

computer-vision tasks, but also provide better predictions of neural and behavioural data than

previous, shallower models [7–11]. The dominant model class in both computer vision and

visual neuroscience is the feedforward convolutional neural network (fCNN).

Inspired by the primate brain, fCNNs employ a deep hierarchy of linear-nonlinear filters

with local receptive fields. However, they differ qualitatively from their biological counterparts

in terms of their connectivity. Notably they lack the abundant recurrent connectivity that char-

acterises the primate visual system. In terms of recognition behaviour, fCNNs and primates do

show similar patterns of image classifications at the level of object categories, but their behav-

iour diverges when the comparison is made at the level of individual images [12]. Moreover, it

has been shown that fCNNs heavily rely on texture in image classification, whereas humans

more strongly rely on larger-scale shape information [13].

The initial computations supporting rapid recognition in primates can be modeled as a

feedforward process [14]. However, neuroanatomical studies have shown that the primate

visual system has a highly recurrent connectivity [15–17]. Recordings of neuronal activity fur-

ther indicate that the recurrent connections are utilised during object recognition [18–25].

Motivated by the neuroanatomical and neurophysiological evidence, recent modeling work

has focused on introducing recurrence into the framework of convolutional neural networks.

Recurrent neural networks naturally lend themselves to the processing of temporal sequences,

such as dynamic visual sensations. However, even for recognition of static images, recurrent

convolutional neural networks (rCNNs) have been shown to bring advantages [26–30]. Recur-

rence brings performance benefits in object recognition tasks, with recurrent networks outper-

forming feedforward networks of similar complexity (typically measured by the number of

parameters) [26–29]. Moreover, rCNNs are better able to explain neural and behavioural data

than their feedforward counterparts [24, 25, 29, 31, 32]. However, performance gains associ-

ated with recurrent architectures have previously been shown only for small-scale visual tasks

[26–28] or using specialised forms of recurrence [29]. Here we investigated whether rCNNs

can outperform feedforward control models matched in their number of parameters on large-

scale recognition tasks and on predictions of human reaction times.

Beyond the number of parameters, we must consider the computational cost of recognition.

A recurrent network might outperform a feedforward network with a similar number of
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parameters, but require more cycles of computation and more time to arrive at an accurate

answer. Primate brains employ a flexible mechanism that can take more or less time and

energy for computations, depending on the difficulty of recognition. This aligns with compu-

tational theories of perceptual decision making in primates, which posit that evidence is accu-

mulated until a threshold is reached before making a decision [33]. For some images, fast

feedforward computations may be sufficient [24]. If the network converges on a decision in

the initial feedforward sweep, then recurrent computation might not be required. For more

difficult images, recurrent computation might be essential to ensure accurate recognition.

Threshold-based decision making might allow an rCNN to save time and energy on average

by only running for the number of time steps required for a given level of confidence.

Threshold-based decision making enables the flexibility of a speed-accuracy trade-off

(SAT), explaining an important feature of biological object recognition [34]. A recurrent net-

work can run until it reaches a predefined level of confidence, with the threshold set lower if

there is time pressure. The reaction time, then, will reflect both the time pressure (which

depends on the situation) and the difficulty of recognition (which depends on the image).

In engineering, a speed-accuracy trade-off might alternatively be implemented using a

range of separate neural network models of varying scale [35, 36]. However, using multiple

models to implement an SAT has three disadvantages: (1) It requires more storage. (2) It

requires the selection of the appropriate model for each scenario at the start of the process. (3)

Once the model is chosen the reaction time is fixed and the model cannot flexibly choose to

compute longer for harder images. Threshold-based decisions, thus, appear advantageous for

both biological and artificial vision, which similarly face limitations of space, time, and energy.

To better understand the role of recurrent computations, we compared rCNNs to feedfor-

ward (fCNN) control models in terms of their object-recognition performance and their ability

to account for human visual recognition behaviour. We trained our networks on the ImageNet

Large Scale Visual Recognition Challenge (referred to as ImageNet for brevity) [37], and a

more ecologically valid recognition task called ecoset [38]. We investigated whether recurrence

improves recognition accuracy in these tasks. We further modelled threshold-based decision

making in the rCNNs, varying the threshold to control the SAT [34], and compared reaction

times to different images between rCNNs and human observers.

Results

We trained a range of deep convolutional neural networks on two large-scale visual object-rec-

ognition tasks, ImageNet [37] and ecoset [38]. The networks trained included a feedforward

network, referred to as B (for bottom-up only), and a recurrent network, referred to as BL,

with bottom-up and lateral recurrent connections (recurrent connections within a layer). We

focus our investigation on lateral connections, which constitute a form of recurrence that is

ubiquitous in biological visual systems and proved powerful on simple tasks in our earlier

work [28].

The rCNNs were implemented by unrolling their computational graphs for a finite number

of time steps (see Methods). Each model was trained to produce a readout at each time step,

which predicts the category of the object present in the image.

Adding recurrent connections to a feedforward model increases the number of parameters.

We therefore used three larger feedforward architectures that were approximately matched in

the number of parameters (Fig 1) as control models. Control models were matched in the

number of parameters by increasing (1) the size of the convolutional kernels, (2) the number

of feature maps, and (3) the depth of the network (referred to as B-K, B-F and B-D, respec-

tively, where the B indicates that these models had only bottom-up connections). Parameter
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matching is important because parameters are costly. Both engineering and biology must con-

sider two main costs that scale with the number of parameters: the space requirements for stor-

ing the parameters and the data requirements for setting the parameters.

A major benefit of recurrent models is that they can run more computations without

requiring more parameters. The computational graph of a recurrent model grows with the

number of time steps the model runs for. The total number of computations (whether per-

formed in parallel or sequentially) and the maximum number of sequential nonlinear transfor-

mations (which we refer to as the computational depth), therefore, are limited by the number

of time steps, not by the number of layers, in a recurrent model. However, a feedforward archi-

tecture can also achieve any prespecified number of computations and computational depth

by including enough units and layers. This raises the question of how a feedforward model

with a matched computational graph compares to an rCNN. We therefore trained a further

feedforward control model whose architecture was defined by unrolling the rCNN. This

model (referred to as B-U, for bottom-up unrolled) has an identical computational graph (and

thus the same number of computations and computational depth), but unique parameters for

each convolution (i.e. no weight sharing across time). As a result, B-U has more than seven

times as many parameters as BL (212.7 million for B-U, 28.9 million for BL). B-U was trained

with category readouts at regular intervals throughout the network (matching the readouts at

the end of each time step in BL). Including multiple readouts allows B-U to explain variability

in human reaction times by terminating at different stages.

Fig 1. Schematic representation of the parameter-matched networks. White boxes represent convolutional layers,

with the width representing the spatial dimensions of the convolutional layers and the height representing the number

of feature maps. Models were matched in the number of parameters by increasing (1) the size of the convolutional

kernels (B-K), (2) the number of feature maps (B-F), and (3) the depth of the network (B-D). Example units (black

dots) are linked to coloured regions representing their input kernels (which differ in width in B-K). The extents are

illustrative and not drawn to scale.

https://doi.org/10.1371/journal.pcbi.1008215.g001
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It is possible to alter the number of parameters and computations in the networks by

including other architectural features such as adding Inception modules [39]. However, to

ensure a meaningful comparison, we aimed to maintain as close a similarity as possible

between recurrent and feedforward architectures. The pros and cons of the different control

models are outlined in Table 1 (see Methods for a detailed description of the models and train-

ing procedures).

Recurrent networks outperform parameter-matched feedforward models

We compared the performance of the recurrent BL architecture to the baseline feedforward,

and parameter-matched control architectures. For each architecture, we trained and tested

separate models on the ImageNet and ecoset visual recognition tasks. For the recurrent BL net-

works, we defined the prediction of the model as the average of the category readout across all

time steps, which we refer to as the cumulative readout. The cumulative readout tends to pro-

duce superior performance (see Methods). Top-1 accuracies are used throughout.

The recurrent models outperformed the baseline and all parameter-matched feedforward

models (Fig 2B). BL showed a performance benefit of about 1.5 percentage points relative to

the best parameter-matched feedforward model, B-D, on both datasets (Table 2).

Both B-D (deeper network) and B-F (more feature maps) outperformed the baseline model,

B. B-K has a worse test accuracy than the baseline model but a higher training accuracy (Fig

2A). This suggests that using additional parameters to increase the kernel size in our models

leads to overfitting rather than a generalisable increase in performance.

Pairwise McNemar tests [40, 41] showed all differences in model performance to be signifi-

cant (p� 0.05, corrected). Bonferroni correction was used to correct for multiple comparisons

in order to control the family-wise error rate at less than or equal to 0.05.

A recurrent model with entropy thresholding predicts a speed-accuracy

trade-off

Across recurrent computations in our rCNNs, the probability mass of the output distribution

tends to concentrate, indicating that the network’s confidence in its classification is rising. We

Table 1. Pros and cons of different control models.

Control model matched in number of parameters
Larger kernels (B-K) Pro: Matches the number of units in each layer and the number of

layers.

Con: Inefficient use of parameters in relation to object recognition

performance.

More feature maps (B-F) Pro: Matches the number of layers and better performance gains than

increasing kernel size.

Con: Does not match the number of feature maps in each layer and

has worse object recognition performance than making the network

deeper.

Greater depth (B-D) Pro: Tends to yield best improvement in performance for additional

parameters.

Con: Does not match the number of layers in the recurrent model.

Control model matched in computational graph
Feedforward network matching the

unrolled recurrent network (B-U)

Pro: Matches the computational graph and thus, in particular, the

number of computations and the computational depth.

Con: The number of parameters grows precipitously with the number

of time steps of the recurrent model, and ends up being much larger

than in the recurrent model.

https://doi.org/10.1371/journal.pcbi.1008215.t001
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Fig 2. ImageNet and ecoset task performance for rCNN and parameter-matched controls. Our rCNN model (red)

achieves higher validation accuracy than parameter-matched control models (shades of blue). (A) Training and

validation accuracies across training epochs for all networks (top-1). (B) Performance of networks on held-out data

using the fully-trained networks. All pairwise differences in model performance were significant (p� 0.05, McNemar

test, Bonferroni corrected for all pairwise comparisons).

https://doi.org/10.1371/journal.pcbi.1008215.g002
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used the entropy of the output distribution to measure the network’s confidence. Zero entropy

would indicate that the network is certain, with all probability mass concentrated on a single

class. The network runs until the entropy of its cumulative readout falls below a predefined

entropy threshold. The final cumulative readout is then taken as the network’s classification.

Entropy thresholding has the benefit of being economical, as it uses the minimum number

of time steps to reach the required level of confidence for an image. Moreover, entropy thresh-

olding is related to neuroscientific theories of decision making, where evidence is accumulated

until it reaches a bound [33].

At a given entropy threshold, a recurrent model may choose to compute longer for harder

images. The model’s reaction time (i.e. the number of time steps required to reach the entropy

threshold) thus varies across images. For a given rCNN, the reaction time is proportional to

the computational cost of recognising an image (i.e. the number of floating-point operations),

and thus to the energy cost, which might be related to the metabolic cost in a biological neural

network.

For each setting of the entropy threshold, we estimated the accuracy and the computational

cost. We estimated the accuracy as the overall test-set accuracy at this threshold. We estimated

the expected computational cost as the average, across the test set, of the number of floating-

point operations used. We plotted the accuracy of the model as a function of the computa-

tional cost (Fig 3). For a given recurrent model, the resulting plot reflects a speed-accuracy

trade-off, because the reaction time is proportional to the computational cost. Across thresh-

olds, the accuracy rises with the average time taken (and average computational cost), until it

saturates.

A single rCNN emulates the accuracies of different fCNNs when its

confidence threshold is set to match the fCNN’s computational cost on

average

We also assessed the accuracy and computational cost of the feedforward models. Results are

shown in the context of those for the recurrent models in Fig 3. Feedforward models are repre-

sented by single points because their computational cost is constant.

When comparing the recurrent models to the feedforward models, we see a remarkable cor-

respondence between the two classes of architecture: The points describing the feedforward

models fall on the line describing how the recurrent model trades off speed and accuracy:

Given the computational budget of a particular feedforward model, the recurrent model

achieves the same accuracy. However, the computational costs and accuracies of the feedfor-

ward models are fixed, whereas recurrent models can be left to compute longer. Given a larger

computational budget, the recurrent model will achieve higher accuracy than any of the

parameter-matched feedforward models.

Table 2. Accuracies on held-out data for parameter-matched models.

models ImageNet ecoset parameters

B (baseline) 58.42% 64.25% 11.0 million

B-K (larger kernels) 56.46% 62.81% 39.8 million

B-F (more feature maps) 60.34% 66.54% 40.0 million

B-D (deeper network) 62.68% 68.36% 28.9 million

BL (recurrent) 64.37% 69.98% 28.9 million

The number of parameters are calculated for ImageNet models, ecoset models have slightly fewer parameters due to fewer categories in the final readout layer.

https://doi.org/10.1371/journal.pcbi.1008215.t002
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To inferentially compare the performance of the feedforward and recurrent networks at

matched computational cost, we considered the performance of the recurrent networks at a

single entropy threshold. We selected the threshold that minimises the absolute difference

between the average number of operations for the recurrent network and the number of opera-

tions for the feedforward network. McNemar tests were again used to compare the perfor-

mance of the networks.

Across both datasets only one significant difference in performance was found between

recurrent and feedforward models. This difference was the between B and BL in ImageNet,

Fig 3. Validation accuracy as a function of computational cost for feedforward and recurrent models. Each

feedforward model (squares in shades of blue) requires a fixed number of floating-point operations for a single sweep of

computation. The top row shows that feedforward models requiring more computation (horizontal axes) had higher

top-1 validation accuracy (vertical axes). The recurrent models (yellow-to-red line) could be set to terminate at different

levels of confidence, specified as the entropy of the softmax output. For each entropy threshold (colour bar), the

computational cost (mean number of floating-point operations) and the top-1 validation accuracy (proportion correct)

were computed across the test set. The recurrent models could flexibly trade speed for accuracy (lines in top panels).

They achieved the same accuracy as each feedforward control model when given a matched computational budget, and

greater accuracy than any of the feedforward models when run longer. The bottom panels replot the data shown in the

top panels and additionally show, for a single entropy threshold of the recurrent models, how computational cost varies

across images (horizontal domain of the black lines) and what accuracy is achieved at each computational cost. The

black line shows the accuracy as a function of computational cost for the selected entropy threshold. The area of each

gray circle is proportional to the percentage of images for which the model reaches the entropy threshold at a given

computational cost. The open black circle is the average of the points on the black line, weighted by the percentage of

images for each computational cost. We see that, at the selected entropy threshold, the model responds rapidly for

about half of the images and achieves high performance on these “easy” images. It computes longer for “hard” images,

balancing the cost of lower accuracy against the cost of greater expenditure of energy and time.

https://doi.org/10.1371/journal.pcbi.1008215.g003
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which achieved 58.42% and 57.71%, respectively, a difference of 0.70% (p< 0.001, uncor-

rected). This comparison matches a pass through B to the initial feedforward pass through BL.

BL appears to slightly compromise its performance on the initial feedforward pass to support

later gains through recurrence. All other differences between BL and feedforward networks

were even smaller and not significant, ranging between -0.37% and +0.32%, relative to the per-

formance of BL. B-K was excluded from this analysis because it had worse performance than

the baseline feedforward model (possibly due to overfitting).

These results suggest that recurrent models perform similarly to feedforward models when

allowed the same average number of floating-point operations. This may be surprising given

that recurrent models must use the same weights across multiple time steps, whereas feedfor-

ward models do not face this constraint. We may have expected the operations learned by

recurrent models to be less efficient with regard to performance achieved at a given computa-

tional cost. Instead, we found that the computational efficiency of recurrent and feedforward

networks are well matched. The graceful degradation of performance of recurrent models

when the computational cost is limited may depend on training with a loss function that

rewards rapid convergence to an accurate output (see Methods). Recurrent models may bene-

fit from the fact that they can save computation on easy images, enabling them to expend

greater computational cost than their feedforward competitors on harder images, while match-

ing the average computational cost.

Overall our results suggest that we can use a single recurrent network to flexibly emulate

the accuracies achieved by different feedforward models. Matching the accuracy of a given

feedforward model will come at a computational cost that approximately matches the compu-

tational cost of the feedforward model on average. The recurrent model will terminate faster

for easy images and compute longer for harder images. The recurrent model can also be set to

run more recurrent computations enabling it to achieve higher performance than the parame-

ter-matched feedforward networks.

Reaction times from recurrent networks better explain human reaction

times

Recurrent connections endow a model with temporal dynamics. If the recurrent computations

in a model resemble those of the human brain at some level of abstraction, then model behav-

iour should be predictive of human behaviour. For example, images that take longer for the

model to recognise should also take longer for humans to recognise.

To test this hypothesis we used data from an object categorisation task where humans had

to categorise 96 full-colour images as animate or inanimate (Fig 4A). Reaction times were

recorded from 20 human participants (Fig 4B). Our goal was to quantify the extent to which

model reaction times predicted human reaction times.

We fitted recurrent and feedforward models to these human data and tested the fitted mod-

els using cross-validation across images and subjects. Feedforward models were included in

this analysis to test the competing hypothesis that varying reaction times could be explained by

halting computations part way through the feedforward sweep. The feedforward models tested

included a deep feedforward control model matched to BL in terms of the computational

graph (B-U). B-U is identical to a BL network unrolled across time, except for the fact that it is

not constrained to recycle its parameters across time steps. The B-U model had category read-

outs at intermediate layers, matching BL’s readouts at multiple time steps. Additional feedfor-

ward models were also used including, B-D (trained on ImageNet and ecoset) and

feedforward models pre-trained on ImageNet that are popular in the machine learning litera-

ture [42–47].
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The models were fitted to the human data in two stages: (1) An animacy discrimination

readout was fitted. (2) An entropy threshold was fitted to enable measurement of model reac-

tion times. To fit the animacy discrimination readout, eight readouts were placed at regular

intervals throughout the networks. The readouts were trained to maximise performance on

the animacy discrimination task using a separate set of images from those used in the human

behavioural task. The entropy threshold was fitted to maximise the Pearson correlation

between network and human reaction times. We used a double leave-one-out cross-validation

approach, ensuring that thresholds were fitted using data from one set of images and subjects,

and model reaction times compared to human reaction times for an independent set of images

and subjects. The network reaction time was taken as the position of the readout that first

reached the entropy threshold. This procedure resulted in a predicted reaction time for each

subject-image pair.

To compare the ability of different models to predict human reaction times, we computed

the correlation between network reaction times and the reaction times for individual subjects.

A human consistency metric was also computed by correlating the reaction times of a single

human participant against the average of all other human participants. This procedure pro-

vides a lower bound on the noise ceiling, i.e., a lower bound on the performance that the true

Fig 4. Human behavioural experiment. (A) Human subjects were presented with images of isolated objects of

different categories and classified the images as animate or inanimate by pressing one of two buttons on each trial. (B)

Group-average reaction time for each image. Error bars show the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1008215.g004
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model would achieve given the noise and intersubject variability [48]. Correlations between

model and human reaction times, as well as human consistency (lower bound of the noise ceil-

ing), are shown in Fig 5.

Paired two-tailed permutation tests were used to detect significant differences in reaction

time correlations between networks. The Benjamini-Hochberg procedure was used to account

for multiple comparisons by controlling the false discovery rate at 0.05 [49].

The results show that reaction times extracted from BL trained on ecoset best predicted

human reaction times, outperforming all feedforward networks and the untrained BL network

(FDR q< 0.05). Notably, the explanatory benefit over the feedforward architectures includes

the control model B-U, which is highly similar to BL, but requires the training and storage of a

significantly larger number of parameters (212.7 million for B-U compared to 28.9 million for

BL, Fig 6). While this significantly larger model, perhaps not surprisingly, yields better overall

task performance, it is outperformed by BL in its ability to mirror human reaction times.

BL trained on ImageNet predicted the human reaction times better than all feedforward

networks (p< 0.05, FDR corrected) apart from Xception and B-D trained on ecoset, where

there was no significant difference. Relative to the randomly initialised BL model, all feedfor-

ward models were either significantly worse at explaining human reaction times or there was

no significant difference in correlation (FDR q< 0.05). B-D trained on ecoset had a signifi-

cantly higher correlation than B-D trained on ImageNet (FDR q< 0.05). All models had a sig-

nificantly lower correlation that the human consistency metric (FDR q< 0.05).

Fig 5. Reaction times from recurrent networks explain human reaction times better than feedforward networks.

Small grey dots represent the Pearson correlation between the network and single subject reaction times. Large dots

represent the mean correlation across subjects. Human consistency (black circle) provides a lower bound on the noise

ceiling and is computed by correlating reaction times for a single subject with the average reaction time for all other

subjects. For each network, multiple sigmoid animacy readouts were placed at even intervals throughout the networks.

Animacy readouts were trained to maximise accuracy using a separate set of images not used in the human

behavioural experiments. For each model, an entropy threshold was fitted, using independent subjects and images, so

that model reaction times best predicted human reaction times (cross-validation).

https://doi.org/10.1371/journal.pcbi.1008215.g005
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In summary, the comparison of model reaction times to human reaction times demon-

strated the benefits of recurrent processing compared to all other networks tested. The recur-

rent BL model also explained reaction times better than the B-U model, although B-U had the

same computational graph and matched readouts at intermediate stages.

Exploratory analysis of lateral connectivity patterns

To better understand the lateral connectivity patterns that emerge from category training in

our recurrent models, we analysed the recurrent connections in the first network layer of a BL

network trained on ImageNet. The focus on the lowest network layer enabled us to visualise

connectivity patterns in the pixel space. Our goal was to qualitatively assess similarities to

intra-area connectivity in primate V1. To summarise the large number of lateral connections

in the first network layer alone (over 450,000 connections), we used principal components

analysis (PCA), decomposing the lateral-weight templates into orthogonal components (simi-

lar to Linsley et al. [30], see Methods for details). We then visualised these lateral-weight com-

ponents together with the bottom-up features that they connect. Fig 7 shows the first five

weight components (capturing 43% of variance across all recurrent weights). Although in-

depth confirmatory analyses of the learned connectivity are out of the scope of the current

work, it is noteworthy that all five components could be interpreted in terms of biological phe-

nomena: inhibition/excitation (component 1), vertical antagonism (component 2), centre-sur-

round antagonism (component 3), horizontal antagonism (component 4), and perpendicular

Fig 6. Relationship between validation accuracy, number of parameters and computational cost across models.

The validation accuracy (vertical axis) is the proportion top-1 correct classifications of the trained models on

ImageNet. For each model (coloured disc), the validation accuracy is plotted against the number of parameters

(horizontal axis). The area of the coloured discs is proportional to the computational cost as measured by the number

of floating point operations required to run the model. The red circles correspond to different numbers of recurrent

cycles of computation of the BL recurrent convolutional network. For model abbreviations (B, B-K, B-F, B-D), see Fig

1. B-U is the unrolled control model, with a computational graph matched to BL, but no parameter sharing across

cycles of computation.

https://doi.org/10.1371/journal.pcbi.1008215.g006
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Fig 7. Lateral-weight components for layer 1 of an rCNN trained on ImageNet. Every unit receives lateral input

from other units within and across feature maps via a local lateral-weight pattern. We used principal component

analysis to summarise the lateral-weight patterns. The top five lateral-weight principal components are shown in both

their positive (centre right) and negative forms (centre left). Blue shading corresponds to negative values and red to

positive. The proportion of variance explained is given beneath each lateral-weight component. Bottom-up feature

PLOS COMPUTATIONAL BIOLOGY Recurrent networks can explain flexible trading of speed and accuracy in biological vision

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008215 October 2, 2020 13 / 27

https://doi.org/10.1371/journal.pcbi.1008215


antagonism (component 5). These features could relate to properties of biological visual sys-

tems such as border-ownership [50] and contour integration [51] (for a more detailed descrip-

tion of these results, see S1 Text).

Discussion

Our results show that recurrent convolutional neural network models can outperform param-

eter-matched feedforward convolutional models of similar architecture on large-scale natural-

istic visual recognition tasks. In addition to superior performance, rCNNs more closely

resemble biological visual systems in both structure and function. Structurally, biological visual

systems and rCNNs share ample recurrent signal flow. Functionally, biological visual systems

and rCNNs both exhibit greater accuracy and flexibility than fCNNs of similar parametric

complexity.

Flexible trading of speed and accuracy

An important functional feature of our rCNNs is the flexibility to trade off speed and accuracy,

which these models share with biological visual systems. The required confidence can be speci-

fied in the form of the entropy of the model’s posterior. Recurrent computation is terminated

when the posterior probability mass has concentrated such that its entropy dips below the

threshold. Recurrent computation will be brief for easy images, for which the model quickly

achieves a high-confidence classification. For harder images, recurrent computation can pro-

ceed longer.

We expected that the rCNN’s flexibility to read out the category earlier or later would incur

a significant cost in terms of accuracy at a given computational budget. Indeed when the num-

ber of recurrent cycles of computation is fixed, so as to match the computational cost of a

given feedforward network, the accuracy is somewhat lower (Fig 6, compare dark blue disc for

B-D similarly sized red disc for BL). An rCNN trained to flexibly trade speed and accuracy

might compromise its performance at a fixed number of time steps, relative to a fCNN with a

similar computational budget. However, an rCNN that halts computation when a predefined

confidence threshold is reached will terminate early for easy images, saving computation on

average. These savings enabled the flexible rCNNs here to achieve the same accuracy as param-

eter matched fCNNs at the same average computational cost.

We compared the rCNN to a range of fCNNs that had a similar number of parameters, but

required a different amount of computation (Fig 3, top row). The fCNNs requiring more com-

putation achieved higher accuracy. When the rCNN’s confidence threshold was set so as to

match any of the fCNN’s accuracy, the average computational cost of the rCNN matched the

computational cost of the fCNN.

Prediction of human reaction times

When a recurrent model is given the ability to trigger perceptual decisions when it reaches a

confidence threshold, it will exhibit variable reaction times for different images. This enables

recurrent models to make predictions about human reaction times in visual recognition tasks.

Feedforward models, by contrast, expend the same amount of time (and computation) for

maps connected by lateral weights with the strongest positive (right) and negative loadings (left) on the weight

component are shown alongside. Arrows between bottom-up features indicate the direction of the connection and the

loading is given underneath each pair of bottom-up features.

https://doi.org/10.1371/journal.pcbi.1008215.g007
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each image, whether easy or hard. As a result, they do not, by default, predict variations in

reaction time across images.

It is possible to model categorisation reaction times on the basis of a static representation of

the stimuli in a layer of a feedforward neural network. To achieve this, we can assume that the

feedforward computation is noisy and therefore must proceed repeatedly while an evidence

accumulator averages away the noise. How long the evidence must be accumulated for will

depend on where the stimuli fall relative to the decision boundary of our decoder. If a stimulus

falls far away from the decision boundary on the correct side in the multivariate response

space, then the evidence will accumulate rapidly [33]. We predict fast responses to stimuli far

from the decision boundary and slow responses to stimuli close to the boundary [52, 53].

Note, however, that a feedforward model does not inherently require an evidence accumulator.

Assuming separate modules for feedforward transformation and evidence accumulation is not

well motivated from either a biological or a computational perspective.

Here we went beyond this approach and built recurrent models that naturally produce reac-

tions at different latencies, reflecting the time needed for the posterior probability mass to con-

centrate on a category such that the posterior entropy reaches a threshold. With this approach,

we need not assume an evidence accumulation process external to the model in order to pre-

dict reaction times. Moreover, the recurrent inference mechanism is not limited to accumulat-

ing a unidimensional noisy evidence signal. Instead, the network can learn more complex

recurrent inferential computations as required for the task it is optimised to perform. In our

rCNN models here, longer reaction times do not reflect the need to average a weaker noisy sig-

nal. Instead, longer reaction times reflect the need for deeper computation on difficult images.

The required cycles of recurrent iterative processing delay the response.

In order to be able to compare recurrent and feedforward models, we enhanced the feedfor-

ward models by readouts at different stages of feedforward computation. As for the recurrent

models, we then predicted the reaction time from the stage at which the posterior entropy hit

the threshold. This enabled a fair and direct comparison between recurrent and feedforward

models in terms of their ability to predict human reaction times. The recurrent models outper-

formed the feedforward models at predicting human reaction times (Fig 5). In particular, the

unrolled feedforward model B-U, matched to the BL rCNN in terms of its computational

graph, was not able to predict human reaction times as well as the BL rCNN. This suggests that

the recurrent use of the same connections, an iterative computation, may be important for

explaining human reaction times to particular images.

Superior accuracy of recurrent models

The performance of recurrent models, relative to feedforward, is consistent with previous

work using small-scale machine learning tasks [26, 28]. However, it contrasts with more recent

results suggesting that specialised recurrent architectures, in the form of reciprocally gated

cells, are required for recurrent networks to outperform their feedforward counterparts in nat-

uralistic visual recognition tasks [29]. One potential explanation of these ostensibly diverging

results is the scale of the feedforward control models relative to the recurrent networks. In the

experiments described here, the recurrent networks had approximately 72-100% of the param-

eters of the feedforward control models. In comparison, the baseline recurrent models “Vanilla

RNN” (similar to BL) had approximately 39% and 45% of the parameters of the feedforward

control models (“FF Deeper” and “FF Wider”, respectively) in [29]. While reciprocally gated

cells clearly produce better task performance, this difference in the number of parameters may

explain why our recurrent convolutional networks (without the addition of gating) were able

to outperform the parameter-matched feedforward models. It also highlights the difficulty of
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defining appropriate feedforward control models. Here, we took the approach of matching the

number of parameters in feedforward and recurrent models. We additionally considered the

performance of a fCNN model (B-U) with the same computational graph as the rCNN. The

latter approach has the advantage of matching the number of computations and the computa-

tional depth, but it has the disadvantage of a severe mismatch in the number of parameters

(larger by factor 7 in the fCNN here).

Biology and engineering

Our rCNN models borrowed two ideas from the literature on biological decision making:

threshold-based decision making [33] and speed-accuracy trade-offs [34]. First, using a fixed

posterior-entropy threshold, networks were able take longer to recognise more difficult

images. Second, by varying the posterior-entropy threshold, networks could change their

required confidence, trading off accuracy for speed. These behaviours enable economical

object recognition, only spending the time (and energy) required by the given task or situation.

The type of flexible behaviour demonstrated here for rCNNs is useful in both biological and

artificial object recognition, where time and computational resources for inference are often

limited. Vision rCNNs may be useful in artificial intelligence technologies, particularly those

operating under resource constraints (e.g. [36, 54, 55]).

Reusing weights across time also reduces the passive costs of connections: In biological sys-

tems, connections need to be developed, accommodated in the body, and continually nour-

ished, which requires energy and space, even when the network is idle. In artificial systems,

similarly, there are costs of construction and space if neuromorphic hardware is used, and

costs of memory storage if the network is emulated on a conventional computer. In both bio-

logical and articifical systems, the experiential data and energy required for learning a large

number of parameters constitute additional costs. The need for large amounts data, energy,

and time for learning, in fact, is among the most significant drawbacks of current neural net-

work models. Recurrent models offer an avenue for limiting the number of parameters with-

out limiting the computational depth or total computational budget for an inference.

Learned lateral recurrent connectivity

As part of an exploratory analysis of the lateral connectivity in the BL networks, we observed

that these models may learn recurrent connectivity profiles that resemble those in biological

vision (see S1 Text). We found connectivity that could be interpreted as evidence for centre-

surround computations and could support properties such as sparse representations [56], bor-

der ownership [50], contour integration [51], and end-stopping [57]. These analyses of recur-

rent connectivity offer a promising starting point for understanding recurrent computations

in artificial visual systems and should be followed up by a detailed analysis of activity patterns

in the models.

The observed lateral connections in our networks trained for object recognition also show a

resemblance to the lateral connections of networks trained for contour integration tasks [30].

Given the different nature of these tasks, the similarity in lateral connectivity is surprising.

This leads to the interesting hypothesis that there might be a subset of lateral computations

that are useful across a range of visual tasks, at least in low-level visual areas. This would be

consistent with the fact that a large range of objectives can be optimised to obtain simple-cell

like features as observed in low-level visual areas. Such objectives include image classification

performance [58], predictive coding [59], temporal stability [60, 61], and sparsity [56].
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Future directions

This study adds to a growing body of research on rCNNs as models of object recognition [25–

29, 31, 32]. The rCNN model class could provide a unified basis for predicting stimulus-spe-

cific distributions of errors and reaction times in different sensory modalities and perceptual

tasks, complementing previous work on recurrent processing in the decision-making

literature.

Recurrent processing in human decision-making is often interpreted as serving to accumu-

late evidence. When the evidence consists in a noisy signal that reflects some variable of inter-

est, the optimal inference procedure is to sum [33]. In dynamic real-world situations, however,

the content of the signal varies over time, for example when the observer moves and previously

hidden elements of the scene come into view. Perception is an ongoing inference process

where a dynamic sensory stream meets a dynamic internal representation of the scene. Even

for a static sensory input (as in the present study), each step of inference might depend on pre-

ceding steps, with sudden insights changing the course of the process. Recurrent neural net-

work models can capture such processes and will be essential for understanding the recurrent

computations of biological vision.

Methods

Behavioural experiments

Ethics statement. Participants were recruited from the Medical Research Council—Cog-

nition and Brain Sciences Unit volunteer panel. The study and all associated procedures

received prior approval from the Cambridge Psychology Research Ethics Committee. Partici-

pants provided written informed consent and were compensated financially for participation.

Participants. Twenty healthy participants (16 female) aged 22-35 years (mean 26.62

years ± 4.21) were recruited from the Medical Research Council—Cognition and Brain Sci-

ences Unit volunteer panel. All participants had normal or corrected-to-normal vision, and

reported no history of neurological or psychiatric disorders.

Materials. We used the experimental stimuli from (Kriegeskorte et al. [65]). The stimuli

presented to our participants were 96 colour photographs (250 × 250 pixels) of isolated real-

world objects on a grey background. The objects included natural and artificial inanimate

objects as well as faces and bodies of humans and nonhuman animals. Forty-eight pictures out

of the 96 were animate objects, 12 human bodies, 12 animal bodies, 12 human faces and 12

animal faces. Twenty-four pictures out of the 48 inanimate objects were depicting man-made

objects while the remaining 24 depicted natural objects.

Experimental procedure. The experiments were programmed using the Psychophysical

Toolbox [66, 67] in Matlab (MathWorks, Natwick Inc) on a Dell Desktop PC computer. The

participants were instructed to categorise “as quickly and as accurately as possible” objects

according to the animate vs. inanimate categorical dichotomy. For each stimulus presentation,

the participant had to press one of two keyboard keys as quickly as possible to indicate from

which one of the two categories the stimulus was drawn. Each stimulus was presented exactly

6 times. Within the task, the order of the stimulus presentation was pseudo-random control-

ling for potential confounds related to stimulus presentation order. The trial onset asynchrony

was 2 seconds and the stimuli were shown for a duration of 500 ms, providing the participant

with 2s (including stimulus duration) to indicate the object’s category before the next object

was presented.
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Deep neural network implementation

Architecture descriptions. All deep neural networks in these experiments were imple-

mented using TensorFlow [62]. The baseline feedforward model (B), the recurrent model BL

and the feedforward models parameter-matched to BL (B-K, B-F, B-D) are specified in detail

in Table 3.

The recurrent network (BL) is unrolled across time (Fig 8) for eight time steps. At each

time point in BL, the network receives an input image at the first layer and a readout is taken

from the last layer.

An additional feedforward model (B-U) was also trained. This model is identical to a BL

network unrolled across time (for eight time steps) but, instead of sharing parameters across

time, each convolution has unique parameters. Similar to BL, B-U has multiple input and out-

put layers directly mapping to the input and output layers of BL at each time step. B-U has a

total of 212.7 million parameters.

Unrolling recurrent networks across time. Artificial recurrent neural networks are typi-

cally implemented with feedforward connections taking no time and recurrent connections

taking a single time step, we refer to this as “engineering” time. In comparison, all connections

in biological neural networks should incur some time delay. A more biologically realistic

Table 3. Specification of network architectures.

Model B B-K B-F B-D BL

Block 1 F = 96, K = 7 F = 96, K = 11 F = 192, K = 7 F = 96, K = 7 (F = 96, K = 7) × 2

F = 96, K = 7

Pool 1 2 × 2 max pooling

Block 2 F = 128, K = 5 F = 128, K = 7 F = 256, K = 5 F = 128, K = 5 (F = 128, K = 5) × 2

F = 128, K = 5

Pool 2 2 × 2 max pooling

Block 3 F = 192, K = 3 F = 192, K = 5 F = 384, K = 3 F = 192, K = 3 (F = 192, K = 3) × 2

F = 192, K = 3

Pool 3 2 × 2 max pooling

Block 4 F = 256, K = 3 F = 256, K = 5 F = 512, K = 3 F = 256, K = 3 (F = 256, K = 3) × 2

F = 256, K = 3

Pool 4 2 × 2 max pooling

Block 5 F = 512, K = 3 F = 512, K = 5 F = 1024, K = 3 F = 512, K = 3 (F = 512, K = 3) × 2

F = 512, K = 3

Pool 5 2 × 2 max pooling

Block 6 F = 1024, K = 3 F = 1024, K = 5 F = 2048, K = 3 F = 1024, K = 3 (F = 1024, K = 3) × 2

F = 1024, K = 3

Pool 6 2 × 2 max pooling

Block 7 F = 2048, K = 1 F = 2048, K = 3 F = 4096, K = 1 F = 2048, K = 1 (F = 2048, K = 1) × 2

F = 2048, K = 1

Readout global average pooling

565 or 1000 category readout

Parameters 11.0 million 39.8 million 40.0 million 28.9 million 28.9 million

Each row in the table represents a convolutional layer. F specifies the number of feature maps in the layer and K represents the height and width dimensions of the

convolutional kernel. For BL, “(. . .) × 2” indicates that the same size convolutional kernel is applied twice, once to the bottom-up input (from the layer below) and once

to the lateral input (from the same layer). All convolutions are applied with 1 × 1 stride and all max pooling is applied with 2 × 2 stride. The number of parameters are

calculated for ImageNet models, ecoset models have slightly fewer parameters for the readout due to the smaller number of categories in ecoset.

https://doi.org/10.1371/journal.pcbi.1008215.t003
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implementation of a recurrent network may have every form of connection taking a single

time step [25, 29]. We refer to this as “biological” time. Network unrolling in engineering time

and biological time yield distinct computational graphs in the presence of top-down connec-

tions. However, for BL networks (which have lateral, but not top-down connections), unroll-

ing in engineering time and biological time produce equivalent computational graphs (Fig 8).

Note that we neglect (1) computations that occur prior to the first feedforward sweep and (2)

computations that cannot reach the readout before the final time step is reached. Based on the

equivalent computational graphs for BL networks, we chose to use “engineering” time for the

recurrent networks here and defined time as the number of complete feedforward sweeps that

have occurred.

Note that in the unrolling scheme for BL (Fig 8), each layer receives a time-varying feedfor-

ward input. This means that feedforward and recurrent processing happen in parallel. Alterna-

tively, an rCNN could be unrolled such that all recurrent computations are performed within

a layer and only the final output is passed to subsequent layers (e.g. [31]), resulting in recurrent

and feedforward processing occurring in sequence. This implementation suggests that the

onset of responses at later stages will be delayed when recurrence is engaged in earlier layers.

However, experimental observations suggest that response onset is not delayed in later stages

of the ventral visual pathway when recurrent processing is being utilised [24, 25]. These experi-

mental findings motivate our unrolling scheme for BL, with recurrent and feedforward pro-

cessing occurring in parallel.

Convolutional layers. We define the output from a standard feedforward convolutional

layer at layer n on time step t as

Ht;n ¼ �ðW
b
n � ZðHt;n� 1Þ þ bnÞ ð1Þ

Where Wb
n are the bottom-up convolutional weights for the layer and bn are the biases. The

convolution operation is represented as �. Optional max-pooling on the bottom-up input is

represented by η. All other operations applied after the convolution are represented by the

function ϕ. These operations include batch-normalisation [63] and rectified linear units in

that order.

Fig 8. Network unrolling through time. Unrolling is shown for engineering time (left) and biological time (right).

Each box represents a layer and the shading corresponds to its label in engineering time. Connections with the same

colour represent shared parameters.

https://doi.org/10.1371/journal.pcbi.1008215.g008
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For a recurrent BL layer, the output is defined as

Ht;n ¼ �ðW
b
n � ZðHt;n� 1Þ þWl

n �Ht� 1;n þ bnÞ ð2Þ

Where Wl
n are the lateral recurrent weights.

For the recurrent networks, batch-normalisation is applied independently across time.

Whilst this means that the networks are not truly recurrent due to unique normalisation

parameters at each time step, this does not affect arguments related to parametric efficiency, as

the numbers of parameters added by batch-normalisation at each time-step are negligible

compared to the overall scale of the network. Approximately, 60,000 parameters are added

across time due to batch-normalisation compared to 28.9 million parameters for the network

as a whole.

In addition, we tested whether the use of independent batch-normalisation across time con-

fers an additional performance advantage to recurrent networks by training B-D and BL on

ImageNet without batch-normalisation. In this case, networks were trained using the same

procedure but for only 25 epochs to prevent overfitting (as the removal of batch-normalisation

reduces stochasticity in training). B-D and BL achieved a top-1 validation accuracy of 52.5%

and 58.6%, respectively. This suggests that independent batch-normalisation across time does

not explain the performance difference between feedforward and recurrent networks and even

has a more beneficial effect for feedforward networks than recurrent networks (approximately

10 percentage point increase for B-D compared to a 6 percentage point increase for BL).

Network training. Before passing the images to the network, a number of pre-processing

steps were applied. First, a crop was taken from the image, which was resized to 128 × 128 pix-

els. During testing and validation, a centre crop was taken from the image. During training, a

random crop was taken covering at least one third of the image area. Further data augmenta-

tion was also applied in training, this included random left-right flips, and small distortions to

the brightness, saturation and contrast of the image. Finally, the pixel values in the image were

scaled from the range [0, 1] to be in the range [-1, 1].

B, BL and parameter-matched controls (B-K, B-F and B-D) were trained for a total of 90

epochs with a batch size of 100. B-U was trained using the same procedure but with a batch

size of 64 due to its substantially larger number of parameters.

The cross-entropy between the softmax of the network category readout and the labels was

used as the training loss. For networks with multiple readouts (BL and B-U), we calculate the

cross-entropy at each readout and average this across readouts. Adam [64] was used for opti-

misation with a learning rate of 0.005 and epsilon parameter 0.1. L2-regularisation was applied

throughout training with a coefficient of 10−6.

The code for models and weights for pre-trained networks are made available at github.

com/cjspoerer/rcnn-sat.

Defining accuracy in recurrent networks

As recurrent networks are unrolled across time, they have readouts at multiple time steps. This

means that we must map from many readouts for a single image to one prediction. This leads

to some ambiguity about how to produce predictions from recurrent networks for object rec-

ognition. Therefore, we conducted initial analyses to determine how to generate predictions

from recurrent networks in the experiments described here.

One decision is how to select the time step to readout from the network, which we refer to

as the network’s reaction time. A fixed time step could be chosen. For example, the readout

could always be taken at the final time step that the recurrent model runs until. We refer to

this as time-based accuracy.
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Alternatively, we could select the readout to use based on when the model reaches some

threshold. For example, the prediction is taken from the network once a certain level of confi-

dence is reached. This confidence level could be defined by the entropy of the readout distribu-

tion where a lower entropy corresponds to a higher confidence. If the required confidence

level is never reached then the final time step is selected as the reaction time. This is referred to

as threshold-based accuracy. It should be noted that threshold-based accuracy can be imple-

mented in recurrent networks using dynamic computational graphs that only execute up to

the desired threshold. However, for our analyses we simply measure the time that it takes for

the network to achieve a given level of entropy.

Once the decision time has been selected, we need to decide how to reduce the readout dis-

tribution across time. One method is to generate the prediction based solely on the readout at

the network reaction time. We refer to this as the instantaneous readout. A second method is

to generate the prediction from the cumulative readout up to the decision time, allowing the

network’s predictions to be explicitly aggregated across time.

These different methods were compared using held-out data (Fig 9). For ecoset the held-

out data corresponds to the test set and for ImageNet this corresponds to the validation set, as

the test set is not publicly available.

For time-based methods, we see that the accuracy of the readout tends to increase across

time. However, there is some drop-off in performance at later time steps if the instantaneous

readout is used. One explanation for this pattern is that, by training the network to produce a

readout at each time step, the network is encouraged to produce accurate predictions more

quickly at the cost of higher accuracy at later time steps.

If a cumulative readout is used then accuracy improves more steadily across time, which is

consistent with the smoothing effects expected from a cumulative readout. However, cumula-

tive readouts produce a higher overall level of accuracy than instantaneous readouts. This sug-

gests there is some benefit of accumulating evidence across time for the performance of the

network, even though the predictions themselves are not independent across time.

Similar results are seen when threshold-based accuracies are used. This reflects the fact that

decreasing the entropy threshold will naturally lead to later time steps being increasingly uti-

lised. Threshold-based accuracies also show a decrease in accuracy for instantaneous readouts

at the lowest entropy levels. This is again due to worse performance at later time steps but also

highlights an assumption of threshold-based accuracies that letting the network run for longer,

to obtain higher confidence levels, will generate better predictions.

As a result of these analyses, all reported accuracies for recurrent networks refer to predic-

tions based on cumulative readouts as these tend to produce the best performance.

Fitting network reaction times to human reaction times

A cross-validated procedure was used to fit network models to human reaction times in the

animacy discrimination task (as described in Behavioural experiments). The network models

tested included B-D (ImageNet-trained and ecoset-trained), B-U (ImageNet-trained) and BL

(ImageNet-trained, ecoset-trained and randomly initialised). A range of networks pre-trained

on ImageNet that are popular in the engineering literature were also included [42–47]. The

procedure involved two key steps, training the animacy discrimination readout and fitting the

entropy threshold.

Training the animacy discrimination readout. To explain the human reaction times,

animacy discrimination readouts were trained at eight points throughout the networks. The

position of the first readout to reach a specified entropy threshold was taken as the network

reaction time. For networks with multiple readouts (B-U and BL) readouts were trained in the
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same position as the original readouts. For feedforward networks without multiple readouts

(B-D and pre-trained ImageNet models), a set of eight readouts were placed in an ordered

sequence so that a similar number of additional computations were performed between any

pair of adjacent readouts. Only a subset of layers were considered as candidate readout layers

for the feedforward models trained without multiple readouts (Table 4 summarises the layers

considered for each model).

To train the animacy readout, activations for each of the eight selected readout layers were

taken in response to 899 training images (406 animate and 493 inanimate). These images were

taken from a stimulus set of 1024 cropped images on a mid-grey background [68]. Images that

Fig 9. Task performance using varied definitions of predictions for recurrent models. Accuracies are given for

models trained on (A) ImageNet and (B) ecoset using both time-based (left) and threshold-based (right) methods.

Accuracies obtained from instantaneous readouts are shown with solid lines and results from cumulative readouts are

shown with dashed lines. Shaded areas represent 95% confidence intervals obtained through bootstrap resampling.

https://doi.org/10.1371/journal.pcbi.1008215.g009

Table 4. Subset of layers considered for training animacy discrimination readouts in single-readout feedforward

models.

Model layers considered for animacy readouts

B-D ReLU layers

Inception-ResNet

v2

ReLU layers in the network stem, output of mixed concat layers, output of ResNet blocks, final

ReLU layer

Xception ReLU and add layers

NASNet concat layers

DesnseNet-201 concat layers

ResNet-50 ReLU layers

VGG16 ReLU layers

https://doi.org/10.1371/journal.pcbi.1008215.t004
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also appeared in the behavioural experiment, or did not clearly depict animate or inanimate

objects were removed from the training set. The remaining images were labelled as animate or

inanimate.

The extracted activations underwent a step of dimensionality reduction, using principal

components analysis (PCA), fitted on the training set, to project the activations into a

512-dimensional space. For recurrent networks, PCA was fitted for all time steps simulta-

neously. This simplified training the animacy readout as it reduces the number of parameters

to be optimised. It also has the benefit that all network layers are reduced to the same

dimensionality. Therefore, changes in the readout across layers cannot be explained by

changes in the dimensionality of the input or (as a consequence) the number of the parameters

in the readout.

A sigmoid animacy discrimination readout is then trained to maximise performance using

activations for the training images projected in 512 dimensions. For the recurrent networks a

recurrent sigmoid readout is trained across all time steps. The output of the recurrent readout

at time step t 2 {1‥8} is defined as

yt ¼ sðayt� 1 þ w � pt þ bÞ ð3Þ

Where pt are the loadings on the principal components at each time step, α is a recurrent

parameter that allows evidence to be accumulated across time, w are the weights for the linear

readout, b is the bias and σ is the sigmoid non-linearity. The initial readout state y0 was defined

to neutral, such that y0 = 0.5. For feedforward networks, there is no parameter sharing across

the layers, therefore, a separate sigmoid readout is trained for each readout layer.

The readout was optimised using batch gradient descent with Adam. The learning rate was

set to 0.001 and the readout was trained for 1000 iterations. The loss was weighted for each

class to account for the imbalance of classes in the training set.

This procedure was repeated 10 times, initialising the PCA and readout from different ran-

dom seeds (note that a randomised method for PCA is used given the size of the original acti-

vation space [69]). For each random seed the PCA and animacy readout were used to produce

responses to each of the 96 images used in the behavioural experiments, saving the results for

each random seed.

Cross-validated procedure for entropy threshold selection. Entropy thresholds were

used to extract reaction times for each of the 96 images used in the behavioural experiments. A

double leave-one-out cross-validation procedure was used for fitting the entropy threshold. In

each fold of the cross-validation procedure a single image (across all subjects) and subject

(across all images) were removed as the test image and subject, respectively. The remaining 95

images across 19 subjects were taken as the training set.

The entropy threshold was found that maximised the correlation between network reaction

times (averaged across random seeds) and human reaction times (averaged across partici-

pants) on the training set. Using the entropy threshold fitted on the training data, a predicted

reaction time was extracted for the left out image and subject. The predicted reaction time was

recorded for later analysis. This procedure was repeated until all subjects had a predicted reac-

tion time for every image, fitted using independent data.

The cross-validated network reaction times were then compared to human reaction times

for each subject individually using Pearson correlation. Pearson correlation was used as we

expect the relationship between human and network reaction times to be linear. The correla-

tion coefficient across human subjects was averaged and a paired permutation test (with

10,000 permutations) was used to test for significant differences in the mean.
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Extracting lateral-weight components

We analyse the lateral connectivity of the network by decomposing the lateral weights in the

network into lateral-weight components. To do this, we focus of the 7 × 7 weight templates

that connect each of the feature maps within the first layer of the network. There are 962 weight

templates in total connecting every feature map to each other in both directions (including

self-connections from a feature map to itself). We focus on the first layer of the network as the

corresponding bottom-up weights are easier to interpret and recurrence is arguably best

understood in early regions of the visual system (corresponding to early layers of the network).

Firstly, the weight templates are normalised such that the vector of the flattened weight tem-

plate has unit length. After normalisation, the lateral weights are processed using principal

components analysis (PCA) where each weight template is considered as an individual sample.

The first five components resulting from the PCA are used as the lateral-weight components

for the analysis.

Supporting information

S1 Fig. Median accuracy in the human reaction times task. The median accuracy (median
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