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Abstract 

Faces of different people elicit distinct functional MRI (fMRI) patterns in several face-
selective regions of the human brain. Here we used representational similarity analysis to 
investigate what type of identity-distinguishing information is encoded in three face-
selective regions: fusiform face area (FFA), occipital face area (OFA), and posterior 
superior temporal sulcus (pSTS). In a sample of 30 human participants (22 females, 8 
males), we used fMRI to measure brain activity patterns elicited by naturalistic videos of 
famous face identities, and compared their representational distances in each region with 
models of the differences between identities. We built diverse candidate models, ranging 
from low-level image-computable properties (pixel-wise, GIST, and Gabor-jet 
dissimilarities), through higher-level image-computable descriptions (OpenFace deep 
neural network, trained to cluster faces by identity), to complex human-rated properties 
(perceived similarity, social traits, and gender). We found marked differences in the 
information represented by the FFA and OFA. Dissimilarities between face-identities in FFA 
were accounted for by differences in perceived similarity, social traits, gender, and by the 
OpenFace network. In contrast, representational distances in OFA were mainly driven by 
differences in low-level image-based properties (pixel-wise and Gabor-jet dissimilarities). 
Our results suggest that, although FFA and OFA can both discriminate between identities, 
the FFA representation is further removed from the image, encoding higher-level perceptual 
and social face information. 

 

Keywords: representational similarity analysis; face identity; FFA; OFA 

  

  

Significance statement  

Recent studies using functional magnetic resonance imaging (fMRI) have shown that 
several face-responsive brain regions can distinguish between different face identities. It is 
however unclear whether these different face-responsive regions distinguish between 
identities in similar or different ways. We used representational similarity analysis to 
investigate the computations within three brain regions in response to naturalistically varying 
videos of face identities. Our results revealed that two regions, the fusiform face area (FFA) 
and the occipital face area (OFA), encode distinct identity information about faces. Although 
identity can be decoded from both regions, identity representations in FFA primarily 
contained information about social traits, gender, and high-level visual features, whereas 
OFA primarily represented lower-level image features.  
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Introduction 

The human brain contains several face-selective regions that consistently respond more to 
faces than other visual stimuli (Kanwisher et al., 1997; Pitcher et al., 2011; Rossion et al. 
2012; Khuvis et al., 2021; Axelrod et al., 2019). Functional magnetic resonance imaging 
(fMRI) has revealed that some of these regions represent different face identities with 
distinct brain patterns. Specifically, studies using fMRI multivariate pattern analysis have 
shown that face identities can be distinguished based on their elicited response patterns in 
the fusiform face area (FFA), occipital face area (OFA), posterior superior temporal sulcus 
(pSTS), and anterior inferior temporal lobe (Nestor et al. 2011; Verosky et al., 2013; 
Goesaert & Op de Beeck, 2013; Anzellotti et al., 2014; Axelrod & Yovel, 2015; Zhang et al., 
2016; Anzellotti & Caramazza, 2017; Guntupalli et al., 2017; Visconti di Oleggio Castello et 
al., 2017; Tsantani et al., 2019; see also Davidesco et al. (2014), Ghuman et al. (2014), and 
Khuvis et al. (2018) for results using intracranial electroencephalography, iEEG). But do 
these regions represent the same information and, if not, what information is explicitly 
encoded in each of these face-selective regions? 

Behaviourally, we distinguish between different faces using the surface appearance of 
the face, the shape of face features, and their spacing or configuration (e.g. Rhodes, 1988; 
Calder et al., 2001; Yovel & Duchaine, 2006; Russell & Sinha, 2007; Russell et al., 2007; 
Tardif et al., 2019). In particular, Abudarham and Yovel (2016) recently showed that features 
such as lip thickness, hair colour, eye colour, eye shape, and eyebrow thickness were 
crucial in distinguishing between individuals (see also Abudarham et al., 2019). Additionally, 
we perceive a vast amount of socially-relevant information from faces that can be used to 
distinguish between different individuals, such as gender, age, ethnicity, social traits 
(Oosterhof & Todorov, 2008; Sutherland et al. 2013), and even relationships and social 
network position (Parkinson et al., 2014; 2017). Therefore, if the response patterns in a 
certain brain region distinguish between two individuals, that region could be representing 

any one—or a combination of —these dimensions.  

Like several other studies (see above), Goesaert and Op de Beeck (2013) demonstrated 
that the FFA, OFA, and a face-selective region in the anterior inferior temporal lobe could 
all decode between different face identities based on fMRI response patterns. Importantly, 
the authors further tested what type of face information was encoded in these different 
regions. The authors found that all three regions could distinguish between faces using both 
configural and featural face information, and therefore all regions seemed to represent 
similar information. Goesaert and Op de Beeck (2013) also showed that representational 
distances between different faces in face-selective regions did not correlate with low-level 
pixel-based information. This study however, used one single image for each person’s face, 
making it difficult to disentangle whether representations in a certain brain region are related 
to identity per se or related to the specific images used. 

To determine whether brain response patterns represent face identity per se, it is 
necessary to show that patterns generalise across different images of the same person’s 
face, in addition to distinguishing that person’s face from the faces of other people. Anzellotti 
et al (2014) showed that classifiers trained to decode face identities in the FFA, OFA, 
anterior temporal lobe, and pSTS (later analysed in Anzellotti and Caramazza, 2017) could 
also decode the same faces from novel viewpoints. Guntupalli et al (2017) additionally 
showed a hierarchical organisation of the functions of face-selective regions, with the OFA 
decoding viewpoint of face independently of the face identity, the anterior inferior temporal 
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lobe (and a region in the inferior frontal cortex) decoding face identity independently of the 
viewpoint, and the FFA decoding both viewpoint and identity information (see also Dubois 
et al., 2015). Extending these findings and using iEEG in epilepsy patients, Ghuman et al 
(2014) showed invariant decoding in the FFA across different facial expressions. In contrast, 
Grossman et al (2019) have recently shown that representational distances between 
different face identities (computed from brain response patterns recorded from implanted 
electrodes) were very similar across the OFA and the FFA (in the left hemisphere). Crucially, 
the representational geometries in both regions were associated with differences in image-
level descriptions computed from a deep neural network (VGG-Face), which were not 
generalisable across different viewpoints of the same person’s face. These results thus 
suggest that the OFA and FFA both represent complex configurations of image-based 
information and not face identity per se.   

Also using iEEG, Davidesco et al. (2014) further showed that representational distances 
between face images in the FFA (and to a lesser extent in the OFA) were associated with 
perceived similarity and characteristics of facial features (such as face area and mouth 
width), but not with low-level features related to pixel-based information (see also Ghuman 
et al, 2014). Some fMRI studies have shown that even lower-level stimulus-based properties 
of face images, such as those computed by Gabor filters, explain significant variance in the 
representational geometries in the FFA (Carlin & Kriegeskorte, 2017) as well as OFA and 
pSTS (Weibert et al., 2018). On the other hand, other studies have shown that more high-
level information, such as biographical information and social context, affects the similarity 
of response patterns to different faces in the FFA (Verosky et al., 2013; Collins et al., 2016).  

There is thus mixed evidence regarding whether different face-selective regions rely on 
similar or distinct information to distinguish between face identities, and what type of 
information may be encoded in different regions. In the present study, we used 
representational similarity analysis (RSA) (Kriegeskorte et al., 2008a; 2008b) to investigate 
what type of identity-distinguishing information is encoded in different face-selective 
regions. In our previous work (Tsantani et al., 2019), we showed that famous face-identities 
could be distinguished in the right FFA, OFA, and pSTS based on their elicited fMRI 
response patterns. Here, for the same set of famous identities and using the same data as 
in Tsantani et al (2019), we compared the representational distances between identity-
elicited fMRI patterns in these regions with diverse candidate models of face properties that 
could potentially be used to distinguish between identities.  

Importantly, we used multiple naturalistically varying videos for each identity that varied 
freely in terms of viewpoint, lighting, head motion, and general appearance. In addition, our 
representational distances were cross-validated across different videos, in order to 
deconfound identity from incidental image properties. By using a large, diverse set of 
candidate models, based on image properties of the stimuli (image-computable models) 
and on human-rated properties (perceived-property models), we were able to determine 
what types of identity-distinguishing information are encoded in different face-selective 
regions. 
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Materials and Methods 

This study involved an fMRI component, in which we measured brain representations of 
faces and voices, and a behavioural component, in which we collected ratings of the same 
faces and voices on social traits and perceived similarity. The fMRI part corresponds to the 
same experiment and data described in Tsantani et al. (2019) and the behavioural part is 
reported here for the first time. In the present study, we analysed the data related to faces 
only.  

Participants 

We recruited thirty-one healthy right-handed adult participants to take part in two fMRI 
sessions and a behavioural session (all on separate days, resulting in at least six hours of 
testing per participant). We did not conduct a formal power analysis as there were no 
previous studies at the time of the study design that had investigated the main effect 
described in Tsantani et al. (2019). Our sample size was determined based on similar fMRI 
studies within the field and on available funding. To ensure adequate exposure to our 
stimulus set of famous people, participants were required to be native English speakers 
between 18 and 30 years of age, and to have been resident in the UK for at least 10 years. 
We also independently verified that all participants knew the famous people used in the 
experiment (please see Tsantani et al., 2019). No inclusion or exclusion criteria were applied 
based on race or ethnicity, and we did not formally record this information. It has been shown 
that the other-race effect does not apply to familiar faces (McKone et al., 2007; Zhou & 
Mondloch, 2016). Participants were recruited at Royal Holloway, University of London, and 
Brunel University London. One participant was excluded due to excessive head movement 
in the scanner. The final sample consisted of 30 participants (22 females, 8 males) with a 
mean age of 21.2 years (SD=2.37, range=19-27). Participants reported normal or corrected-
to-normal vision and normal hearing, provided written informed consent, and were 
reimbursed for their participation. The study was approved by the Ethics Committee of 
Brunel University London. 

Stimuli 

The same stimuli were used in the fMRI and behavioural testing, and consisted of videos of 
the faces and sound recordings of 12 famous individuals, including actors, comedians, TV 
personalities, pop stars and politicians: Alan Carr, Daniel Radcliffe, Emma Watson, Arnold 
Schwarzenegger, Sharon Osbourne, Graham Norton, Beyonce Knowles, Barbara Windsor, 
Kylie Minogue, Barack Obama, Jonathan Ross, and Cheryl Cole. These individuals were 
selected based on pilot studies that showed that participants (aged between 18 and 30 and 
living in the UK) could recognise them easily from their faces and voices. 

For each identity, six silent, non-speaking video clips of their moving face were obtained 
from videos on YouTube (Figure 1). The six clips were obtained from different original 
videos. In total, we obtained 72 face stimuli. Face videos were selected so that the 
background did not provide any cues to the identity of the person. The face videos were 
primarily front-facing and did not feature any speech but were otherwise unconstrained in 
terms of facial motion. Head movements included nodding, smiling, and rotating the head. 
Videos were edited so that they were three seconds long, 640 x 360 pixels, and centred on 
the bridge of the nose, using Final Cut Pro X (Apple, Inc.). 
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For purposes not related to this study, we also presented 72 voice stimuli, which 
consisted of recordings of the voices of the same 12 famous individuals (6 clips per identity) 
obtained from videos on YouTube. Speech clips were selected so that the speech content, 
which was different for every recording, did not reveal the identity of the speaker. 
Recordings were edited so that they contained three seconds of speech after removing long 
periods of silence using Audacity® 2.0.5 recording and editing software 
(RRID:SCR_007198). The recordings were converted to mono with a sampling rate of 
44100, low-pass filtered at 10KHz, and root-mean-square (RMS) normalised using Praat 
(version 5.3.80; Boersma and Weenink 2014; www.praat.org). 

Participants were familiarised with all stimuli via one exposure to each clip immediately 
before the first scanning session. 

MRI data acquisition and preprocessing 

Participants completed two MRI sessions: in each session, participants completed a 
structural scan, three runs of the main experiment, and functional localiser scans (for face 
and voice areas, but below we only describe the localiser of face-selective regions). 
Participants were scanned using a 3.0 Tesla Tim Trio MRI scanner (Siemens, Erlangen) 
with a 32-channel head coil. Scanning took place at the Combined Universities Brain 
Imaging Centre (CUBIC) at Royal Holloway, University of London. We acquired whole-brain 
T1-weighted anatomical scans using magnetization-prepared rapid acquisition gradient 
echo (MPRAGE) [1.0 x 1.0 in-plane resolution; slice thickness, 1.0mm; 176 axial interleaved 
slices; PAT, Factor 2; PAT mode, GRAPPA (GeneRalized Autocalibrating Partially Parallel 
Acquisitions); repetition time (TR), 1900ms; echo time (TE), 3.03ms; flip angle, 11°; matrix, 
256x256; field of view (FOV), 256mm]. 

For the functional runs, we acquired T2*-weighted functional scans using echo-planar 
imaging (EPI) [3.0 x 3.0 in-plane resolution; slice thickness, 3.0mm; PAT, Factor 2; PAT 
mode, GRAPPA; 34 sequential (descending) slices; repetition time (TR), 2000ms; echo time 
(TE), 30ms; flip angle, 78°; matrix, 64x64; field of view (FOV), 192mm]. Slices were 
positioned at an oblique angle to cover the entire brain except for the most dorsal part of 
the parietal cortex. Each run of the main experiment comprised 293 brain volumes, and 
each run of the face localizer had 227 brain volumes. 

Functional images were pre-processed used Statistical Parametric Mapping (SPM12; 
Wellcome Department of Imaging Science, London, UK; RRID:SCR_007037; 
http://www.fil.ion.ucl.ac.uk/spm) operating in Matlab (version R2013b; MathWorks; 
RRID:SCR_001622). The first three EPI images in each run served as dummy scans to 
allow for T1-equilibration effects and were discarded prior to pre-processing. Data from each 
of the two scanning sessions, which took place on different days, were first pre-processed 
independently with the following steps for each session. Images within each brain volume 
were slice-time corrected using the middle slice as a reference, and were then realigned to 
correct for head movements using the first image as a reference. The participants’ structural 
image in native space was coregistered to the realigned mean functional image, and was 
segmented into grey matter, white matter, and cerebrospinal fluid. Functional images from 
the main experimental runs were not smoothed, whereas images from the localiser runs 
were smoothed with a 4-mm Gaussian kernel (full width at half maximum). To align the 
functional images from the two scanning sessions, the structural image from the first session 
was used as a template, and the structural image from the second session was coregistered 

http://www.praat.org/
http://www.praat.org/
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to this template; we then applied the resulting transformation to all the functional images 
from the second session. 

Functional localisers and definition of regions of interest 

Face-selective regions were defined using a dynamic face localiser that presented famous 
and non-famous faces, along with a control condition consisting of objects and scenes. The 
stimuli were silent, non-speaking videos of moving faces, and silent videos of objects and 
scenes, presented in an event-related design. Participants completed between one and two 
runs of the localiser across the two scanning sessions. The localiser presented different 
stimuli in each of two runs. For full details of the localiser please see Tsantani et al. (2019). 

Functional regions of interest (ROIs) were defined using the Group-Constrained Subject-
Specific method (Fedorenko et al., 2010; Julian et al., 2012), which has the advantage of 
being reproducible and reducing experimenter bias by providing an objective means of 
defining ROI boundaries. Briefly, subject-specific ROIs were defined by intersecting subject-
specific localiser contrast images with group-level masks for each ROI obtained from an 
independent dataset. In this study, we obtained group masks of face-selective regions (right 
fusiform face area (rFFA), the right occipital face area (rOFA), and the right posterior 
superior temporal sulcus (rpSTS)) from a separate group of participants who completed the 
same localiser (for details see Tsantani et al., 2019). We focused on face-selective regions 
from the right hemisphere because they have been shown to be more consistent and larger 
compared to the left hemisphere (e.g. Rossion et al., 2012). Our masks are publicly 
available at https://doi.org/10.17633/rd.brunel.6429200.v1. 

Contrast images were defined for each individual participant. Face-selectivity was 
defined by contrasting activation to faces versus non-face stimuli using t-tests. We then 
intersected these subject-specific contrasts with the group masks, and extracted all 
significantly activated voxels at p<.001 (uncorrected) that fell within the boundaries of each 
mask. In cases where the resulting ROI included fewer than 30 voxels, the threshold was 
lowered to p <. 01 or p < .05. ROIs which included fewer than 30 voxels at the lowest 
threshold were not included, and this occurred for the rFFA in two participants and for the 
rOFA in one participant. For full details of size and location of all ROIs, please see Tsantani 
et al. (2019). 

https://doi.org/10.17633/rd.brunel.6429200.v1
https://doi.org/10.17633/rd.brunel.6429200.v1
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Figure 1. Examples of face trials in the fMRI and behavioural experiments. All experiments 
presented the same videos of moving, non-speaking, faces of 12 famous people. For each famous 
person, we presented six naturalistically varying videos of their face. In an event-related fMRI task, 
each trial presented a single face video. This task also contained trials of the same length featuring 
voice clips (excluded from the present analysis), stimuli relating to the anomaly detection task, and 
fixation (null events). In each trial of the Social Trait Judgements Tasks (separate tasks for 
Trustworthiness, Dominance, Attractiveness, and Valence), participants viewed three videos of the 
face of the same identity and judged the intensity of the target trait (on a scale from 1 to 7). In each 
trial of the Perceived Similarity Task, participants viewed three videos of one identity followed by 
three videos of a different identity and rated their visual similarity (from 1 to 7). Face videos were 
presented for their full duration of 3000ms in the fMRI experiment, whereas only the first 1500ms 
were presented in the behavioural experiments. 

 

Experimental Design and Statistical Analysis 

Main experimental fMRI runs 
In the main experimental runs, face stimuli were presented intermixed with voice stimuli 
within each run in an event-related design. The experiment was programmed using the 
Psychophysics Toolbox (version 3; RRID:SCR_002881; Brainard 1997; Pelli 1997) in 
Matlab and was displayed through a computer interface inside the scanner. Participants 
were instructed to fixate on a small square shape that was constantly present in the centre 
of the screen. From a distance of 85cm, visual stimuli subtended 20.83 x 12.27 degrees of 
visual angle on the 1024 x 768 pixel screen. 

The experiment was presented in two scanning sessions, with three runs in each session. 
Each run featured two unique videos of the face of each of the 12 identities, presented twice. 
Each run therefore contained 48 face trials (12 identities x 2 videos x 2 presentations), 
intermixed with 48 voice trials (96 experimental trials in total). In other words, across all 
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three runs within a session, each of the 12 face identities appeared in 12 trials, featuring six 
unique videos of their face. Stimuli were presented in a pseudorandom order that prohibited 
the succeeding repetition of the same stimulus and ensured that each identity could not be 
preceded or succeeded by another identity more than once within the same modality. Each 
trial presented a stimulus for 3000 ms and was followed by a 1000 ms ITI (Figure 1). 

To maintain attention to stimulus identity in the scanner, participants performed an 
anomaly detection task in which they indicated via button press when they were presented 
with a famous face or voice that did not belong to one of the 12 famous individuals that they 
had been familiarised with prior to the experiment. Therefore, each run also included 12 
randomly presented task trials (six faces & six voices). Finally, each run contained 36 
randomly interspersed null fixation trials, resulting in a total of 144 trials in each run lasting 
around 10 minutes. 

The three experimental runs that were completed in the first scanning session were 
repeated in the second session with the same stimuli, but in a new pseudorandom order. 
The task stimuli, however, were always novel for each run. The three runs, which had 
different face videos, were presented in counterbalanced order across participants in both 
sessions. 

Behavioural session 
All participants completed a behavioural session in a laboratory, which took place on a 
separate day and always after the fMRI sessions had been completed. In this session, 
participants rated the same faces that they had been presented with in the scanner on 
perceived social traits and on perceived pairwise visual similarity. Participants also rated 
voices (the order of tasks was counterbalanced across modality), but these results are not 
presented here. All tasks and stimuli were presented using the Psychophysics Toolbox and 
Matlab. 
 

Social Trait Judgement Tasks 
In the social trait judgement tasks, participants were asked to make judgements about 

the perceived trustworthiness, dominance, attractiveness, and positive-negative valence of 
the face identities. There were four blocks, one for each judgement, and their order was 
counterbalanced across participants. Face stimuli were presented in the centre of the 
screen. In contrast to the fMRI runs, in which stimuli were presented for the full three 
seconds of their duration, here all stimuli were only presented for the first 1500 ms of their 
duration, to reduce testing time. 

All blocks followed the same trial structure (Figure 1). In each trial, a face identity was 
presented with three videos — these were presented successively with no gap in between 
them (total of 4500 ms). Participants were then asked to rate how 
trustworthy/dominant/attractive/negative-positive the face was, and they were asked to base 
their judgement on all three videos of the face. The rating scale ranged from 1 (very 
untrustworthy/non-dominant/unattractive/negative) to 7 (very 
trustworthy/dominant/attractive/positive) and participants responded using the 
corresponding keys on the keyboard. There was a 1000ms ITI following the response. 

Each identity was presented in two trials; one trial presented three face videos randomly 
selected from the six available, and the other trial presented the remaining three videos. 
This resulted in 24 trials in each block (12 identities x 2 presentations). The videos within 
each trial were presented in a random order, and the trial order was also randomised. 
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Trustworthiness was defined as ‘able to be relied on as honest and truthful’. Dominance 
was defined as ‘having power and influence over other people’. No definition was deemed 
necessary for valence or attractiveness. Participants were advised that there was no time 
limit to their responses and that they should follow their first judgment. The duration of each 
block was approximately 3 minutes. 

Pairwise Visual Similarity Task 
In the pairwise similarity task, participants rated the perceived visual similarity of pairs of 

face identities. Each of the 12 identities was paired with the other 11 identities creating 66 
identity pairs. Each identity was presented by three videos, randomly selected from the six 
available videos. Each identity pair was presented in two trials, counterbalancing the 
presentation order of each identity in the pair. There were therefore 132 trials in each task 
(66 identity pairs x 2 presentations). The presentation order of the pairwise similarity tasks 
in relation to the social trait judgement tasks was also counterbalanced across participants. 

Participants were instructed to rate the similarity between the visual appearance of the 
two face identities in each pair, focusing on the facial features. Participants were asked to 
rate how similar the two faces looked on a scale from 1 (very dissimilar) to 7 (very similar). 
Participants were advised that there was no time limit to their responses and that they should 
follow their first instinct. Participants were told to ignore similarities between people that 
were related to biographical or semantic information (e.g. if both identities were actors). 
Furthermore, to encourage participants to base their judgements on perceptual information, 
participants were advised to consider to what extent two identities could potentially be 
related to each other, i.e. be part of the same family, based on how they looked. 

In each trial, participants were first presented with the three videos of the face of one 
identity (Figure 1). Following a 500ms fixation screen, they were presented with the three 
videos of the face of the second identity. Videos for each identity were presented 
successively with no gap in between. Each video was presented for 1500ms and there was 
a 1000ms ITI following the response. The presentation order of the trials was randomised. 
The duration of each task was approximately 30 minutes.  

Brain Representational dissimilarity matrices (RDMs) 
Representational dissimilarity matrices (RDMs) showing the discriminability of the brain 
response patterns elicited by the 12 face identities (during the fMRI experimental runs) were 
created for each individual participant and for each ROI. 

First, to obtain brain responses at each voxel for each of the 12 face identities, mass 
univariate time-series models were computed for each participant using a high-pass filter 
cutoff of 128 seconds and autoregressive AR(1) modelling to account for serial correlation. 
Regressors modelled the BOLD response at stimulus onset and were convolved with a 
canonical hemodynamic response function (HRF). We defined a model for each run 
separately, and for every possible pair of runs within a scanning session (by concatenating 
the two runs), to create data partitions for cross-validation (described below). Each model 
contained a regressor for the face of each of the 12 identities, which incorporated the 
different videos of their face (two per run) and the repetitions of those videos. The model 
also included regressors for each of the 12 voice identities, task trials, and the six motion 
parameters obtained during the image realignment preprocessing stage (included as 
regressors of no interest).  
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Second, within each ROI, we extracted the beta estimates at each voxel for each of the 
12 face identities. This resulted in 12 vectors of beta values per ROI that described the 
response patterns (across voxels) elicited by the 12 face identities. 

Third, these vectors of beta estimates were used to compute 12x12 Face RDMs in face-
selective ROIs, in which each cell showed the distance between the response patterns of 
two identities (Figure 2B). RDMs were computed using the linear discriminant contrast 
(LDC), a cross-validated distance measure (Nili et al. 2014; Walther et al. 2016), which we 
implemented using in-house Matlab code and the RSA toolbox (Nili et al. 2014). Two RDMs 
were created for each ROI, one for each scanning session. Each RDM was computed using 
leave-one-run-out cross-validation across the three runs, which presented different stimuli 
for each identity. Therefore, RDMs showed the dissimilarities between face identities, rather 
than specific face videos. In each cross-validation fold, concatenated data from two runs 
formed partition A, and data from the left-out run formed partition B. For each pair or 
identities (e.g. ID1 and ID2), partition A was used to obtain a linear discriminant, which was 
then applied to partition B to test the degree to which ID1 and ID2 could be discriminated. 
Under the null hypothesis, LDC values are distributed around zero when two patterns cannot 
be discriminated. Values higher than zero indicate higher discriminability of the two 
response patterns (Walther et al. 2016).  

The discriminability of face identities in each ROI was computed by calculating the mean 
LDC across all cells of each participant’s RDM, and comparing the mean LDC distances 
against zero (Tsantani et al., 2019). 

Full details of this analysis are presented in Tsantani et al (2019) and the data to compute 
brain RDMs are available at https://doi.org/10.17633/rd.brunel.6429200.v1. Here, we used 
the RDMs for three face-selective regions (rFFA, rOFA, and rpSTS). All three of these 
regions showed significant discriminability of face identities. 

RDMs based on image-computable properties 
We computed dissimilarities between the 12 face identities based on visual descriptions of 
their faces obtained using the models described below. We did not use the full videos as 
input to these models, but instead extracted one still frame from each face video used in the 
experiment (typically the first frame in which the full face was visible and the image was not 
blurred). Thus, we obtained six different images of the face of each identity, taken from the 
six different videos in which the identity was presented, resulting in 72 images in total. 
 

OpenFace Model 
The ‘OpenFace’ model RDM was computed from low-dimensional face representations 

obtained from OpenFace (Amos et al., 2016; http://cmusatyalab.github.io/openface/). 
Briefly, OpenFace uses a deep neural network that has been pre-trained (using 500,000 
faces) to learn the best features or measurements that can group two pictures of the same 
identity together and distinguish them from a picture of a different identity. We used this pre-
trained neural network to generate measurements for each of our face pictures and to 
compare these measurements between each pair of pictures. OpenFace first performs face-
detection, identifies pre-specified landmarks, and does an affine transformation so that the 
eyes, nose and mouth appear in approximately the same location. The faces are then 
passed on to the pre-trained neural network to generate 128 descriptor measurements for 
each face. To create an RDM, we used the program’s calculated distances between the 
measurements for each pair of faces images. A value of zero indicates that two images are 
identical, and values between 0 and 1 suggest that two different images likely show the 

https://doi.org/10.17633/rd.brunel.6429200.v1
https://doi.org/10.17633/rd.brunel.6429200.v1
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same person’s face. Values higher than 1 indicate that the two images show the faces of 
two different people. We found that OpenFace performed well at grouping different images 
of the same person’s face compared to images of different people’s faces in our image set 
— Extended Data Figure 2-1 includes full 72x72 matrices showing distances between all 
images, but these full matrices were not used in any analysis). To obtain a 12x12 RDM for 
the 12 identities, which would be comparable to the brain RDMs, we computed the mean of 
all cells that showed images of the same identity pair (Figure 2C). The 12x12 RDMs were 
used in all analyses. 

 
Gabor-Jet Model 
The Gabor-Jet model RDM was computed from visual descriptors of face images 

obtained using the Gabor-Jet model (Biederman & Kalocsai, 1997; Margalit et al., 2016; 
Yue et al., 2012). This model was designed to simulate response properties of cells in area 
V1, and has been found to correlate with psychophysical measures of facial similarity (Yue 
et al., 2012). In addition, Carlin and Kriegeskorte (2017) showed that the dissimilarity of 
response patterns to different faces in the FFA was predicted by image properties based on 
Gabor filters. First, we used OpenFace 2.0 (Baltrusaitis et al., 2018) to automatically detect 
the faces in each image, and the pictures were greyscaled. The Matlab script provided in 
https:geon.usc.edu/GWTgrid_simple.m was then used to create a 100 x 40 Gabor 
descriptor for each face. After transforming these matrices into vectors, we computed the 
Euclidean distance between the vectors from each pair of faces (Extended Data Figure 2-
1), and then averaged the distances across all pairs of stimuli that showed the same two 
identities, resulting in a 12x12 RDM (Figure 2C). 

 
GIST Model (Faces only and whole Frames) 
The Gist model RDMs were computed from visual descriptors of pictures obtained using 

the GIST model (Oliva and Torralba, 2001). The GIST model estimates information about 
the spatial envelope of scenes and it is related to perceived dimensions of naturalness, 
openness, roughness, expansion, and ruggedness. Weibert et al. (2018) showed that the 
similarity between the representations of different faces in the FFA, OFA, and posterior STS 
was predicted by the similarity of the different pictures computed using the GIST descriptor 
model. We extracted GIST descriptors both from the full picture (whole Frames) and just 
from the face (Faces only - we used the same stimuli as in the Gabor-Jet model). We then 
used the Matlab script provided in http://people.csail.mit.edu/torralba/code/spatialenvelope 
to compute GIST descriptors for each picture, and computed Euclidean distances between 
each pair of pictures (Extended Data Figure 2-1). We finally averaged the distances across 
all pairs of stimuli that showed the same two identities, resulting in 12x12 RDMs (Figure 
2C). 

 
Pixel Model (Faces only and whole Frames) 
Finally, we computed model RDMs based on pixel dissimilarity between each pair of 

pictures. Like for the GIST model, we computed this model both for the full picture (whole 
Frames) and just for the face (Faces only). We extracted pixel greyscale values for each 
image, computed Pearson correlations between the vectors of each pair of images, and 
used correlation distance as the output measure (1- r) (Extended Data Figure 2-1). We 
finally averaged the distances across all pairs of stimuli that showed the same two identities, 
resulting in 12x12 RDMs (Figure 2C). 
 
RDMs based on Perceived properties 

http://people.csail.mit.edu/torralba/code/spatialenvelope
http://people.csail.mit.edu/torralba/code/spatialenvelope
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Social Trait Models: Trustworthiness, Dominance, Attractiveness, Valence, Social Traits 
(All) 
RDMs for ratings of the 12 face identities on trustworthiness, dominance, attractiveness, 
and positive-negative valence were computed using Euclidean distances. For each 
participant and each social trait, the Euclidean distance between the ratings of each pair of 
identities was calculated (ratings were averaged across the two trials in which the same 
identity was presented), resulting in a 12x12 RDM per trait. We then averaged the matrices 
for the same trait across participants (Figure 2C). 

We also created ‘Social Traits (All)’ RDMs combining all four social traits, by calculating 
the Euclidean distance between all trait ratings for each pair of identities, resulting in a 12x12 
trait RDM per participant. We then computed the mean matrix for all social traits across 
participants (Figure 2C).  

To get estimates of the inter-subject reliability of these models, we computed the 
correlations between each participant’s RDM and the average RDMs across all participants 
(i.e. the RDMs that we used as models), and then averaged the correlations across 
participants. The reliabilities were r=.34 for Trustworthiness, r=.48 for Dominance, r=.67 for 
Attractiveness, r=.31 for Valence, and r=.48 for Social Traits (All). We also computed the 
average correlations between each participant’s RDM and the average RDM of all remaining 
participants. These reliabilities were r=.24 for Trustworthiness, r=.42 for Dominance, r=.63 
for Attractiveness, r=.20 for Valence, and r=.42 for Social Traits (All). 

Perceived Similarity Model 
The judgements in the Pairwise Visual Similarity Task indicated the degree of visual 

similarity between all possible pairs of identities. These ratings were averaged across the 
two trials in which each identity-pair was presented, and were reverse-coded to match the 
LDC and Euclidean distance measures, where a higher value indicates higher dissimilarity. 
The resulting values were arranged into a 12x12 face RDM for each participant and were 
then averaged across participants (Figure 2C). 

 
Inter-subject reliability, estimated by computing the average correlation between each 

participant’s RDM and the average RDMs across all participants, was r=.65. Reliability 
computed as the average correlation between each participant’s RDM and the average 
RDM of all remaining participants was r=.61. 

 
Gender Model 
Finally, a 12x12 RDM for gender was constructed by assigning a value of 0 to same 

gender identity pairs, and a value of 1 to different-gender identity pairs (Figure 2C). 

Correlations between all 13 models are presented in Figure 2D and Extended Data Figure 
2-2. 
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Figure 2. Brain and model representational dissimilarity matrices (RDMs). A: Location in MNI 
space of the three face-selective regions localised in our participants: OFA (occipital face 
area), FFA (fusiform face area), and pSTS (posterior superior temporal sulcus; all regions in the 
right hemisphere). These probabilistic maps were created for illustration purposes (in our analyses, 
we only used subject-specific regions of interest (ROIs)) and show all voxels that were present in at 
least 20% of participants. B: Example brain representational dissimilarity matrix (RDM) for the 
right FFA. For each ROI and each participant, we computed RDMs showing the dissimilarity of the 
brain response patterns between all pairs of identities. Each row and column represent one identity, 
and response patterns are based on all six presented videos of that identity. Each cell shows the 
linear discriminant contrast distance between the response patterns of two identities (higher values 
indicate higher dissimilarity), crossvalidated across runs presenting different videos of the face of 
each identity. The matrix is symmetric around a diagonal of zeros. C: Model RDMs for image-
computable properties (blue) and perceived properties (pink). These models are in the same 
format as the brain RDMs and show the dissimilarity between two identities on each property (see 
Methods). Image-computable models include a neural network trained to distinguish between face 
identities (OpenFace), a Gabor-Jet model, Pixel Dissimilarity (both for faces only — Pixel-Faces, 
and the whole frames — Pixel-Frames), and a GIST Descriptor model (both for faces — GIST-
Faces, and the whole frames — GIST-Frames). The RDMs computed per image (before averaging 
across identity) are shown in Extended Data Figure 2-1, though those 72x72 RDMs were not used 
in any analysis. Perceived-property models include perceived social traits (Trustworthiness, 
Dominance, Attractiveness, Valence, Social Traits (All)), Perceived Similarity, and Gender. Models 
based on participant ratings were averaged across participants.  All models were built based on 
multiple images (image-computable models) or videos (perceived-property models) of the face of 
each identity. For visualisation purposes, all model RDMs were scaled to a range between zero (no 
dissimilarity) and one (maximum dissimilarity). D: Correlations (Pearson) between the different 
model RDMs. The different candidate models were compared with each other using Pearson 
correlation. Extended Data Figure 2-2 shows this same matrix with added correlation values.  

 

 
Individual model analysis: RSA comparing brain RDMs to candidate model RDMs 
using correlation 
For each individual participant and each ROI, we compared the brain RDM for faces with 
each of the candidate model RDMs defined above using Pearson correlation (Figure 3A). 
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We then tested whether the correlations across participants for each ROI were significantly 
higher than zero, using two-sided one-sample Wilcoxon signed-rank tests (Nili et al., 2014). 
P-values were corrected for multiple comparisons using FDR correction (q=.05) across all 
13 comparisons for each ROI. We also compared the correlations across all pairs of models 
within each ROI, in order to test which model was the best predictor of the variance in brain 
RDMs in each ROI. For these pairwise comparisons, we used two-sided Wilcoxon signed-
rank tests and only significant FDR corrected values (for 78 comparisons) are reported. 

An estimate of the noise ceiling was calculated for each ROI, in order to estimate the 
maximum correlation that any model could have with the brain RDMs in each ROI given the 
existing noise in the data. We estimated the noise ceiling using the procedures described 
by Nili et al. (2014). The lower bound of the noise ceiling was estimated by calculating the 
Pearson correlation of the brain RDM for each participant with the average brain RDM 
across all other participants (after z-scoring the brain RDM for each participant). The upper 
bound of the noise ceiling was estimated by computing the Pearson correlation of the brain 
RDM for each participant with the average brain RDM across all participants (after z-scoring 
the brain RDM for each participant).  

Weighted model-combination analysis: Weighted representational modelling 
We also used weighted representational modelling (Khaligh-Razavi & Kriegeskorte, 2014; 
Jozwik et al., 2016; 2017) to combine individual models via reweighting and thus investigate 
if combinations of different model RDMs could explain more variance in representational 
geometries than any single model. For each combined model, we used linear non-negative 
least squares regression (lsqnonneg algorithm in Matlab) to estimate a weight for each 
component of the combined model. We fitted the weights and tested the performance of the 
reweighted (combined) model on non-overlapping groups of both participants and stimulus 
conditions within a cross-validation procedure, and used bootstrapping to estimate the 
distribution of the combined model’s performance (Storrs et al., 2020).  

We used six different combinations of component models: Image-computable properties 
(OpenFace, GIST, GaborJet, and Pixel), Social Traits (comprising a weighted combination 
of the Trustworthiness, Dominance, Attractiveness, and Valence properties), Perceived 
properties (Trustworthiness, Dominance, Attractiveness, Valence, Perceived Similarity, and 
Gender), Low-Level properties (GIST, GaborJet, and Pixel), High-Level properties 
(Trustworthiness, Dominance, Attractiveness, Valence, Perceived Similarity, Gender, and 
OpenFace), and All properties.  

Within each crossvalidation fold, data from eight participants for four stimulus identity 
conditions was assigned to serve as test data, and the remainder was used to fit the weights 
for each component of each of the six combined models. Because the crossvalidation was 
performed within a participant-resampling bootstrap procedure, the number of participant 
data RDMs present in each crossvalidation fold was sometimes smaller than eight (when a 
participant was not present in the bootstrap) or larger than eight (when a participant was 
sampled multiple times in the bootstrap). All data from the same participant was always 
assigned only to either the training or test split. A reweighting target RDM was constructed 
by averaging the training-split participants’ RDMs for training-split stimulus conditions, and 
weights were fitted to the components of each combined model to best predict this target 
RDM. The six resulting combined models, as well as the 13 individual models, were then 
correlated separately with each of the brain RDMs from test participants for test conditions, 
using Pearson correlation. The noise ceiling was also computed within every cross-
validation fold using the same procedure as for the main analysis. In other words, we 
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correlated (Pearson correlation) each test participant’s RDM with the average of all other 
test RDMs excluding their own (for the lower bound of the noise ceiling) and with the average 
of all test participants’ RDMs including their own (for the upper bound of the noise ceiling). 
This procedure was repeated for 30 participant crossvalidation folds within 30 stimulus-
condition crossvalidation folds to provide a stabilised estimate of the noise ceiling and the 
performance of each model (Storrs, et al., 2020).  

The cross-validation procedure was repeated for 1,000 bootstrap resamplings of 
participants for each face-selective ROI. From the resulting bootstrap distribution, we 
computed the mean estimate of the lower bound of the noise ceiling, as well as the mean 
of each model’s correlation with human data for both individual models and combined 
models (Figure 3B). Correlations between model and brain RDMs were considered 
significantly higher than zero if the 95% confidence interval of the bootstrap distribution did 
not include zero. Bonferroni correction was applied to correct for multiple comparisons. 
Finally, we compared each pair of models by testing whether the distributions of the 
differences between each pair of models contained zero. We only report pairwise 
differences that were significant after Bonferroni correction. Code for this analysis was 
adapted from here: https://github.com/tinyrobots/reweighted_model_comparison. 

Data and code accessibility 

Data and code for main analysis are available here: 
https://doi.org/10.25383/city.11890509.v1  

 

 

Results  

We tested 30 participants in an fMRI experiment, in which they were presented with faces 
of 12 famous people (same fMRI data as in Tsantani et al., 2019), and in a separate 
behavioural experiment, in which participants rated the faces of the same people on 
perceived similarity and social traits (Figure 1). We then computed representational 
dissimilarity matrices (RDMs) showing the representational distances between the brain 
response patterns elicited by the face identities in the face-selective right FFA, OFA, and 
pSTS. The distance measure that we used to compute the RDMs was the linear discriminant 
contrast (LDC), which is a crossvalidated estimate of the Mahalanobis distance (Walther et 
al., 2016). The mean LDC across each RDM showed that response patterns to different 
face identities were discriminable in all three regions (Tsantani et al., 2019). To investigate 
the informational content of brain representations of the face identities in each face-selective 
region, we used RSA (Kriegeskorte et al., 2008a; 2008b) to compare the brain RDMs with 
a diverse set of candidate model RDMs (Figure 2). We used candidate models based on 
the physical properties of the stimuli (image-computable models), including low-level 
stimulus properties (based on Pixel-wise, GIST (Oliva & Torralba, 2001) and Gabor-jet 
(Biederman & Kalocsai, 1997) dissimilarities) and higher-level image-computable 
descriptions obtained from a deep neural network trained to cluster faces according to 
identity (OpenFace; Amos et al., 2016) (see Methods). Additionally, we used candidate 
models based on perceived higher-level properties (perceived-property models), including 
Gender and participants’ ratings of the face identities on Perceived Similarity and Social 

https://github.com/tinyrobots/reweighted_model_comparison
https://github.com/tinyrobots/reweighted_model_comparison
https://figshare.com/s/0fd14c7739f5e1bb802b
https://figshare.com/s/0fd14c7739f5e1bb802b
https://doi.org/10.25383/city.11890509.v1
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traits (Trustworthiness, Dominance, Attractiveness, Valence, and Social Traits (All) — which 
corresponds to all traits combined) in a behavioural experiment.  
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Figure 3. FFA and OFA show distinct representational profiles of face identity information. 
A: Similarity (Pearson correlations) between brain RDMs (in FFA, OFA, and pSTS) and each 
of the individual candidate models. Bars show mean correlations across participants and error 
bars show standard error. Correlations with image-computable models are in blue and with 
perceived-property models are in pink. Horizontal dashed lines show the lower bound of the noise 
ceiling. An asterisk above a bar and the name of the model in bold indicate that correlations with 
that model were significantly higher than zero. Correlations with individual models are sorted from 
highest to lowest. Horizontal lines above bars show significant differences between the correlations 
of the first marked column with the subsequent marked columns (FDR corrected for multiple 
comparisons). Full results are Table 1, and single-subject data are shown in Figure 4. B: Similarity 
(Pearson correlations) between brain RDMs (in FFA, OFA, and pSTS) and each of the 
candidate models in the weighted representational modelling analysis. Bars show mean 
correlations and error bars show standard error across 1,000 bootstrap samples. Horizontal dashed 
lines show the lower bound of the noise ceiling, averaged across bootstrap samples. An asterisk 
above a bar and the name of the model in bold indicate that correlations with that model were 
significantly higher than zero. Correlations with individual models are blocked by type of model 
(image-computable models followed by perceived-property models) and sorted from highest to 
lowest. RW shows the combined and reweighted models and appears in light blue for models that 
combine image-computable properties, in light pink for models that combine perceived properties, 
and in grey for models that combine both types of properties. None of the combined models 
outperformed individual models. Full results are reported in Table 2. The results of both analyses 
show that in the FFA, the models that explained most of the variance are related to high-level 
properties, such as perceived properties of the stimuli and the image-computable OpenFace model 
of face recognition. In contrast, brain RDMs in OFA correlated mainly with low-level image-
computable properties such as pixel dissimilarity and the Gabor-Jet model. No significant 
correlations were found in pSTS. 

 

Individual model analysis 
In our main analysis, we computed Pearson’s correlations between RDMs in the right 

FFA, OFA, and pSTS, and each candidate model RDM. Correlations were computed for 
each individual participant, and then correlations across participants for each model were 
compared against zero using two-sided one-sample Wilcoxon signed-rank tests. For each 
ROI and each model that showed significant correlations with participants’ brain RDMs, we 
report below the mean correlation across participants, and the Z statistic and p-value 
obtained from the signed-rank test, corrected for multiple comparisons using FDR 
correction. Full results are presented in Figure 3A and Table 1, and individual-subject 
correlations are presented in Figure 4. We also compared the correlations across all pairs 
of models using two-sided Wilcoxon signed-rank tests.  

Brain RDMs in the right FFA had the highest mean correlation with the Perceived 
Similarity model (mean r = .11, Z = 3.69, p = .0002), followed by perceived Social Traits (All) 
(mean r = .10, Z = 2.71, p = .0067), the image-computable neural network OpenFace (mean 
r = .10, Z = 3.46, p = .0005), perceived Attractiveness (mean r = .09, Z = 2.69, p = .0072), 
Gender (mean r = .09, Z = 3.30, p = .0010), and Valence (mean r = .06, Z = 2.39, p = .0168) 
(Figure 3A). We estimated the lower bound of the noise ceiling as the mean correlation 
between each participant’s FFA RDM and the average of all other participants’ FFA RDMs 
(Nili et al., 2014). This estimates the non-noise variance in the data, and is not overfit to the 
present data. None of the mean correlations reached the lower bound of the noise ceiling 
for the FFA (r = .14) — this suggests that there could be models outside those tested here 
that would better explain the representational distances in FFA. Pairwise comparisons 
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showed no significant differences between the correlations of any pairs of models (all 
p>.0041; no significant results after FDR correction).  

In contrast with the FFA, the brain RDMs in the right OFA had the highest mean 
correlations with low-level image-computable models. The highest mean correlation was 
observed with the Pixel-Faces model (mean r = .22, Z = 4.36, p < .0001) (Figure 3A), 
followed by the Gabor-Jet (mean r = .20, Z = 3.97, p < .0001), Pixel-Frames (mean r = .11, 
Z = 3.02, p = .0026), GIST-Faces (mean r = .10, Z = 2.22, p = .0267), perceived 
Attractiveness (mean r = .09, Z = 2.84, p = .0045), Gender (mean r = .07, Z = 2.76, p = 
.0058), and the OpenFace model (mean r = .07, Z = 2.95, p = .0032). None of the mean 
correlations reached the lower bound of the noise ceiling (r = .34). Pairwise comparisons 
between model correlations revealed that the Pixel-Faces model had significantly higher 
correlations with the OFA RDMs than all other models (all p < .0058, FDR corrected), except 
for the Gabor-Jet model and the GIST-Faces model. The Gabor-Jet model also had 
significantly higher correlations with the brain RDMs in OFA than all other models (all p < 
.0058, FDR corrected), except the Pixel-Faces and Pixel-Frames models. Perceived 
Attractiveness had significantly higher correlations with the OFA RDMs than perceived 
Valence (p = .0051), and Social traits (All) was significantly higher than Trustworthiness and 
Valence (both p < .0018). 

Finally, we investigated which model best explained the variance in representational 
distances in the right pSTS. We found no significant correlations between any of the 
candidate models and the brain RDMs in this region (all p > .0333; no significant results 
after FDR correction) (Figure 3A). None of the models reached the lower bound of the noise 
ceiling (r = .13), and there were no significant differences between models (all p > .0140; no 
significant results after FDR correction). 

 

Table 1: Results of individual model analysis. The values in this table correspond to the results presented 
in Figure 3A. For each ROI, we show the mean correlations between brain RDMs with each model, standard 
error (SE), Z statistics from two-sided one-sample Wilcoxon signed-rank tests, and whether correlations were 
significantly higher than zero. We also show the estimated lower and upper bounds of the noise ceiling for 
each ROI. Models are ordered by effect size. 

    
Pearson correlation between RDMs Noise ceiling 

  
Mean r SE Z p < .05 

(FDR 
corrected) 

[Lower bound 

Upper bound] 

rFFA           [0.135 0.262] 

  Perceived Similarity 0.109 0.023 3.689 yes   

  Social Traits (All) 0.104 0.031 2.710 yes   

  Open Face 0.101 0.023 3.461 yes   

  Attractiveness 0.090 0.033 2.687 yes   

  Gender 0.086 0.021 3.302 yes   
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  Valence 0.060 0.023 2.391 yes   

  Dominance 0.058 0.030 1.640 no   

  Gabor-Jet 0.052 0.049 0.956 no   

  Trustworthiness 0.040 0.029 1.594 no   

  Pixel-Faces 0.035 0.044 0.865 no   

  Pixel-Frames 0.005 0.027 0.159 no   

  GIST-Faces -0.006 0.040 0.114 no   

  Pixel-Frames -0.018 0.041 -0.478 no   

rOFA           [0.337 0.408] 

  Pixel-Faces 0.221 0.031 4.357 yes   

  Gabor-Jet 0.204 0.037 3.968 yes   

  Pixel-Frames 0.107 0.031 3.016 yes   

  GIST-Faces 0.104 0.043 2.216 yes   

  Attractiveness 0.092 0.029 2.843 yes   

  Social Traits (All) 0.083 0.031 1.979 no   

  Gender 0.074 0.021 2.757 yes   

  OpenFace 0.067 0.020 2.952 yes   

  Dominance 0.055 0.031 1.546 no   

  Perceived Similarity 0.039 0.026 1.416 no   

  GIST-Frames 0.025 0.034 0.746 no   

  Trustworthiness 0.011 0.025 0.400 no   

  Valence -0.016 0.031 -0.573 no   

rpSTS           [0.126 0.252] 

  GIST-Frames 0.075 0.047 1.800 no   

  Dominance 0.052 0.027 1.800 no   

  OpenFace 0.040 0.020 2.129 no   

  Social Traits (All) 0.032 0.026 1.018 no   

  Pixel-Frames 0.022 0.030 0.956 no   

  Gender 0.020 0.017 0.956 no   

  Trustworthiness 0.017 0.032 0.524 no   

  Attractiveness 0.005 0.024 0.134 no   

  Valence 0.002 0.031 0.051 no   
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  Pixel-Faces -0.003 0.035 -0.113 no   

  Perceived Similarity -0.008 0.026 -0.072 no   

  Gabor-Jet -0.045 0.040 -1.100 no   

  GIST-Faces -0.048 0.036 -1.368 no   

       

 

Figure 4. Similarity between brain RDMs (in FFA, OFA, and pSTS) and each of the candidate 
models, showing individual participant data. This figure shows the same data as Figure 3A, but 
with added individual data. Circles show correlations for individual participants. Coloured lines show 
mean (full lines) and median (dotted lines) correlations across participants. Correlations with models 
based on perceived-property models are in pink, and correlations with image-computable models 
are in blue. Horizontal black dotted lines mark the zero correlation point. An asterisk above a bar 
and the name of the model in bold indicate correlations that were significantly higher than zero. 
Correlations with individual models are sorted from highest to lowest based on the mean correlation 
across participants to match the format of Figure 3A.  

 

These results show a clear distinction between the types of models that were associated 
with the representational geometries of face-identities in the FFA and OFA. 
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Representational distances of face identities in the FFA were most associated with high-
level perceived similarity, gender, and social traits, as well as a high-level model of image-
computable properties (OpenFace), whereas representations in OFA were most associated 
with low-level image-computable properties. To test this directly, we compared the 
correlation profiles between the two regions. We first averaged all correlations per 
participant (after Fisher’s transformation) for the same type of model (all perceived-property 
models and all image-computable models) for each ROI (FFA and OFA). In the FFA, the 
mean correlation with perceived-property models was .08 (SD = .095) and .03 (SD =.109) 
with image-computable models. In the OFA, the mean correlation with perceived-property 
models was .05 (SD = .108) and .13 (SD =.102) with image-computable models. We then 
conducted a 2-by-2 repeated measures ANOVA with ROI and type of model as variables. 
There was no main effect of ROI (F(1,27)=3.37, p=.0773) or type of model (F(1,27)=.36, 
p=.5519), but there was a significant interaction between the two variables (F(1,27)=23.75, 
p<.0001). Pairwise comparisons (using two-sided Wilcoxon signed-rank tests) showed that 
in the FFA, the correlations with perceived-property models were significantly higher than 
correlations with image-computable models (Z = 2.25, p = .0242), whereas in the OFA, 
correlations with perceived-property models were significantly lower than correlations with 
image-computable models (Z = -3.17, p = .0015). We also divided the models into low-level 
properties (GIST, Gabor-Jet, and Pixel) and high-level properties (Trustworthiness, 
Dominance, Attractiveness, Valence, Perceived Similarity, Gender, and OpenFace), and 
computed means per participant and per ROI for each of these types of models. In the FFA, 
there was a mean correlation of .08 (SD = .090) with high-level properties, and of .02 (SD 
=.157) with low-level properties. In the OFA, there was a mean correlation of .05 (SD = .102) 
with high-level properties, and of .16 (SD =.141) with low-level properties. A 2-by-2 repeated 
measures ANOVA showed a significant effect of ROI (F(1,27)=5.44, p=.0274), no significant 
effect of model (F(1,27)=.43, p=.5201), and a significant interaction between the two 
variables (F(1,27)=21.64, p<.0001). Pairwise comparisons showed that in the FFA, the 
correlations with high-level models were significantly higher than correlations with low-level 
models (Z = 2.21, p = .0272), whereas in the OFA, correlations with high-level models were 
significantly lower than correlations with low-level models (Z = -3.25, p = .0011). These 
results demonstrate the clear distinct patterns of correlations for the FFA and OFA. 
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Figure 5. Control analyses with modified model RDMs. A: Similarity between brain RDMs (in 
FFA, OFA, and pSTS) and each of the candidate models, using image-computable models 
derived from 72 images per video. Our main analysis in Figure 3A used a single image per video 
to compute image-computable models. Here, we repeated all analyses of image-computable 
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models using 72 frames for each video. We extracted 72 image frames for each video, and applied 
each model to each image. For each model, after extracting the features of each image of each 
video, we averaged the values for all images belonging to the same video. We then computed 
distances between videos in the same manner as before, and averaged distances for each pair of 
identities. We note that these results were very similar to the ones using just with one image per 
video, but some correlations were lower. B: Similarity between brain RDMs (in FFA, OFA, and 
pSTS) and each of the individual candidate models, using behavioural models based on 
individual participant ratings. The analysis was the same as in Figure 3A, but instead of using 
average behavioural RDMs, each participant’s brain RDM was correlated to their own behavioural 
RDMs for Perceived Similarity, Trustworthiness, Dominance, Attractiveness, Valence, and Social 
Traits (All). The pattern of results looked very similar to the ones in Figure 3A, but correlations with 
perceived-property models were overall lower when using each participant’s own model RDMs. 
Bars show mean correlations across participants and error bars show standard error. Horizontal 
dashed lines show the lower bound of the noise ceiling. An asterisk above a bar and the name of 
the model in bold indicate that correlations with that model were significantly higher than zero. 
Horizontal lines above bars show significant differences between the correlations of the first marked 
column with the subsequent marked columns (FDR corrected for multiple comparisons). 

 

Our image-computable models used a single image from each video clip. We re-computed 
all models using 72 images per clip, and averaged the features across all images of the 
same clip. We then computed distances between video clips in the same manner as before, 
and averaged distances for each pair of identities, resulting in 12x12 RDMs for each model. 
The results were very similar when using 72 images per clip compared to one image per 
clip (Figure 5A). We additionally showed that we obtained similar results to those in Figure 
3A when using other similarity measures between RDMs (Spearman correlation, Kendall 
tau-a), demonstrating that these results are not dependent on using Pearson correlation 
(Figure 6). Finally, we conducted an additional control analysis using brain RDMs in the 
same ROIs but built from response patterns to voices of the same individuals, instead of 
brain responses to faces. There were no significant correlations between any of the model 
RDMs for faces and brain RDMs for voices after correcting for multiple comparisons in the 
rFFA (all p > .040), rOFA (all p > .103), or rpSTS (all p > .063) (Figure 7). Pairwise 
comparisons showed no significant differences between the correlations of any pairs of 
models (all p > .034). The estimated lower bounds of noise ceilings for the voices brain 
RDMs were very low for rFFA (r = -.038) and rOFA (r = -.001), and higher for rpSTS (r = 
.108). This control analysis demonstrates that the above results for FFA and OFA are 
specific to visual stimuli (faces). To conclude, we find that the structure of the model 
correlations is reliable and is systematically different between the FFA and OFA.    
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Figure 6. Control analyses using other similarity measures between RDMs. Similarity 
between brain RDMs (in FFA, OFA, and pSTS) and each of the candidate models using 
Spearman correlation (A) and Kendall tau-a (B). These analyses were identical to the analysis 
using Pearson correlations (Figure 3A), with the exception that noise ceiling was computed after 



26 

 

rank-transforming the RDMs (Nili et al., 2014). The pattern of results was similar across all three 
correlation measures. Bars show mean correlations across participants and error bars show 
standard error. Horizontal dashed lines show the lower bound of the noise ceiling. An asterisk above 
a bar and the name of the model in bold indicate that correlations with that model were significantly 
higher than zero. Horizontal lines above bars show significant differences between the correlations 
of the first marked column with the subsequent marked columns (FDR corrected for multiple 
comparisons). 
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Figure 7. Control analysis with modified brain RDMs. Similarity between brain RDMs for 
voices (in FFA, OFA, and pSTS) and each of the candidate models for faces. We computed 
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representational dissimilarity matrices (RDMs) from response patterns to voices in the rFFA, rOFA, 
and rpSTS, and compared them with our model RDMs for faces (same models as in Figure 2). The 
voice stimuli belonged to the same 12 identities as the face stimuli and were presented interspersed 
among the face videos in the same runs (see Methods section). RDMs for voice identities were 
computed using the same procedure as for face identities (see Methods section) and were compared 
to model RDMs for faces using Pearson correlation. Bars show mean correlations across 
participants and error bars show standard error. Horizontal dashed lines show the lower bound of 
the noise ceiling. Correlations with individual models are sorted from highest to lowest. None of the 
correlations were significantly greater than zero after correction for multiple comparisons. Pairwise 
comparisons showed no significant differences between the correlations of any pairs of models. 

 

Weighted model-combination analysis 
Although our models accounted for a large portion of the explainable variance (based on 

the noise ceiling) in brain representations in the right FFA and OFA, none of the mean 
correlations reached the lower bound of the noise ceiling. It could be that each individual 
model captured only a portion of the information represented in each brain region, in which 
case we may be able to fully explain the brain representations by combining multiple 
models. We thus used weighted representational modelling (Khaligh-Razavi & Kriegeskorte, 
2014; Jozwik et et al., 2016; Jozwik et al., 2017) to combine sets of models into weighted 
combinations via crossvalidated fitting on the human data, and to investigate if these 
combined models resulted in better predictions of the brain dissimilarities in each brain 
region (see Methods). We considered six different combined models: Image-computable 
properties (OpenFace, GIST, GaborJet, and Pixel), Social Traits (comprising a weighted 
combination of the Trustworthiness, Dominance, Attractiveness, and Valence properties), 
Perceived properties (Trustworthiness, Dominance, Attractiveness, Valence, Perceived 
Similarity, and Gender), Low-Level properties (GIST, GaborJet, and Pixel), High-Level 
properties (Trustworthiness, Dominance, Attractiveness, Valence, Perceived Similarity, 
Gender, and OpenFace), and All properties. 

We used linear non-negative least squares regression to estimate a weight for each 
component of each combined model. We fitted the weights and tested the performance of 
the reweighted (combined) model on non-overlapping groups of both participants and 
stimulus conditions within a cross-validation procedure, and used bootstrapping to estimate 
the distribution of the combined model’s performance (Storrs et al., 2020). Figure 3B shows 
the results of this analysis. P-values were corrected for multiple comparisons using 
Bonferroni correction. For the FFA, the combined models for Perceived properties and High-
Level properties had the highest mean correlations with the brain RDMs, and the individual-
subject correlations were significantly above zero. For the OFA, the combined model of all 
Low-Level properties and that of all image-computable properties had the highest mean 
correlations with the brain RDMs, although the individual-subject correlations were not 
significantly above zero after correcting for multiple comparisons. Importantly, however, 
none of the combined models performed better than the best of the individual models (see 
full results in Table 2). Instead, the models with best performance in the previous (main) 
analysis also showed the highest correlations in this analysis. These results suggest that 
the models that best explained representational distances in each face-selective region 
share overlapping variance, given that combining them did not improve model performance. 
Lastly, replicating the findings of the previous analysis using more stringent statistical 
methods (crossvalidation across stimuli and participants) provides further evidence of a 
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reliable pattern of model correlations in FFA and OFA that reveals a distinction between the 
type of information encoded in these two regions.   

 

Table 2: Results of weighted representational modelling analysis. The values in this table correspond to 
the results presented in Figure 3B. Within each ROI, we show the mean correlations between brain RDMs 
with each model (individual models and combined models), and whether correlations were significantly higher 
than zero. We also show the estimated lower and upper bounds of the noise ceiling for each ROI, and whether 
correlations were significantly below the noise ceiling. Models are ordered by effect size and grouped first by 
image-computable models, then perceived-property models, and then models that combined both types of 
properties. RW refers to combined and reweighted models. 

  Pearson correlation between RDMs Noise ceiling 

  Mean r SE p < .05 
(Bonferroni 
corrected) 

[Lower 
bound 
Upper 
bound] 

p < .05 
(Bonferroni 
corrected) 

rFFA         [0.089 
0.286] 

  

  Open Face 0.105 0.032 yes   no 

  Gabor-Jet 0.041 0.042 no   no 

  Pixel-Faces 0.027 0.040 no   no 

  Pixel-Frames 0.019 0.036 no   no 

  GIST-Faces 0.007 0.037 no   no 

  GIST-Frames -0.010 0.037 no   no 

  RW Image-
Computable 

0.063 0.037 no   no 

  Perceived Similarity 0.118 0.031 yes   no 

  Social Traits (All) 0.102 0.035 yes   no 

  Gender 0.094 0.033 yes   no 

  Attractiveness 0.091 0.035 no   no 

  Valence 0.059 0.031 no   no 

  Trustworthiness 0.049 0.033 no   no 

  Dominance 0.048 0.034 no   no 

  RW Social Traits 0.074 0.034 no   no 

  RW Perceived 0.100 0.033 yes   no 

  RW Low-Level -0.006 0.035 no   no 

  RW High-Level 0.096 0.033 yes   no 

  RW ALL 0.086 0.035 no   no 



30 

 

rOFA         [0.237 
0.372] 

  

  Pixel-Faces 0.158 0.041 yes   no 

  Gabor-Jet 0.138 0.047 yes   no 

  Pixel-Frames 0.108 0.039 no   yes 

  GIST-Faces 0.087 0.047 no   no 

  OpenFace 0.066 0.041 no   yes 

  GIST-Frames 0.050 0.042 no   yes 

  RW Image 
Computable 

0.089 0.044 no   no 

  Gender 0.082 0.041 no   no 

  Attractiveness 0.075 0.039 no   yes 

  Social Traits (All) 0.067 0.040 no   yes 

  Perceived Similarity 0.055 0.039 no   yes 

  Dominance 0.039 0.038 no   yes 

  Trustworthiness 0.031 0.040 no   yes 

  Valence -0.010 0.041 no   yes 

  RW Social Traits 0.037 0.040 no   yes 

  RW Perceived 0.033 0.040 no   yes 

  RW Low-Level 0.103 0.046 no   no 

  RW High-Level 0.019 0.040 no   yes 

  RW ALL 0.059 0.041 no   yes 

rpSTS         [0.091 
0.277] 

  

  GIST-Frames 0.051 0.040 no   no 

  OpenFace 0.034 0.030 no   no 

  Pixel-Faces 0.009 0.034 no   no 

  Pixel-Frames 0.006 0.032 no   no 

  GIST-Faces -0.031 0.034 no   no 

  Gabor-Jet -0.038 0.037 no   no 

  RW Image-
Computable 

0.013 0.036 no   no 

  Dominance 0.054 0.030 no   no 

  Social Traits (All) 0.035 0.030 no   no 
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  Trustworthiness 0.026 0.033 no   no 

  Gender 0.023 0.029 no   no 

  Valence 0.005 0.033 no   no 

  Attractiveness 0.003 0.029 no   no 

  Perceived Similarity -0.003 0.032 no   no 

  RW Social Traits 0.026 0.033 no   no 

  RW Perceived 0.031 0.032 no   no 

  RW Low-Level 0.010 0.038 no   no 

  RW High-Level 0.033 0.031 no   no 

  RW ALL 0.025 0.030 no   no 

 

Individual differences and idiosyncratic representations 
It is possible that there were substantial individual differences in face identity 

representations that limit the magnitude of the correlations between brain and model RDMs 
in our analyses. Brain and behavioural representations of face identities could be 
idiosyncratic and thus characteristic of each individual. We considered below three ways in 
which we could test this hypothesis.  

First, we considered whether there were substantial individual differences in brain RDMs. 
To estimate the lower-bound of the noise ceiling, we had computed inter-subject reliabilities 
of brain RDMs. If, however, there were substantial individual differences in the brain RDMs, 
we would expect that representational distances in each of the face-selective ROIs could 
be highly reliable within each participant but not across participants. We thus computed 
intra-subject reliabilities of brain RDMs by correlating the brain RDMs calculated 
independently from two separate testing sessions for each participant, and then averaging 
the correlations across participants. We note that in all other analyses in the present 
manuscript, the brain RDMs for each participant corresponded to the average of these two 
sessions. For all three face-selective ROIs, we observed intra-subject reliabilities (rFFA: 
r=.063; rOFA: r=.079; rpSTS: r=.094) that were on average lower than the inter-subject 
reliabilities (rFFA: r=.135; rOFA: r=.337; rpSTS: r=.126 — please see Table 1), suggesting 
that in fact, in this case, the brain RDMs were not more reliable within each individual. It is 
important to note, however, that there was much less data to compute intra-subject 
reliabilities than inter-subject reliabilities.  

Second, idiosyncratic brain representations could also result in higher correlations 
between each participant’s brain RDM and behavioural RDMs based on their own ratings, 
compared to the average behavioural RDMs that we used in the main analyses. We thus 
repeated the main analysis using each individual’s own RDMs for the rating-based 
perceived-property models, namely Perceived Similarity, Trustworthiness, Dominance, 
Attractiveness, Valence, and Social Traits (All). The results, however, did not reveal higher 
correlations when using these participant-specific behavioural models (Figure 5B). In 
contrast, correlations with the participants’ individual behavioural models were slightly lower 
than when using average behavioural models. 
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A third possibility is that idiosyncratic representational geometries could result in the 
variance of each participant’s brain RDMs being best explained by a uniquely weighted 
combination of candidate models (even if no set of weightings would perform well for all 
participants). However, we did not have sufficient data per participant to test this possibility 
here. 

 

Discussion 

We aimed to investigate what information is explicitly encoded in the face-selective right 
FFA, OFA, and pSTS. We extracted fMRI patterns elicited by famous face identities in these 
regions, and computed face identity RDMs which showed that face identities could be 
distinguished based on their elicited response patterns in all three regions. Using RSA, we 
compared the brain RDMs for the FFA, OFA, and pSTS with multiple model RDMs ranging 
from low-level image-computable properties (pixel-wise, GIST, and Gabor-jet 
dissimilarities), through higher-level image-computable descriptions (OpenFace deep 
neural network, trained to cluster faces by identity), to complex human-rated face properties 
(perceived visual similarity, social traits, and gender). We found that the FFA and rOFA 
encode face identities in a different manner, suggesting distinct representations in these 
two regions. The representational geometries of face identities in the FFA were most 
associated with high-level properties, such as perceived visual similarity, social traits, 
gender, and high-level image features extracted with a deep neural network (OpenFace; 
Amos et al., 2016). In contrast, the representational geometries of faces in the right OFA 
were most associated with low-level image-based properties, such as pixel similarity and 
features extracted with Gabor filters that simulate functioning of early visual cortex. While 
previous studies had shown that low-level properties of images extracted with Gabor filters 
were associated with representational distances of faces in right FFA (Carlin & Kriegeskorte, 
2017; Weibert et al, 2018), our results suggest that representations in right FFA use more 
complex combinations of stimulus-based features and relate to higher-level perceived and 
social properties (see also Davidesco et al., 2014). These results inform existing 
neurocognitive models of face processing (Haxby et al., 2000; Duchaine & Yovel, 2015) by 
shedding light on the much-debated computations of face-responsive regions, and providing 
new evidence to support a hierarchical organisation of these regions from the processing of 
low-level image-computable properties in the OFA to higher-level visual features and social 
information in the FFA.  

Our initial prediction was that by combining and reweighting different candidate models, 
we would be better able to explain the brain RDMs. However, we did not find evidence for 
this in any of our face-selective ROIs. These results suggest that, when more than one 
model was significantly correlated with the brain RDMs for a certain brain region, they 
tended to explain overlapping variance in the brain RDMs. For example, while Perceived 
Similarity and OpenFace both explained the representational geometries in right FFA, their 
combination did not explain more variance than each model individually. However, our 
pattern of results suggests a clear distinction between the types of models that are 
associated with representations in the FFA and OFA, with higher-level properties explaining 
more variance in the FFA, and lower-level image-based properties explaining more variance 
in the OFA.  
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One crucial aspect of our study is that we used naturalistically varying video stimuli and 
multiple depictions for each identity. Brain RDMs were built by cross-validating the response 
patterns across runs featuring different videos of the face of each identity, and behavioural 
models were based on averages of ratings of multiple videos for each identity. Image-based 
models were built by calculating dissimilarities between image frames taken from multiple 
videos of the face of each identity, and then computing the mean dissimilarity across 
different image pairs featuring the same identity pair. Behavioral studies have demonstrated 
that participants make more mistakes in “telling together” (i.e. grouping multiple images of 
the same identity, which is different process from “telling apart”, or distinguishing, between 
different identities) different photos of the same person when those photos were taken with 
different cameras, on different days, or with different lighting conditions, compared to when 
photos were taken on the same day and with the same camera (Bruce et al, 1999, Jenkins 
et al, 2011). Most previous fMRI studies, however, used very visually similar images, or 
even just a single image, for each identity, making it difficult to determine whether a brain 
region represents different face images or different face identities. Here, by having multiple 
videos for each person we can be more confident that we are capturing representations of 
specific identities rather than specific stimuli.  

Related to the previous point, Abudarham and Yovel (2016) have recently shown that 
humans are more sensitive in perceiving changes in some face features (such as lip-
thickness, hair, eye colour, eye shape, and eyebrow thickness) compared to others (such 
as mouth size, eye distance, face proportion, skin color). Changes in the former type of 
features (a.k.a. critical features) are perceived as changes in identity and those features 
tend to be invariant for different images of the same identity. Interestingly, Abudarham et al 
(2019) showed that the OpenFace algorithm that we used in the present study also seemed 
to be capturing those same critical features. Given our results in right FFA, it would be 
interesting to see whether representations in this region can also distinguish between the 
processing of the critical and non-critical face features as described by Abudarham and 
colleagues (2016; 2019).  

Grossman and colleagues (2019) have also recently shown that representations in the 
FFA relate to image-computable descriptors from a deep neural network. There are two 
main differences, however, between our results and those of Grossman et al (2019). First, 
Grossman et al (2019) found similar representational geometries across all face-selective 
ventral temporal cortex, and no differentiation between OFA and FFA. One possible reason 
for this difference is that the authors were only able to define OFA and FFA in the left 
hemisphere, whereas our face-selective regions were defined in the right hemisphere. Face-
selective regions are more consistent and larger in the right hemisphere (e.g. Rossion et al, 
2012). A second main difference between our results and those of Grossman et al (2019) 
is that the deep neural network that we used here showed high generalisation across 
different images of the same person. OpenFace (Amos et al., 2016) was trained specifically 
to group together images of the same person and distinguish images of different people, 
and it performed very well in doing this in our set of stimuli (see Extended Data Figure 2-1), 
where it showed high generalisation across very variable pictures of the same person. This 
was not the case with the VGG-Face network used by Grossman et al (2019). Future studies 
should focus on describing and comparing the image-level descriptions of different types of 
neural networks. 

Previous studies have demonstrated that face-selective regions are sensitive to the 
viewpoint from which faces are presented (Grill-Spector et al., 1999; Axelrod and Yovel, 
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2012; Kietzmann et al., 2012; Ramírez et al., 2014; Dubois et al., 2015; Guntupalli et al., 
2017). However, there is also evidence that the FFA, OFA, anterior temporal lobe, and pSTS 
represent face identity across different viewpoints (Anzellotti et al., 2014; Anzellotti and 
Caramazza, 2017; Guntupalli et al., 2017). In our video stimuli, the faces were mostly front-
facing, but were free to vary in terms of changes in viewpoint (e.g. turning the head to the 
side during the video). Given that our patterns for each identity were estimated across 
multiple different videos of their face, it is unlikely that viewpoint alone could explain the 
differences between identities. Therefore, our results suggest that the FFA and OFA encode 
information that relate to face identity, beyond viewpoint. 

We note that the lower bounds on the noise ceiling in our analyses were consistently 
quite low, especially for FFA and pSTS. However, these values are similar to the lower 
bounds of the noise ceiling in other studies using RSA (e.g. Carlin & Kriegeskorte, 2017; 
Jozwik et al., 2016; Thornton & Mitchell, 2017; 2018). We considered whether the low 
correlations could reflect substantial individual differences in face identity brain 
representations, but our results did not support this possibility. The low noise ceilings in our 
study likely reflect the fact that the differences between brain-activity patterns associated 
with faces of different people are small compared to the differences between patterns 
associated with different visual categories (e.g. faces and places). Moreover, we used 
identity-based rather than image-based patterns (by crossvalidating across runs presenting 
different videos for each identity), and this is likely to have introduced additional variability 
to the pattern estimates. It is also possible that we needed more data per participant, and 
future studies should consider ways to increase the amount of explainable variance. A 
related issue is that the perceived-property models had inter-subject reliabilities that varied 
between .2 and .6 and thus correlations between these models and brain RDMs would be 
affected by these low reliabilities.  

None of the models that we considered here explained the representational geometry of 
responses in the face-selective right pSTS. It is likely that the pSTS as defined in the present 
study contains overlapping and interspersed groups of voxels that respond to faces only, 
voices only, or both faces and voices (Beauchamp et al., 2004) that make the overlapping 
representational geometry difficult to explain. On the other hand, it is possible that the pSTS 
represents information about people that we did not consider here, such as idiosyncratic 
facial movements (Yovel & O’Toole, 2016), emotional and mental states (Thornton et al., 
2019), biographical knowledge (Verosky et al., 2013; Collins et al., 2016; Thornton et al., 
2019), social distance or network position (Parkinson et al., 2014; 2017), or type of social 
interactions (Walbrin & Koldewyn, 2019). Future studies may need to explore an even richer 
set of social, perceptual, and stimulus-based models to better characterise responses in the 
pSTS (and investigate representations beyond face-selective regions). 

A limitation of our study was the lack of diversity of our face identities in terms of race 
and ethnicity (ten identities were White Caucasian and two were Black), which limits the 
generalisability of our results to faces of different ethnicities. It was essential to our study 
that our set of celebrities were highly familiar to our sample of young British participants, 
and they were chosen based on their recognisability (of both faces and voices — please 
see Tsantani et al., 2019). Future work will need to incorporate more diversity in the face 
stimuli. This is also crucial when considering the image-computable models. In particular, 
OpenFace has been developed, trained, and evaluated on databases that contain large 
proportions of Caucasian faces when compared to other ethnicities. Future work using 



35 

 

larger samples of identities should evaluate the biases caused by these procedures, and 
develop models trained on more representative and diverse databases.  

To conclude, our study highlights the importance of using multiple and diverse 
representational models to characterise how face identities are represented in different face-
selective regions. Although similar levels of identity decodability were observed in both OFA 
and FFA (Tsantani et al., 2019), the information explicitly encoded in these two regions is 
in fact distinct, suggesting that the two regions serve quite different computational roles. 
Future work attempting to define the computations of cortical regions that appear to serve 
the same function (e.g. discriminating between identities) would benefit from comparing 
representations in those regions with multiple and diverse candidate models to reveal the 
type of information that is encoded. 
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Extended data 

 

 

Figure 2-1. Image-computable model representational dissimilarity matrices (RDMs) per 
image. Model RDMs computed from dissimilarities between images for OpenFace, Gabor-Jet, Pixel-
Faces, Pixel-Frames, GIST-Faces, and GIST-Frames. Each row/column represents a single image, 
and images are clustered by identity (6 images for each of the 12 identities). Each cell shows the 
dissimilarity between the two images in the corresponding rows and columns, with a value of zero 
indicating that images are identical. Matrices are symmetric around a diagonal of zeros. From these 
models, only the OpenFace model grouped different images of the same identity as more similar 
compared to images from different identities. Please note that these full RDMs were not used in any 
analysis. Instead, we created 12x12 RDMs (one entry for each of the 12 identities) to be comparable 
to the brain RDMs (Figure 2C). To create the 12x12 RDMs, we computed the mean of all cells that 
showed images of the same identity pair. 
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Figure 2-2. Correlations (Pearson) between the different model RDMs. The different candidate 
models were compared with each other using Pearson correlation. This is the same figure as 2D, 
but with added correlation values for each cell. 

 


