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Biological visual systems exhibit abundant recurrent

connectivity. State-of-the-art neural network models for visual

recognition, by contrast, rely heavily or exclusively on

feedforward computation. Any finite-time recurrent neural

network (RNN) can be unrolled along time to yield an equivalent

feedforward neural network (FNN). This important insight

suggests that computational neuroscientists may not need to

engage recurrent computation, and that computer-vision

engineers may be limiting themselves to a special case of FNN

if they build recurrent models. Here we argue, to the contrary,

that FNNs are a special case of RNNs and that computational

neuroscientists and engineers should engage recurrence to

understand how brains and machines can (1) achieve greater

and more flexible computational depth (2) compress complex

computations into limited hardware (3) integrate priors and

priorities into visual inference through expectation and

attention (4) exploit sequential dependencies in their data for

better inference and prediction and (5) leverage the power of

iterative computation.
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Introduction
The primate visual cortex uses a recurrent algorithm to

process sensory input [1–3]. Anatomically, connectivity is

cyclic. Neurons are connected in cycles within local

cortical circuits [4–6]. Global inter-area connections are

dense and mostly bidirectional [7–9]. Physiologically, the

dynamics of neural responses bear temporal signatures

indicative of recurrent processing [10,1,11]. Behaviorally,
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visual perception can be disturbed by carefully timed

interventions that coincide with the arrival of re-entrant

information to a visual area [12–15]. The evidence for

recurrent computation in the primate brain, thus, is

unequivocal. What is less obvious, however, is why the

brain uses a recurrent algorithm.

This question has recently been brought into sharper focus

by the successes of deep feedforward neural network models

(FNNs) [16,17]. These models now match or exceed human

performance on certain visual tasks [18–20], and better

predict primate recognition behavior [21,22,23] and neural

activity [24–29] than current alternative models.

Although computer vision and computational neurosci-

ence both have a long history of recurrent models [30–33],

feedforward models have earned a dominant status in

both fields. How should we account for this discrepancy

between brains and models?

One answer is that the discrepancy reflects the fact that

brains and computer-vision systems operate on different

hardware and under different constraints on space, time,

and energy. Perhaps we have come to a point at which the

two fields must go their separate ways. However, this

answer is unsatisfying. Computational neuroscience must

still find out how visual inference works in brains. And

although engineers face quantitatively different con-

straints when building computer-vision systems, they,

too, must care about the spatial, temporal, and energetic

limitations their models must operate under when

deployed in, for example, a smartphone. Moreover, as

long as neural network models continue to dominate

computer vision, more efficient hardware implementa-

tions are likely to be more similar to biological neural

networks than current implementations using conven-

tional processors and graphics processing units (GPUs).

A second explanation for the discrepancy is that the

abundance of recurrent connections in cortex belies a

superficial role in neural computation. Perhaps the core

computations can be performed by a feedforward network

[34], while recurrent processing serves more auxiliary and

modulatory functions, such as divisive normalization [35]

and attention [36–39]. This perspective is convenient

because it enables us to hold on to the feedforward

model in our minds. The auxiliary and modulatory func-

tions let us acknowledge recurrence without fundamen-

tally changing the way we envision the algorithm of

recognition.
www.sciencedirect.com
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However, there is a third and more exciting explanation for

the discrepancy between recurrent brains and feedforward

models: although feedforward computation is powerful, a

recurrent algorithm provides a fundamentally superior

solution to the problem of visual inference, and this algo-

rithm is implemented in primate visual cortex. This recur-

rent algorithm explains how primate vision can be so

efficient in terms of space, time, energy, and data, while

being so rich and robust in terms of the inferences and their

generalization to novel environments.

In this review, we argue for the latter possibility, discuss-

ing a range of potential computational functions of recur-

rence and citing the evidence suggesting that the primate

brain employs them. We aim to distinguish established

from more speculative, and superficial from more pro-

found forms of recurrence, so as to clarify the most

exciting directions for future research that will close

the gap between models and brains.

Unrolling a recurrent network
What exactly do we mean when we say that a neural

network — whether biological or artificial — is recurrent

rather than feedforward? This may seem obvious, but it

turns out that the distinctioncaneasily be blurred.Consider

the simple network in Figure 1a. It consists of three

processing stages, arranged hierarchically, which we will

refer to as areas, by analogy to cortex. Each area contains a

number of neurons (real or artificial) that apply fixed

operations to their input. Visual input enters in the first

area, where it undergoes some transformation, the result of

which is passed as input to the second area, and so forth.

Information travels exclusively in one direction — the

‘forward’ direction, from input to output — and so this is

an example of a feedforward architecture. Notably, the

number of transformations between input and output is

fixed, and equal to the number of areas in the network.

Now compare this to the architecture in Figure 1b. Here,

we have added lateral and feedback connections to the

network. Lateral connections allow the output of an area

to be fed back into the same area, to influence its

computations in the next processing step. Feedback

connections allow the output of an area to influence

information processing in a lower area. There is some

freedom in the order in which computations may occur in

such a network. The order we illustrate here starts with a

full feed-forward pass through the network. In subse-

quent time steps, neural activations are updated in

ascending order through the hierarchy, based on the

activations that were computed in the previous time step.

This order of operations can be seen more clearly if we

‘unroll’ the network in time, as shown in Figure 1c. In this

illustration, the network is unrolled for a fixed number of

time steps (3). In fact, recurrent processing can be run for

any desired duration before its output is read out — a
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notion we will return to later. Notice how this temporally

unrolled, small network resembles a larger feedforward

neural network with more connections and areas between

its input and output. We can emphasize this recurrent-

feedforward equivalence by interpreting the computa-

tional graph over time as a spatial architecture, and

visually arranging the induced areas and connections in

a linear spatial sequence — an operation we call unrolling
in space (Figure 1d). This results in a deep feedforward

architecture with many skip connections between areas that

are separated by more than one level in this new hierar-

chy, and with many connections that are exact copies of

one another (sharing identical connection weights).

Thus, any finite-time RNN can be transformed into an

equivalent FNN. But this should not be taken to mean that

RNNs are a special case of FNNs. In fact, FNNs are a special

case of finite-time RNNs (Figure 2a), comprising those

which happen to have no cycles. More practically, not every

unrolled finite-time RNN is a realistic FNN (Figure 2b). By

realistic networks, we mean networks that conform to the

real-world constraints the system must operate under. For

computational neuroscience, a realistic network is one that

fits in the brain of the animal and does not require a deeper

network architecture or more processing steps than the

animal can accommodate. For computer vision, a realistic

network is one that can be trained and deployed on available

hardware at the training and deployment stages. For exam-

ple, there may be limits on the storage and energy available,

which would limit the complexity of the architecture and

computational graph. A realistic finite-time RNN, when

unrolled, can yield an unworkably deep FNN. Although

the most widely used current method for training RNNs

(backpropagation through time) requires unrolling, an RNN

is not equivalent to its unrolled FNN twin at the stage of real-

world deployment: the RNN’s recurrent connections need

not be physically duplicated, but can be reused across cycles

of computation.

An important recent observation [40��,41,42] is that the

architecture that results from spatially unrolling a recurrent

network, resembles the architectures of state-of-the art

FNNs used in computer vision, which similarly contain

skip connections and can be very deep. These deep FNNs

may form a super-class of models (Figure 1e), which reduce

to (recurrent-equivalent) architectures when certain sub-

sets of weights are constrained to be identical. Liao and

Poggio [40��] showed that deep feedforward architectures

known as residual networks (ResNets) [19] are formally

equivalent to recurrent architectures when certain connec-

tion weights are constrained to be identical. Moreover,

whenResNetswere trainedwith such recurrent-equivalent

weight-sharing constraints, their performance on computer

vision benchmarks was similar to unconstrained ResNets

(even though the weight sharing drastically reduces the

parameter count and limits the component computations

that the network can perform). This is especially
Current Opinion in Neurobiology 2020, 65:176–193
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Figure 1

(a) (b) (c)

(e)(d)
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Unrolling recurrent neural networks. (a) A simple feedforward neural network. (b) The same network with lateral (blue) and feedback (red)

connections added, to make it recurrent. (c) ‘Unrolling’ the network in time clarifies the order of its computations. Here, the network is unrolled for

three time steps before its output is read out, but we could choose to run the network for more or fewer steps. Areas are staggered from left to

right to show the order in which their neural activities are updated. (d) Alternatively, we can unroll the recurrent network’s time steps in space, by

arranging the areas and connections from different time steps in a linear spatial sequence. Note how all arrows now once again point in the same

(forward) direction, from input to output. Throughout panels (a-d), connections that are identical (sharing the same weight matrices) are indicated

by corresponding symbols. (e) If we lift the weight-sharing constraints from the previous network, this induces a deep feedforward ‘super-model’,

which can implement the spatially unrolled recurrent network as a special case. This more general architecture may include additional connections

(examples shown as light gray arrows) not present in the spatially unrolled recurrent net.

Current Opinion in Neurobiology 2020, 65:176–193 www.sciencedirect.com
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Figure 2

(a) (b)
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Relationships between recurrent and feedforward networks. This figure illustrates relationships between discrete-time feedforward (FNN) and

discrete-time recurrent (RNN) neural network models. (a) The architecture of any RNN can be reduced to an FNN by removing all its recurrent

connections (e.g. going from Figure 1b back to Figure 1a), or equivalently, setting the weights of these connections to zero. Vice versa, any FNN

can be expanded to an infinite variety of RNNs by adding lateral or feedback connections. Feedforward networks, thus, form an architectural

subset of RNNs. Here we specifically consider RNNs that accomplish their task in a finite number of time steps. These finite-time RNNs (ftRNNs)

have the special property that they can be unrolled into equivalent FNNs. White points linked by arcs indicate pairs of computationally equivalent

architectures. Thus, the feedforward NNs contain a subset of architectures that can be obtained by unrolling a ftRNN. (b) These sets of networks

can be further subdivided into subsets that are or are not realistic to implement with the computational resources available for a brain or

engineered device (areas below and above the dotted line, respectively). Deeper networks and, more generally, networks with more neurons and

connections tend to require more memory and computation to train and run. Some realistic ftRNNs remain realistic when expressed as an FNN

(blue ellipse). Others, however, become too complex, when unrolled, to be feasible (black arc crossing the realism line). This is because the

unrolling operation induces a much deeper architecture with many more neural connections to be stored. These not-realistically-unrollable ftRNNs

are especially interesting, since they correspond to recurrent solutions that cannot be replaced by feedforward architectures.
noteworthy given that ResNets, and architecturally related

DenseNets, are currently among the top-ranking FNNs on

prominent computer vision benchmarks [19,43], as well as

measures of brain-similarity [29]. Today’s best artificial

vision models, thus, actually implement computational

graphs closely related to those of recurrent networks, even

though these models are strictly feedforward architectures.

Continuous-time versus discrete-time
dynamics
FNNs used in computer vision do not have meaningful

dynamics. Each unit in the network instantaneously

transforms its input into an output. This is in contrast

to a feedforward network of biological neurons. When

given a static input, biological neurons do not immedi-

ately produce their final responses. The movement of

electric charges and neurotransmitters, and the opening

and closing of ion channels takes time, so the network

will gradually transition from its initial to its final state,

with its trajectory continually perturbed by noise. Such

continuous-time dynamics can be described by differ-

ential equations. When these cannot be solved analyti-

cally (as is typically the case), the dynamics can be

simulated in discrete steps. In each step, the current

state of each simulated neuron is updated. The future

state of the network thus depends on its current state, as

it does in an RNN. Consequently, the computational

graph of the simulation algorithm contains loops from

each neuron back to itself. Running the simulation over

time amounts to unrolling this loopy computational

graph, even though the network architecture did not

contain loops.
www.sciencedirect.com 
Computational neuroscientists commonly study models of

feedforward and recurrent neural networks with continuous-

time dynamics [44]. Here our focus is on neural network

models that are motivated by the goal to capture computa-

tions, rather than their precise neural implementation. The

discrete-time behavior of such a model is not derived from a

continuous-time description in differential equations. More-

over, the model is optimized in its discrete-time implemen-

tation. However, an implicit assumption in the field is that

such models could be implemented in biological brains, and

thus in continuous-time dynamical systems.

Reasons to recur
We have described how a recurrent network can be

unrolled into a deep feedforward architecture. The result-

ing feedforward super-model offers greater computa-

tional flexibility, since weight-sharing constraints can

be omitted and additional skip connections added to

the network (Figure 1e). So what would be the benefit

of restricting ourselves to recurrent architectures? We will

first discuss the benefits of recurrence in terms of over-

arching principles, before considering more specific

implementations of these principles.

Recurrence provides greater and more flexible

computational depth

Recurrence enables arbitrary computational depth

One important advantage of recurrent algorithms is that

they can be run for any desired length of time before their

output is collected. We can define computational depth as

the maximum path length (i.e. number of successive

connections and nonlinear transformations) between
Current Opinion in Neurobiology 2020, 65:176–193
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input and output. A recurrent neural network (RNN) can

achieve arbitrary computational depth despite having a

finite count of parameters and being limited to finite

spatial components. In other words, it can multiply its

limited spatial resources along time. These deeper

computations can serve to expand on the number of

hypotheses considered (in generative inference) or on

the number of nonlinear features computed (in discrimi-

native inference), or to extend the representation into the

future or past, or to iteratively converge to a good estimate

of some latent variable of interest.

Recurrence enables more flexible expenditure of energy and

time in exchange for inferential accuracy

In addition to enabling an arbitrarily deep computation

given enough time, an RNN can adjust its computational

depth to the task at hand. The computational depth of a

feedforward net, by contrast, is a fixed number deter-

mined by the architecture.
Figure 3
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Spoerer et al. implemented a recurrent model that termi-

nates computations when it reaches a confidence thresh-

old (defined by the entropy of the posterior, a measure of

the model’s uncertainty) [23��]. The model terminates

rapidly for many images, but expends more time and

energy on hard images to reach its confidence threshold.

Adjusting the confidence threshold enables trading off

speed for accuracy in terms of average performance.

When compared to a range of FNNs requiring different

amounts of computation, the RNN achieved roughly the

same accuracy as each of the FNNs when its confidence

threshold was set to match the FNN’s computational cost

(number of floating point operations) on average across

images (Figure 3). Flexible computational depth would

be advantageous for animals, who may need to respond

rapidly in some situations, must limit metabolic expen-

ditures in general, and may benefit from slower and more

energetically costly inferences when high accuracy is

required. Computer vision faces similar requirements

in certain applications. For example, a vision algorithm
entropy threshold [nats]

l cost
11perations ×10 ]

FNNs

RNN
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in a smartphone should respond rapidly and conserve

energy in general, but should also be able to recognize

hard images, and it should allow trading off mean accu-

racy for speed and energy (e.g. when the battery is low).

Recurrent architectures can compress complex

computations in limited hardware

Another benefit of recurrent solutions is that they require

fewer components in space when physically implemen-

ted in recurrent circuits, such as brains. Compare

Figure 1b and 1e: the recurrent network is anatomically

more compact than the feedforward network and has

fewer connections. It is easy to see why evolution might

have favored a recurrent implementations for many brain

functions: Space, neural projections, and the energy to

develop and maintain them are all costly for the organism.

In addition, synaptic efficacies must be either learned

from limited experience or encoded in a limited-capacity

genome. Beyond saving space, material, and energy, thus,

smaller descriptive complexity (or parameter count)

might ease development and learning.

Engineered devices face the same setofcosts, although their

relative weighting changes from application to application.

In particular, a larger number of units and weights must

either be represented in the memory of a conventional

computer or implemented in specialized (e.g. neuro-

morphic) hardware. The connection weights in an NN

model need to be learned from limited data. This requires

extensive training, for example, in a supervised setting, with

millions of hand-labeled examples that show the network

the desired output for a given input. The larger number of

parameters associated with a feedforward solution might

overfit the training data. The learned parameters then do not

generalize well to new examples of the same task.

FNNs often turn out to generalize surprisingly well even

when they have very large numbers of parameters [45–47].

This phenomenon is thought to reflect a regularizing effect

of the learning algorithm, stochastic gradient descent.

Indeed, the trend is towards ever deeper networks with

more connections to be optimized, and this trend is associ-

ated with continuing gains in performance on computer

vision benchmarks [48]. Nevertheless, it could turn out that

recurrent architectures that achieve high computational

depth with fewer parameters bring benefits not only in

terms of their storage, but also in terms of statistical effi-

ciency, the ability generalize accurately based on limited

experience. This would imply that recurrent networks have

an inductive bias that makes up for the limited experiential

data.This is explored further in subsequent sections,where

we discuss how RNNs can exploit temporal dependency

structures, and enable iterative inference.

Energy is another factor to consider in both biology and

engineering. Larger FNNs take longer to train on bigger

computing clusters, while drawing greater amounts of
www.sciencedirect.com 
power — a trend that is not sustainable. In the long

run, therefore, computer vision too may benefit from

the anatomical compression that can be achieved through

clever use of recurrence.

Importantly, however, not every deep feedforward model

can be compressed into an equivalent recurrent imple-

mentation. This anatomical compression can only be

achieved when the same function may be applied itera-

tively or recursively within the network. The crucial

question, therefore, is: what are these functions? What

operations can be applied repeatedly in a productive

manner? The remainder of this paper will reflect on

the various roles that have been proposed for recurrent

processing for visual inference, from superficial to increas-

ingly profound forms of recurrence.

Feedback connections are required to integrate

information from outside the visual hierarchy

A key, established role of recurrent connections in bio-

logical vision is to propagate information from outside the

visual cortex, so that it can aid visual inference [49]. Here,

we will briefly discuss two such outside influences: atten-

tion and expectations.

Attentional prioritization requires feedback connections

Animals have needs and goals that change from moment to

moment. Perception is attuned to an animal’s current

objectives. For instance, a primate foraging for red berries

may be more successful if its visual perception apparatus

prioritizes or enhances the processing of red items. Since

current goals are represented outside the visual cortex (e.g.

in frontal regions), top-down connections are clearly

required for this information to influence visual processing.

Such top-down effects have been grouped under the label

‘attention’, and they have been the subject of an entire

subfield of study. For our purposes, it is sufficient to note

that the effects and mechanisms of top-down attention are

well-documented andpervasive invisual cortex (for review,

see [36–38]), and thus there is no question that this is one

important function of recurrent connections.

Integrating prior expectations into visual inference requires

feedback connections

Organisms may constrain their visual inferences by

expectations [50]. Visual input can be ambiguous and

unreliable, and thus open to multiple interpretations. To

constrain the inference, an observer can make use of prior

knowledge [51–53]. One form of prior knowledge is

environmental constants (e.g. ‘light tends to come from

above’ [54]). Such unvarying knowledge may be stored

within visual cortex, especially when it pertains to the

overall prevalence of basic visual features (e.g. local edge

orientations [55]). Another form of prior knowledge is

contextual information specific to the current situation.

Such time-varying knowledge may require a flexible

representation outside visual cortex (e.g. ‘I rang the
Current Opinion in Neurobiology 2020, 65:176–193
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Figure 4

(b)

(c)
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Increasingly profound modes of recurrent processing, unrolled in time. Visual cortex likely combines all three modes of recurrence illustrated here.

The left side of each panel shows the computational graph induced by each form of recurrence, while the right side illustrates a (simplified)

example of how this recurrence can be used. In these examples, circles correspond to neurons (or neural assemblies) encoding the feature

illustrated within the circle, and lines that connect to circles indicate neural connections with significant activity. (a) Top-down influences from

outside the visual processing hierarchy may be incorporated through two computational sweeps: a feedback sweep priming the network with top-

down information and a feedforward sweep to interpret visual input and combine this interpretation with the top-down signal. Note that the lateral

connections here merely copy neural activities in each area to the next time point; this identity transformation could also be implemented in other

ways, such as slow membrane time constants or other forms of local memory. In the example on the right, a top-down signal communicates the

expectation that the upcoming input will be horizontal motion. This primes neurons encoding this direction of motion to be more easily or strongly

activated, and sharpens the interpretation of the subsequent (ambiguous) visual input. (b) To efficiently perform inference on time-varying visual

input, recurrent connections may implement a fixed temporal prediction function akin to the transition kernel in a Kalman filter, extrapolating the

ongoing dynamics of the world one time step into the future. For instance, in the example on the right, a downward moving square was perceived

at t ¼ 1. This motion is predicted to continue, and this prediction constrains the interpretation of the (ambiguous) visual input at the next time

point. For simplicity, only lateral recurrence is shown in this example. Note that each input is mapped onto its corresponding output in a single

recurrent time step. (c) Static input may also benefit from recurrent processing that iteratively refines an initial, coarse feedforward interpretation.

In this mode of recurrence, there are several processing time steps between input and output, whereas in (b) there was one input and output for

each time step. Illustrated on the right is an iterative hierarchical inference algorithm. Here, a higher-level hypothesis, generated in the first time

step, refines the underlying lower-level representation in the next time step, which in turn improves the higher-level hypothesis, and so forth, until

the network converges to an optimal interpretation of the input across the entire hierarchy. For simplicity, lateral recurrent interactions are not

shown in this example.

Current Opinion in Neurobiology 2020, 65:176–193 www.sciencedirect.com
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doorbell at my mother’s house, so I expect to see her open

the door’). Such expectations, represented in higher

cortical regions, require feedback connections to affect

processing in visual cortex [50].

The top-down imposition of attention and expectation

must be mediated by feedback connections. However, it

is unclear whether these influences fundamentally change

the nature of visual representations or merely modulate

these representations, adjusting the gain depending on the

current relevance of different features of the visual input.

As illustrated in Figure 4a, for a given input this would

require only two ‘sweeps’ of computation through the

visual processing hierarchy: a feedback sweep that primes

visual areas with top-down information, and a bottom-up

sweep to interpret the visual input and integrate or modify

this interpretationwith the top-downsignal (notnecessarily

in that order). Importantly, if the feedback signal merely

enhances or suppresses some visual features, then the core

inference algorithm need not be fundamentally recur-

rent — one can imagine that the bottom-up part of such

a network is modeled perfectly by an FNN, while an

optional recurrent module could be added in order to

implement top-down contextual influences.

Recurrent networks can exploit temporal dependency

structure

Contextual constraints on visual inference include not

only information from outside the visual hierarchy, such

as information from other sensory modalities and mem-

ory, as discussed in the previous section. The recent

stimulus history within the visual modality also provides

context, likely represented within the visual system.

Recurrent networks can dynamically compress the stimulus

history

The primate visual system is thought to contain a hierar-

chy, not only of processing stages and spatial scales, but

also of temporal scales [56,57]. Visual representations

track the environment moment by moment. However,

the duration of a visual moment, the temporal grain, may

depend on the level of representation. These principles

apply to all sensory modalities and have been empirically

explored, in particular, for audition and speech percep-

tion. At the simplest level, a neural network could use

delay lines to detect spatiotemporal, rather than purely

spatial, patterns. Recurrent neural networks have internal

states and can represent temporal context across units

tuned to different latencies. An RNN could represent a

fixed temporal window, by replicating units tuned to

different patterns for multiple latencies. However, RNNs

trained on sequence processing tasks, such as language

translation, learn more sophisticated representations of

temporal context [58]. They can represent context at

multiple time scales, learning a latent representation that

enables them to dynamically compress whatever infor-

mation from the past is needed for the task. In contrast to
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a feedforward network, a recurrent network is not limited

by spatial constraints in terms of its retrospective time

horizon. It can maintain task-relevant information indefi-

nitely, integrating long-term memory into its inferences.

Recurrent dynamics can simulate and predict the dynamics

of the world

Dynamic compression of the past exploits the temporal

dependency structure of the sensory data. The purpose of

representing the past is to act well in the future. This

suggests that a neural network should exploit temporal

dependencies not just to compress the past, but also to

predict the future. In fact, an optimal representation of

even just the present requires prediction, because the

sensory data is delayed and noisy.

Changes in the world are governed by laws of dynamics,

which by definition are temporally invariant. An ideal

observer will exploit these laws in visual inference and

optimally combine previous with present observations to

estimate the current state. This implies an extrapolation

of the past to generate predictions that improve the

interpretation of the present sensory input. When the

dynamics are linear and noise is Gaussian, the optimal

way to infer the present state by combining past and

present evidence is the Kalman filter [59] — an algorithm

widely used in engineering applications. A number of

authors [60–63] have proposed that the visual cortex may

implement an algorithm similar to a Kalman filter. This

theory is consistent with temporal biases that are evident

in human perceptual judgments [64–66].

Kalman filters employ a fixed temporal transitional ker-

nel. This kernel takes a representation of the world (e.g.

variables encoding the present state of a physical system,

such as positions and velocities) at time t, and transforms

it into a predicted representation for time t þ 1, to be

integrated with new sensory evidence that arrives at that

time. While the resulting prediction varies as a function of

the kernel’s input, the kernel itself is constant, reflecting

the temporal shift-invariance of the laws governing the

dynamics. Recurrent neural networks provide a generali-

zation of the Kalman filter and can represent nonlinear

dynamical systems with non-Gaussian noise.

Note that this type of recurrent processing is more pro-

found than the two-sweep algorithm (Figure 4a) that

incorporated top-down influences on visual inference.

The two-sweep algorithm is trivial to unroll into a feed-

forward architecture. In contrast, unrolling a Kalman

filter-like recurrent algorithm would induce an infinitely

deep feedforward network, with a separate set of areas

and connections for each time point to be processed. A

finite-depth feedforward architecture can only approxi-

mate the recurrent algorithm. While the feedforward

approximation will have a finite temporal window of

memory to constrain its present inferences, the recurrent
Current Opinion in Neurobiology 2020, 65:176–193
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network can in principle integrate information over arbi-

trarily long periods.

ue to their advantages for dealing with time-varying

(or otherwise ordered) inputs, recurrent neural networks

are in fact widely employed in the broader field of

machine learning for tasks involving sequential data.

Speech recognition and machine translation are promi-

nent applications that RNNs excel at [58,67–70]. Com-

puter vision, too, has embraced RNNs for recognition and

prediction of video input [71–73]. Note that these appli-

cations all exploit the dynamics in RNNs to model the

dynamics in the data.

What if we trained a Kalman filter or sequence-to-

sequence RNN (Figure 4b) on a train of independently

sampled static inputs to be classified? The memory of the

preceding inputs would not be useful then, so we expect

the recurrent model to revert to using essentially only its

feedforward weights. The type of recurrent processing we

described in this section, thus uses memory to improve

visual inference. In the next section, we consider how

recurrent processing can help with the inferential com-

putations themselves, even for static inputs.

Recurrence enables iterative inference

Recurrent processing can contribute even to inference on

static inputs, and regardless of the agent’s goals and

expectations, by means of an iterative algorithm. An

iterative algorithm is one that employs a computation

that improves an initial guess. Applying the computation

again to the improved guess yields a further improve-

ment. This process can be repeated until a good solution

has been achieved or until we run out of time or energy.

Recurrent networks can implement iterative algorithms,

with the same neural network functions applied succes-

sively to some internal pattern of activity (Figure 4c).

In many fields, iterative algorithms are used to solve

estimation and optimization problems. In each iteration,

a small adjustment is made to the problem’s proposed

solution, to improve a mathematically formulated objec-

tive. A locally optimal solution is found by making small

improvements until further progress is not required or not

possible. The algorithm navigates a path in the space of

the values to be estimated or the parameters to be

optimized, that leads to a good solution (albeit not nec-

essarily the global optimum).

Much of machine learning involves iterative methods.

Gradient descent is an iterative optimization method,

whose stochastic variant is the most widely used method

for training FNNs. Many discrete optimization techni-

ques are iterative. Iterative algorithms are also central to

inference in machine learning, for example in variational

inference (where inference is achieved by optimization),

sampling methods (where steps are chosen stochastically
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such that the distribution of samples converges on the

posterior distribution), and message passing algorithms

(such as loopy belief propagation). In particular, such

iterative inference algorithms are used in probabilistic

approaches to computer vision [31,33]. It is somewhat

surprising, then, that iterative computation is not widely

exploited to perform visual inference in FNNs.

Visual inference is naturally understood as an optimization

problem, where the goal is to find hypotheses that can

explain the current visual input [51]. A hypothesis, in this

case, is a proposed set of latent (i.e. unobserved) causes that

can jointly explain the image. The hypothesized latent

causes could be the identities and positions of objects in the

scene. Visual hypotheses are hierarchical, being subdivided

into smaller hypotheses about lower or intermediate-level

features, such as the local edges that make up a larger

contour. An iterative visual inference algorithm starts with

an initial hypothesis, and refines it by incremental improve-

ments. These improvements may include eliminating

hypotheses that are mutually exclusive, strengthening

compatible causes, or adjusting a hypothesis based on its

ability to predict the data (the visual input). In a probabi-

listic framework, the optimization objective would be the

likelihood (probability of the image given the latent repre-

sentation) or the posterior probability (probability of the

latent representation given the image).

Incompatible hypotheses can compete in the representation

There are often multiple plausible explanations for a given

sensory input that are mutually exclusive. The distributed,

parallel nature of neural networks enables them to initially

activate and represent all of these possible hypotheses

simultaneously. Recurrent connectivity between neurons

can then implement competitive interactions among

hypotheses, so as to converge on the bestoverall explanation.

There is some evidence that sensory representations are

probabilistic [74–76] — in this case, the probabilities

assigned to a set of mutually exclusive hypotheses must

sum to 1. A strengthening of belief in one hypothesis, thus,

should entail a reduction of the probability of other hypoth-

eses in the representation. If neurons encode point estimates

rather than probability distributions, then only one hypoth-

esis can win (although that hypothesis may be encoded by a

population response involving multiple neurons). The win-

ning hypothesis could be the maximum a posteriori (MAP)

hypothesis or the maximum likelihood hypothesis. Influen-

tial models of visual inference involving competitive recur-

rent interactions include divisive normalization [35], biased

competition [36], and predictive coding [30,32,77].

Recent theoretical work has demonstrated that lateral

competition can give rise to a robust neural code, and

can explain certain puzzling neural response properties

[77,78]. This theory considers a spiking neural network

setting, in which different neurons encode highly
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overlapping or even identical features in their input. This

degeneracy means that the same signal can be encoded

equally well by a range of different response patterns.

When a particular neuron spikes, lateral inhibition ensures

that other competing neurons do not encode the same part

of the input again. Which neuron gets to do the encoding

thus depends on which neuron fires first, because its

membrane potential happened to be closest to a spiking

threshold. This leads to trial-to-trial variability in neural

responses that reflects subtle differences in initial condi-

tions — conditions that may not be known to an experi-

menter, who may thus mistake this variability for random

noise. This could explain the puzzling observation that

individual neurons reliably reproduce the same output

given the same electrical stimulation, but populations of

neurons, wired together, display apparently random vari-

ability under sensory stimulation [79–81]. Since multiple

neurons can encode the same feature, the resulting code is

also robust to neurons being lost or temporarily inactivated.

FNNs do not incorporate lateral connections for competi-

tive interactions, although they very often include compu-

tations that serve a similar purpose. Chief among these are

operations known as max-pooling and local response normali-
zation (LRN) [82,16]. In max-pooling, only the strongest

responsewithina poolofcompetingneurons is forwarded to

the next processing stage. In LRN, each neuron has its

response divided by a term that is computed from the sum

of activity in its normalization pool. While neither of these

mechanisms is mediated by explicit lateral connections in a

FNN, a strictly connectionist implementation of these

mechanisms (e.g. in biological neurons or neuromorphic

hardware) would have to include lateral recurrence. This,

then, is another way in which apparently feedforward

FNNs can exhibit a (limited) form of recurrent processing

‘under the hood’. Note, though, that each of these opera-

tions is carried out only once, rather than allowing compet-

itive dynamics to converge over multiple iterations. Fur-

thermore, in contrast to the lateral interactions in predictive

coding or other normative models, LRN and max-pooling

are not derived from normative principles, and do not

necessarily select (or enhance) the best hypothesis (how-

ever ‘best’ is defined).

Compatible hypotheses can strengthen each other in the

representation

In feedforward models of hierarchical visual inference, neu-

rons at higher stages selectively respond to combinations of

simpler features encoded by lower-level neurons. Higher-

level neurons thus are sensitive to larger-scale patterns of

correlation between subsetsof lower-level features. Butsuch

larger-scalestatistical regularitiesmaynotbemostefficiently

captured by a set of larger-scale building blocks. Instead,

they may be more compactly captured by local association

rules. Consider, for instance, the problem of contour detec-

tion. Many combinations of local edges in an image can form

a continuous contour. The resulting space of contours may
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be too complex to be efficiently represented with larger-

scale templates. What all these contours have in common,

however, is that they consist of pairs of edges that are locally

contiguous, with sharper angles occurring with lower proba-

bility. Thus, the criteria for ‘contour-ness’ may be compactly

expressed by a set of local association rules: these edges go
together; those do not [83,84]. Contours may then be pieced

together by repeatedly applying the same local association

rules. Those edge pairs which are most clearly connected

would be identified in early iterations. Later inferences can

benefit from the context provided by earlier inferences,

enabling the process to recognize continuity even where

it is less locally apparent.

This insight has inspired network models of visual inference

that implement local association rules through lateral con-

nections, to aid contour integration  and other perceptual

grouping operations [85]. Recent examples include Linsley

et al., who developed horizontal gated-recurrent units (hGRUs)

that learn local spatial dependencies [86��]. A network

equipped with this particular recurrent connectivity was

competitive with state-of-the-art feedforward models on a

contour integration task, while using far fewer free param-

eters. George et al. [87] similarly leveraged lateral interac-

tions to recognize contiguous contours and surfaces, by

modeling thesewith aconditional randomfield (CRF),using

a message-passing algorithm for inference. This approach

enabled their Recursive Cortical Network (RCN) to reliably

beat CAPTCHAs — images of letter sequences under a

variety of distortions, noise and clutter, that are widely used

to verify that queries to a user interface are made by a person,

and not an algorithm. CRFs were also used by Zheng et al.
[88], who incorporated them as a recurrent extension of a

convolutional neural network for image segmentation. The

model surpassed state-of-the-art performance at the time.

Association rules enforced through lateral connections may

also help to fill in missing information, such as when objects

are partially hidden from view by occluders. Lateral connec-

tivity has been shown to improve recognitionperformance in

such settings [23��,89�,90]. Montobbio et al. showed that

lateral diffusion of activity between neurons with correlated

feedforward filter weights improves robustness to image

perturbations including occlusions [90].

Enhancement of mutually compatible hypotheses (this

section) and competition between mutually exclusive

hypotheses (previous section) can both contribute to

inference. A more general perspective is provided by

the insight that prior knowledge about what features in

a scene are mutually compatible or exclusive may be part

of an overarching generative model, which iterative algo-

rithms can exploit for inference.

Iterative algorithms can leverage generative models for

inference

Perceptual inference aims to converge on a set of hypothe-

ses that best explain the sensory data. Typically, a
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hypothesis is considered to be a good explanation if it is

consistent with both our prior knowledge and the sensory

data. A generative model is a model of the joint distribution

of latent causes and sensory data. Generative models can

powerfully constrain perceptual inference because they

capture prior knowledge about the world. In machine

learning, defining generative models enables us to express

and exploit what we know about the domain. A wide range

of inference algorithms can be used to compute posterior

distributions over variables of interest, given observed

variables. The algorithms include variational inference,

message passing, and Markov Chain Monte Carlo sam-

pling, all of which require iterative computation.

In this section, we focus on a particular approach to leverag-

ing generative models in visual inference, in which the joint

distribution pðx; zÞ of the image x and the latents z is

factorized as pðx; zÞ ¼ pðzÞ�pðxjzÞ, which we refer to as the

top-down factorization. The architecture contains com-

ponents that model pðxjzÞ and predict the image from the

latents (or more generally lower-level latent representa-

tions from higher-level latent representations). Compared

to the alternative factorization pðx; zÞ ¼ pðxÞ�pðzjxÞ, the

top-down factorization has the potential advantage that

the model operates in the causal direction, matching the

causal process in the world that generated the image. The

top-down model predicts what visual input is likely to

result from a scene that has the hypothesized properties.

This is somewhat similar to the graphics engine of a video

game or image rendering software. This top-down model

can be implemented via feedback connections that trans-

late higher-level hypotheses in the network to represen-

tations at a lower level of abstraction.

Using generative models implemented with top-down

predictions for inference is known as analysis-by-synthe-
sis — an approach that has a long history in theories of

perception [51,30,32]. Arguably, the goal of perceptual

inference, by definition, is to reason back from effects

(sensory data) to their causes (unobserved variables of

interest), and thus invert the process that generated the

effects. The crucial question, however, is whether the

causal process is explicitly represented in the inference

algorithm. The alternative, which can be achieved with

feedforward inference, is to directly approximate the

inverse, without ever making predictions in the causal

direction. The success of the feedforward approach then

depends on how well the inverse can be approximated by

a fixed mapping of inputs to hypotheses. To iteratively

invert the causal process, a neural network can evaluate

the causal model for a current hypothesis and update the

hypothesis in a beneficial direction. This process can then

be repeated until convergence. This process of analysis

by repeated synthesis may be preferable to directly

approximating the inverse mapping if the causal process

that generates the sensory data is easier to model than its

inverse. In particular, the causal process may be more
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compactly represented, more easily learned, more effi-

cient to compute, and more generalizable beyond the

training distribution than its inverse.

Another potential advantage of generative inference lies

in robustness to variations in the input. While FNNs can

accurately categorize images drawn from the same distri-

bution that the training images were drawn from, it does

not take much to fool them. A slight alteration impercep-

tible to humans can cause a FNN to misclassify an image

entirely, with high confidence [91]. State-of-the-art

FNNs rely more strongly on texture than humans, who

rely more on shape [92]. More generally, FNNs seem to

ignore many image features that are relevant to human

perception [93]. One hypothesized reason for this is that

these networks are trained to discriminate images, but not

to generate them. Thus, any visual feature that reliably

discriminates categories in the training data will be

weighted heavily in the network’s classification decisions.

Importantly, this weight is unrelated to how much vari-

ance the feature explains in the image, and to the likeli-

hood — that is, the probability of the image given either

of the categories. An ideal observer should evaluate the

likelihood for each hypothesis and adjudicate according to

their ratio [94]. A feedforward network may instead latch

on to a few highly discriminative, but subtle image

features that don’t explain much and may not generalize

to images from a different data set [93,95]. In contrast,

visual features that are important for generating or recon-

structing images of a given class may be more likely to

generalize to other examples of the same category. In

support of this intuition, two novel RNN architectures

that employ generative models for inference were found

to be more robust to adversarial perturbations [96,97].

Generative inference networks were also shown to better

align with human perception, compared to discriminative

models, when presented with controversial stimuli —

images synthesized to evoke strongly conflicting classifi-

cations from different models [98�].

Despite these promising developments, generative infer-

ence remains rare in visual FNN models. The exceptions

mentioned above are rather simple networks trained on

easy classifications problems, and are not (yet) competi-

tive with state-of-the-art performance on more challeng-

ing computer vision benchmarks. Within computational

neuroscience, by contrast, generative feedback connec-

tions appear in many network models of visual inference.

Prominent examples are predictive coding [30,32] and

hierarchical Bayesian inference [99]. However, these

models have not had much success in explaining visual

inference beyond its earliest stages. A notable exception

is work by Wen et al. [100�], which shows that extending

supervised convolutional FNNs with the recurrent

dynamics of predictive coding can improve classification

performance. The fields of computer vision and compu-

tational neuroscience both stand to benefit from the
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development of more powerful generative inference

models.

Iteration is necessary to close the amortization gap

Iterative inference has many advantages. A drawback of

iteration, however, is that it takes time for the algorithm to

converge during inference. This is unattractive for animals

who need to perform visual inference under time pressure.

It is also a challenge when training a FNN, which already

requires many iterations of optimization. If each update of

the network’s connections additionally includes an itera-

tive inner loop to perform inference on each training

example, this lengthens the time required for training.

A complementary inference mechanism is amortized infer-
ence [101,102], where a feedforward model approximates

the mapping from images to their latent causes. FNNs are

eminently suited for learning complicated input–output

mappings. A single transformation then replaces the trajec-

tories that would be navigated by an iterative inference

algorithm. In some cases, the iterative solution and the best

amortized mapping may be exactly equivalent. A linear

model, for instance, can be estimated iteratively, by per-

forming gradient descent on the sum of squared prediction

errors. However, if a unique solution exists, it can equiva-

lently be found bya linear transformationthat directly maps

from the data to the optimal coefficients.

In general, however, amortized inference incurs some

error, compared to the optimal solution that might be

found through iterative optimization. This error has been

called the amortization gap [103,104�]. It is analogous to

the poor fit that may result from buying clothes ‘off the

rack’, compared to a tailored version of the same garment.

The amortization gap is defined in the context of varia-

tional inference, when the iterative optimization of the

variational approximation to the posterior is replaced by a

neural network that maps from the image to the param-

eters of the variational distribution. The resulting model

suffers from two types of error: (1) error caused be the

choice of the variational approximation (variational

approximation gap) and (2) error caused by the model

mapping from images to variational parameters (amorti-

zation gap). One recent study has argued that the amorti-

zation gap is often the main source of error in amortized

inference models [103]. Amortized and iterative infer-

ence define a continuum. At one extreme, iterative infer-

ence until convergence reaches a solution through a

trajectory of small improvements, explicitly evaluating

the quality of the current solution at every iteration. At

the other extreme, fully amortized inference takes a

single leap from input to output. In between these

extremes lies a space for algorithms that use intermediate

numbers of steps, to approximate the optimal solution

through a computational path that is more refined than a

leap, but more efficient than full-fledged iterative

optimization. Models that occupy this space include
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explicit hybrids of iterative and amortized inference

[104�,105,106], as well as RNNs with arbitrary dynamics

that are trained to converge to a desired objective in a

limited number of time steps (e.g. [23�,107,108��,109�]).

Recurrence is required for active vision

Vision is an active exploratory process. Our eye movements

scan the scene through a sequence of well-chosen fixations

that bring objects of interest into foveal vision. Moving our

heads and our bodies enables us to bring entirely new parts

of the scene into view, and closer for inspection at high

resolution. Active control of our eyes, heads, and bodies can

also help disambiguate 3D structure as fixation on points at

different depths changes binocular disparity, and head and

body movements create motion parallax. Active vision

involves a recurrent cycle of sensory processing and muscle

control, a cycle that runs through the environment.

Our focus here has been on the internal computational

functions of recurrent processing, and active vision has

been reviewed elsewhere [110–112]. However, it is impor-

tant to note that the internal recurrent processes of visual

inference from a single glimpse are embedded within the

larger recurrent process of active visual exploration. Active

vision provides not just the larger behavioral context of

visual inference. It also provides a powerful illustration of

the fundamental advantages that recurrent algorithms offer

in general. It illustrates how limited resources (the fovea)

can be dynamically allocated (eye movements) to different

portions of the evidence (the visual scene) in temporal

sequence. A sensory system limited to a finite number of

neurons, thus, can multiply its resources along time to

achieve a detailed analysis. The cycle may start with an

initial rough analysis of the entire visual field, followed by

fixations on locations likely to yield valuable information.

This is an example of an essentially recurrent process

whose efficiency cannot be emulated with a feedforward

system. The internal mechanisms of visual inference are

faced with qualitatively similar challenges: Just like our

retinae cannot afford foveal resolution throughout the

visual field, the ventral stream cannot afford to perform

all potentially relevant inferences on the evidence stream-

ing in through the optic nerve in a single feedforward

sweep. Internal shifts of attention, like eye movements,

can sequentialize a complex computation and avoid wast-

ing energy on portions of the evidence that are uninforma-

tive or irrelevant to the current goals of the animal.

Whereas the outer loop of active vision is largely about

positioning our eyes relative to the scene and bringing

important content into foveal vision, the inner loop of visual

inference on each glimpse is far more flexible. Beyond

covert attentional shifts that select locations, features, or

objects for scrutiny, a recurrent network can decide what
computations to perform so as to most efficiently reduce

uncertainty about the important parts of the scene. In a

game of twenty questions, we choose a question that most
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reduces our remaining uncertainty at each step. The bud-

get of twenty would not suffice if we had to decide all the

questions before seeing any answers. The visual system

similarly has limited computational resources for proces-

sing a massive stream of evidence. It must choose what

inferences topursueon thebasisof their computational cost

and uncertainty-reducing benefit as it forages for insight

[113–115].

Closing the gap between biological and
artificial vision
We have reviewed a number of advantages that recur-

rence can bring to neural networks for visual inference.

Going forward, neural network models of vision should

incorporate recurrence; not just to better understand

visual inference in the brain, but also to improve its

implementation in machines.

Recurrence already improves performance on

challenging visual tasks

Efforts in this direction are already underway, and turning

up promising results. Some of this work has been

described in previous sections, such as the use of lateral

connections to impose local association rules [86��,87, 88]

and generative inference for more robust performance

outside the training distribution [96,97]. Several other

recent findings are worth highlighting here, as they have

shown improved performance on visual tasks, better

approximations to biological vision, or both, through

recurrent computations.

In particular, several studies have found that recurrence is

required in order to explain or improve visual inference in

challenging settings. Kar and colleagues [108��] identified a

set of ‘challenge images’ that required recurrent processing

in order to be accurately recognized. A feedforward FNN

struggled to interpret these images, whereas macaque mon-

keys recognized them as accurately as a set of control images.

Challenge images were associated with longer processing

times in the macaque inferior temporal (IT) cortex, consis-

tent with recurrent computations. Neural responses in IT for

images that took longer were well accounted for by a brain-

inspired RNN model. In a different study [116�], this same

recurrent architecture was found to account forbehavior, and

neuraldata frommacaque visual cortex, in object recognition

tasks, while also achieving good performance on an impor-

tant computer vision benchmark (ImageNet [117]). In

human visual cortex, recurrent interactions were also found

to be crucial to model the neural dynamics underlying object

recognition, as measured through magnetoencephalography

(MEG) [118].

One prominent challenge to visual inference is posed by

partial occlusions, which hide part of a target object from

view. In two recent studies, recurrent architectures were

shown to be more robust to occlusions than their feedfor-

ward counterparts [89�,119�]. Interestingly, in both
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human observers and in an RNN model, object recogni-

tion under occlusion was impaired by backward masking
[119�] (the presentation of a meaningless noise image,

shortly after a target stimulus, to disrupt recurrent proces-

sing [120,15,13]). Neural responses to partially occluded

shapes in macaque visual cortex are also consistent with

recurrent processing, and were well explained by a pre-

dictive coding model in which prefrontal cortex provide a

feedback signal to visual area V4 [121,122].

Another challenge for human perception is crowding,
which occurs when the detailed perception of a target

stimulus is disrupted by nearby flanker stimuli [123]. In

certain instances, the target stimulus can be released from

crowding if further flankers are added that form a larger,

coherent structure with the original flankers. This

uncrowding effect may be due to the flankers being

‘explained away’, thus reducing their interference with

the target representation [124,125]. Recent work [126]

has shown that both effects can be explained by archi-

tectures known as Capsule Nets [127��,128], which include

recurrent information routing mechanisms that may be

similar to perceptual grouping and segmentation pro-

cesses in the visual cortex.

Note that, in all of these cases, it may be possible to develop

a feedforward architecture that performs the task equally

well or better. Trivially, and as we discussed previously, a

successful recurrent architecture can always be unrolled

(for a finite number of time steps) into a deep feedforward

network with many more learnable connections. However,

a realistic recurrent model, when unrolled, may map onto an

unrealistic feedforward model (Figure 2), where realism

could refer to the real-world constraints faced by either

biological or artificial visual systems. Future studies should

compare RNN and FNN implementations for the same

visual inference task, while matching the complexity of the

models in a meaningful way. Setting a realistic budget of

units, connections, and computational operations is one

important approach. To understand the computational

differences between RNN and FNN solutions, it is also

interesting to (1) match the parameter count (number of

connection weights that must be learned and stored), which

requires granting the FNN larger feature kernels, more

feature maps per layer, or more layers, or (2) match the

computational graph, which equates the distribution of

path lengths from input to output and all other statistics

of the graph, but grants the FNN a much larger number of

parameters [23��].

Freeing ourselves from the feedforward framework

Deep feedforward neural networks constitute an essential

building block for visual inference, but they are not the

whole story. The missing element, recurrent dynamics, is

central to a range of alternative conceptions of visual infer-

ence that have been proposed [110,129,31,111,112,130].

These ideas have a long history, they are essential to
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understanding biological vision, and they have great poten-

tial for engineering, especially in the context of modern

hardware and software. The promise of active vision and

recurrent visual inference is, in fact, boosted by the power of

feedforward networks.

However, the beauty, power, and simplicity of feedfor-

ward neural networks also makes it difficult to engage and

develop the space of recurrent neural network algorithms

for vision. The feedforward framework, embellished by

recurrent processes that serve auxiliary and modulatory

functions like normalization and attention, enables

computational neuroscientists to hold on to the idea of

a hierarchy of feature detectors. This idea might not be

entirely mistaken. However, it is likely to be severely

incomplete and ultimately limiting.

The insight that any finite-time recurrent network can be

unrolled compounds the problem by suggesting that the

feedforward framework is essentially complete. More prac-

tically, the fact that we train RNNs by unrolling them for

finite time steps might in some ways impede our progress.

FNNs are usually trained by stochastic gradient descent

using the backpropagation algorithm. This method retraces

in reverse the computational steps that led to the response

in the output layer, so as to estimate the influence that each

connection in the network had on the response. Each

connection weight is then adjusted, to bring the network

output closer to a desired output. The deeper the network,

the longer the computational path that needs tobe retraced.

RNNs for visual inference typically are trained through a

variation on this method, known as backpropagation through
time (BPTT) [131]. To retrace computations in reverse

through cycles, the RNN is unrolled along time, so as to

convert it into a feedforward network whose depth depends

on the number of time steps as shown in Figure 1b–d. This

enables the RNN to be trained like an FNN.

BPTT is attractive for enabling us to train RNNs like

FNNs on arbitrary objectives. When it comes to learning

recurrent dynamics, however, BPTT strictly optimizes the

output at the specific timepointsevaluatedby the objective

(e.g. the output after exactly N steps). Outside of this time

window, there is no guarantee that the network’s response

will be well-behaved. The RNN might reach the desired

objective at the desired time, but diverge immediately

after. Ideally, we would like a visual RNN presented with

a stable image to converge to an attractor that represents

the image and behave stably for arbitrary lengths of time.

This would be consistent with iterative optimization, in

which each step improves the network’s approximation to

its objective. While it is not impossible for BPTT to give

rise to such dynamics, it does not specifically favor them.

From a theory perspective, BPTT is limiting because it

shackles RNNs to the feedforward framework, in which

the goal is still to map inputs to outputs, rather than to
www.sciencedirect.com 
discover useful dynamics. From a practical and imple-

mentational perspective, BPTT is computationally cum-

bersome, as every additional recurrent time step extends

the computational path that must be retraced in order to

update the connections. This complication also renders

BPTT biologically implausible. Although the case for

backpropagation as potentially biologically plausible

has recently been strengthened [132–134], its extension

through time is difficult to reconcile with biology [135] or

implement efficiently in a finite engineered system for

online learning — precisely because it requires unrolling

and keeping track of separate copies of each weight as

computational cycles are retraced in reverse.

Given these drawbacks, we speculate that a true break-

through in recurrent vision models will require a training

regime that does not rely on BPTT. Rather than optimizing

an RNN’s state in a finite time window, future RNN

training methods might directly target the network’s

dynamics, or the states that those dynamics are encouraged

to converge to. This approach has some history in RNN

models ofvision. Predictivecodingmodels, for instance, are

designed with dynamics that explicitly implement iterative

optimization. Such models can update their connections

through learning rules that require only the converged

network state as input [30], rather than the entire compu-

tational path to this state. Marino et al. [104�] recently

proposed iterative amortized inference, training inference

networks to have recurrent dynamics that improve the

network’s hypotheses in each iteration, without constrain-

ing these dynamics to a particular form (such as predictive

coding). More generally, RNNs whose dynamics converge

to a steady state can be optimized through variations on an

algorithm known as recurrent backpropagation [136–138],

which avoids retracing the computational graph through

time. However, it is often difficult to design RNNs such

that their dynamics converge to a steady state (within the

time window for which the model is trained), while main-

taining expressivity (the ability of the model to learn a wide

range of functions). This challenge is addressed by the

recently developed contractor recurrent backpropagation
method [139], which introduces a mathematical penalty

that can be imposed while training any RNN, to encourage

it to learn convergent dynamics.

Going forward, in circles
We started this review with the puzzling observation that,

whereas biological vision is implemented in a profoundly

recurrent neural architecture, the most successful neural

network models of vision to date are feedforward. We

have argued, theoretically and empirically, that vision

models will eventually converge to their biological roots

and implement more powerful recurrent solutions. This is

an appealing prospect, as it suggests that neuroscientists

and engineers can continue to work synergistically, to

make progress on common challenges. After all, visual

inference, and intelligence more generally, were solved
Current Opinion in Neurobiology 2020, 65:176–193
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once before, and so discovering nature’s solutions should

go hand in hand with building artificial ones.
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