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Primates can recognize objects despite 3D geo-1

metric variations such as in-depth rotations. The2

computational mechanisms that give rise to such3

invariances are yet to be fully understood. A4

curious case of partial invariance occurs in the5

macaque face-patch AL and in fully connected lay-6

ers of deep convolutional networks in which neu-7

rons respond similarly to mirror-symmetric views8

(e.g., left and right profiles). Why does this tun-9

ing develop? Here, we propose a simple learning-10

driven explanation for mirror-symmetric viewpoint11

tuning. We show that mirror-symmetric viewpoint12

tuning for faces emerges in the fully connected lay-13

ers of convolutional deep neural networks trained14

on object recognition tasks, even when the train-15

ing dataset does not include faces. First, us-16

ing 3D objects rendered from multiple views as17

test stimuli, we demonstrate that mirror-symmetric18

viewpoint tuning in convolutional neural network19

models is not unique to faces: it emerges for20

multiple object categories with bilateral symme-21

try. Second, we show why this invariance emerges22

in the models. Learning to discriminate among23

bilaterally symmetric object categories induces24

reflection-equivariant intermediate representations.25

AL-like mirror-symmetric tuning is achieved when26

such equivariant responses are spatially pooled by27

downstream units with sufficiently large receptive28

fields. These results explain how mirror-symmetric29

viewpoint tuning can emerge in neural networks,30

providing a theory of how they might emerge in31

the primate brain. Our theory predicts that mirror-32

symmetric viewpoint tuning can emerge as a conse-33

quence of exposure to bilaterally symmetric objects34

beyond the category of faces, and that it can gen-35

eralize beyond previously experienced object cate-36

gories.37
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Introduction40

Primates can recognize objects robustly despite con-41

siderable image variation. Although we experience ob-42

ject recognition as immediate and effortless, the pro-43

cess involves a large portion of cortex and considerable44

metabolic cost [1], and determining the neural mecha- 45

nisms and computational principles that enable this abil- 46

ity remains a major neuroscientific challenge. One par- 47

ticular object category, faces, offers an especially use- 48

ful window into how the visual cortex transforms reti- 49

nal signals to object representations. The macaque 50

brain contains a network of interconnected areas de- 51

voted to the processing of faces. This network, the 52

face-patch system, forms a subsystem of the inferotem- 53

poral (IT) cortex [2–5]. Neurons across the network 54

show response selectivity for faces, but are organized 55

in face patches–spatially and functionally distinct mod- 56

ules [4, 6]. These patches exhibit an information pro- 57

cessing hierarchy from posterior to anterior areas. In the 58

most posterior face-patch, PL (posterior lateral), neu- 59

rons respond to face components [7]. In ML/MF (mid- 60

dle lateral/middle fundus), neurons respond to whole 61

faces in a view-specific manner. In AL (anterior lateral), 62

responses are still view-specific, but mostly reflection- 63

invariant. Finally in AM (anterior medial), neurons re- 64

spond with sensitivity to the identity of the face, but 65

in a view-invariant fashion [4]. The average neuronal 66

response latencies increase across this particular se- 67

quence of stages [4]. Thus, it appears as if visual infor- 68

mation is transformed across this hierarchy of represen- 69

tational stages in a way that facilitates the recognition of 70

individual faces despite view variations. 71

What are the computational principles that give rise to 72

the representational hierarchy evident in the face-patch 73

system? Seeking potential answers to this and similar 74

questions, neuroscientists have been increasingly turn- 75

ing to convolutional neural networks (CNNs) as base- 76

line computational models of the primate ventral visual 77

stream. Although CNNs lack essential features of the 78

primate ventral stream, such as recurrent connectivity, 79

they offer a simple hierarchical model of its feedforward 80

cascade of linear-non-linear transformations. Feedfor- 81

ward CNNs remain among the best models for predict- 82

ing mid- and high-level cortical representations of novel 83

natural images within the first 100-200 ms after stimulus 84

onset [8, 9]. Diverse CNN models, trained on tasks such 85

as face identification [10–12], object recognition [13], in- 86

verse graphics [14], sparse coding [15], and unsuper- 87

vised generative modeling [16] have all been shown to 88

replicate at least some aspects of face-patch system 89

representations. Face-selective artificial neurons occur 90

even in untrained CNNs [17], and functional specializa- 91
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tion between object and face representation emerges in92

CNNs trained on the dual task of recognizing objects93

and identifying faces [18].94

To better characterize and understand the computa-95

tional mechanisms employed by the primate face-patch96

system and test whether the assumptions implemented97

by current CNN models are sufficient for explaining98

its function, we should carefully inspect the particular99

representational motifs the face-patch system exhibits.100

One of the more salient and intriguing of these repre-101

sentational motifs is the mirror-symmetric viewpoint tun-102

ing in the AL face-patch [4]. Neurons in this region typ-103

ically respond with different firing rates to varying views104

of a face (e.g., a lateral profile vs. a frontal view), but105

they respond with similar firing rates to views that are106

horizontal reflections of each other (e.g., left and right107

lateral profiles) [4].108

To date, two distinct computational models have been109

put forward as potential explanations for AL’s mirror-110

symmetric viewpoint tuning. Leibo and colleagues [19]111

considered unsupervised learning in an HMAX-like [20]112

four-layer neural network exposed to a sequence of face113

images rotating in depth about a vertical axis. When114

the learning of the mapping from the complex-cell-like115

representation of the second layer to the penultimate116

layer was governed by Hebbian-like synaptic updates117

(Oja’s rule, [21]), approximating a principal components118

analysis (PCA) of the input images, the penultimate119

layer developed mirror-symmetric viewpoint tuning. In120

another modeling study, Yildirim and colleagues [14]121

trained a CNN to invert the rendering process of 3D122

faces, yielding a hierarchy of intermediate and high-123

level face representations. Mirror-symmetric viewpoint124

tuning emerged in an intermediate representation be-125

tween two densely-connected transformations mapping126

2.5D surface representations to high-level shape and127

texture face-space representations. Each of these two128

models [14, 19] provides a plausible explanation of AL’s129

mirror-symmetric viewpoint tuning, but each requires130

particular assumptions about the architecture and learn-131

ing conditions, raising the question whether a more gen-132

eral computational principle can provide a unifying ac-133

count of the emergence of mirror-symmetric viewpoint134

tuning.135

Here, we propose a parsimonious, bottom-up explana-136

tion for the emergence of mirror-symmetric viewpoint137

tuning for faces (Fig. 1). We find that learning to discrim-138

inate among bilaterally symmetric object categories pro-139

motes the learning of representations that are reflection-140

equivariant (i.e., they code a mirror image by a mir-141

rored representation). Spatial pooling of the features, as142

occurs in the transition between the convolutional and143

fully connected layers in CNNs, then yields reflection-144

invariant representations (i.e., these representations145

code a mirror image as they would code the original146

image). These reflection-invariant representations are147

not fully view-invariant: They are still tuned to particular148

views of faces (e.g., respond more to a half-profile than149
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Figure 1. An overview of our claim: convolutional deep neural networks trained
on discriminating among bilaterally symmetric object categories provide a parsi-
monious explanation for the mirror-symmetric viewpoint tuning of the macaque
AL face-patch. (A) The macaque face-patch system. Face-selective cortical
areas are highlighted in yellow. The areas ML, AL, and AM exhibit substan-
tially different tuning proprieties when presented with faces of different head
orientations [4]. These distinct tuning profiles are evident in population-level
representational dissimilarity matrices (RDMs). From posterior to anterior face
areas, invariance to viewpoints gradually increases: from view-tuned in ML,
through mirror-symmetric in AL, to view-invariant identity selectivity in AM (neu-
ral data from [4]). (B) Training convolutional deep neural networks on recog-
nizing specific symmetric object categories (e.g., faces, cars, the digit 8) gives
rise to AL-like mirror-symmetric tuning. It is due to a cascade of two effects:
First, learning to discriminate among symmetric object categories promotes tun-
ing for reflection-equivariant representations throughout the entire processing
layers. This reflection equivariance increases with depth. Then, long-range
spatial pooling (as in the transformation of the last convolution layer to the
first fully connected layer in CNNs) transforms the equivariant representations
into reflection-invariant representations. (C) Schematic representations of three
viewpoints of a face (left profile, frontal view, right profile) are shown in three
distinct stages of processing. Each tensor depicts the width (w), height (h), and
depth (c) of an activation pattern. Colors indicate channel activity. From left
to right: In a mid-level convolutional layer, representations are view-specific. A
deeper convolutional layer produces reflection-equivariant representations that
are view-specific. Feature vectors of a fully connected layer become invari-
ant to reflection by pooling reflection-equivariant representations from the last
convolutional layer.(D) A graphical comparison of reflection-equivariance and
reflection-invariance. Circles denote input images, and squares denote repre-
sentations.
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to a frontal view, or vice versa), but they do not discrim-150

inate between mirrored views. In other words, these151

representations exhibit mirror-symmetric viewpoint tun-152

ing (in the twin sense of the neuron responding equally153

to left-right-reflected images and the tuning function,154

hence, being mirror-symmetric). We propose that the155

same computational principles may explain the emer-156

gence of mirror-symmetric viewpoint tuning in the pri-157

mate face-patch system.158

Our results further suggest that emergent reflection-159

invariant representations may also exist for non-face ob-160

jects: the same training conditions give rise to CNN161

units that show mirror-symmetric tuning profiles for non-162

face objects that have a bilaterally symmetric structure.163

Extrapolating from CNNs back to primate brains, we164

predict AL-like mirror-symmetric viewpoint tuning in165

non-face-specific visual regions that are parallel to AL166

in terms of the ventral stream representational hierar-167

chy. Such tuning could be revealed by probing these168

regions with non-face objects that are bilaterally sym-169

metric.170

Results171

Deep layers in CNNs exhibit mirror-symmetric view-172

point tuning to multiple object categories173

We investigated whether reflection-invariant yet view-174

specific tuning emerges naturally in deep convolutional175

neural networks. To achieve this, we generated a di-176

verse set of 3D objects rendered in multiple views. We177

evaluated the hidden-layer activations of an ImageNet-178

trained AlexNet CNN model [22] presented with nine179

views of each object exemplar. We constructed a180

9 × 9 representational dissimilarity matrix (RDM, [23])181

for each exemplar object and each CNN layer, sum-182

marizing the view tuning of the layer’s artificial neu-183

rons (“units”) by means of between-view representa-184

tional distances. The resulting RDMs revealed a pro-185

gression throughout the CNN layers for objects with one186

or more symmetry planes: These objects induce mirror-187

symmetric RDMs in the deeper CNN layers (Fig. 2A),188

reminiscent of the symmetric RDMs measured for face-189

related responses in the macaque AL face-patch [4].190

We defined a “mirror-symmetric viewpoint tuning in-191

dex” to quantify the degree to which representations192

are view-selective yet reflection-invariant (Fig. 2B). Con-193

sider a dissimilarity matrix D ∈ Rn×n where Dj,k de-194

notes the distance between view j and view k, n de-195

notes the number of views. The RDM is symmetric196

about the main diagonal by definition: Dj,k = Dk,j , in-197

dependent of the tuning of the units. The views are or-198

dered from left to right, such that j and n+1−k refer to199

horizontally reflected views. The mirror-symmetric view-200

point tuning index is defined as the Pearson linear corre-201

lation coefficient between D and its horizontally flipped202

counterpart, DH
j,k = Dj,n+1−k (Eq. 1). Note that this is203

equivalent to the correlation between vertically flipped204

RDMs, because of the symmetry of the RDMs about205

the diagonal: DH
j,k = Dj,n+1−k = DV

j,k = Dn+1−j,k. 206

This mirror-symmetric viewpoint tuning index is positive 207

and large to the extent that the units are view-selective 208

but reflection-invariant (like the neurons in macaque AL 209

face-patch). The index is near zero for units with view- 210

invariant tuning (such as the AM face-patch), where 211

the dissimilarities are all small and any variations are 212

caused by noise. 213

Fig. 2C displays the average mirror-symmetric view- 214

point tuning index for each object category across 215

AlexNet layers. Several categories—faces, chairs, air- 216

planes, tools, and animals—elicited low (below 0.1) or 217

even negative mirror-symmetric viewpoint tuning values 218

throughout the convolutional layers, transitioning to con- 219

siderably higher (above 0.6) values starting from the first 220

fully connected layer (fc6). In contrast, for fruits and 221

flowers, mirror-symmetric viewpoint tuning was low in 222

both the convolutional and the fully connected layers. 223

For cars and boats, mirror-symmetric viewpoint tuning 224

was notably high already in the shallowest convolutional 225

layer and remained so across the network’s layers. To 226

explain these differences, we quantified the symmetry 227

of the various 3D objects in each category by analyzing 228

their 2D projections (Fig. 2—figure supplement 1). We 229

found that all of the categories that show high mirror- 230

symmetric viewpoint tuning index in fully connected but 231

not convolutional layers have a single plane of symme- 232

try. For example, the left and right halves of a human 233

face are reflected versions of each other (Fig. 2D). This 234

3D structure yields symmetric 2D projections only when 235

the object is viewed frontally, thus hindering lower-level 236

mirror-symmetric viewpoint tuning. Cars and boats have 237

two planes of symmetry: in addition to the symmetry 238

between their left and right halves, there is an approx- 239

imate symmetry between their back and front halves. 240

The quintessential example of such quadrilateral sym- 241

metry would be a Volkswagen Beetle viewed from the 242

outside. Such 3D structure enables mirror-symmetric 243

viewpoint tuning even for lower-level representations, 244

such as those in the convolutional layers. Fruits and 245

flowers exhibit radial symmetry but lack discernible sym- 246

metry planes, a characteristic that impedes viewpoint 247

tuning altogether. 248

However, for an untrained AlexNet, the mirror- 249

symmetric viewpoint tuning index remains relatively 250

constant across the layers (Fig. 2—figure supplement 251

2A). Statistically contrasting mirror-symmetric viewpoint 252

tuning between a trained and untrained AlexNet demon- 253

strates that the leap in mirror-symmetric viewpoint tun- 254

ing in fc6 is training-dependent (Fig. 2—figure supple- 255

ment 2B). 256

Shallow and deep convolutional neural network mod- 257

els with varied architectures and objective functions 258

replicate the emergence of mirror-symmetric viewpoint 259

tuning (Fig. 2—figure supplement 3). These models 260

include VGG16 [24], Parkhi et al.’s “VGGFace” net- 261

work (trained on face identification) [25], EIG [14], 262

HMAX [20], ResNet50 [26], ConvNeXt [27]. In all these 263
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Figure 2. Mirror-symmetric viewpoint tuning of higher-level deep neural network representations emerges for multiple object categories. (A) Different viewpoint tuning
across the layers of AlexNet for four example objects. For each object, the responses to nine views (-90° to +90° in the steps of 22.5°) were measured in six key
AlexNet layers, shallow (input, left) to deep (fc6, right). For each layer, a Representational Dissimilarity Matrix (RDM) depicts how the population activity vector
varies across different object views. Each element of the RDM represents the dissimilarity (1 − Pearson correlation coefficient) between a pair of activity vectors
evoked in response to two particular views. The symmetry of the RDMs about the major diagonal is inherent to their construction. However, the symmetry about
the minor diagonal (for the face and chair, in fc6, and for the car, already in conv2) indicates mirror-symmetric viewpoint tuning. (B) The schematic shows how the
mirror-symmetric viewpoint tuning index was quantified. We first fed the network with images of each object from nine viewpoints and recorded the activity patterns
of its layers. Then, we computed the dissimilarity between activity patterns of different viewpoints to create an RDM. Next, we measured the correlation between the
obtained RDM and its horizontally flipped counterpart, excluding the frontal view (which is unaffected by the reflection). (C) The Mirror-symmetric viewpoint tuning
index across all AlexNet layers for nine object categories (car, boat, face, chair, airplane, animal, tool, fruit, and flower). Each solid circle denotes the average of the
index over 25 exemplars within each object category. Error bars indicate the standard error of the mean. The mirror-symmetric viewpoint tuning index values of the four
example objects in panel B are shown at the bottom right of each RDM in panel B. Fig. 2—figure supplement 4 shows the same analysis applied to representations
of the face stimulus set used in Freiwald & Tsao’s 2010 study [4], across various neural network models. (D) 3D Objects have different numbers of symmetry axes. A
face (left column), a non-face object with bilateral symmetry (a chair, second column), an object with quadrilateral symmetry (a car, third column), and an object with
no obvious reflective symmetry planes (a flower, right column).

convolutional networks, the mirror-symmetric viewpoint264

tuning index peaks at the fully-connected or average265

pooling layers. ViT [28], featuring a non-convolutional266

architecture, does not exhibit this feature (Fig. 2—figure267

supplement 5).268

Why does the transition to the fully connected layers269

induce mirror-symmetric viewpoint tuning for bilaterally270

symmetric objects? One potential explanation is that271

the learned weights that map the last convolutional rep- 272

resentation (pool5) to the first fully connected layer (fc6) 273

combine the pool5 activations in a specific pattern that 274

induces mirror-symmetric viewpoint tuning. However, 275

replacing fc6 with spatial global average pooling (col- 276

lapsing each pool5 feature map into a scalar activa- 277

tion) yields a representation with very similar mirror- 278

symmetric viewpoint tuning levels (Fig. 2—figure sup- 279
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plement 6). This result is suggestive of an alterna-280

tive explanation: that training the network on ImageNet281

gives rise to a reflection-equivariant representation in282

pool5. We therefore investigated the reflection equivari-283

ance of the convolutional representations.284

Reflection equivariance versus reflection invariance285

of convolutional layers286

Consider a representation f(·), defined as a function287

that maps input images to sets of feature maps, and a288

geometric image transformation g(·), applicable to ei-289

ther feature maps or raw images. f is equivariant un-290

der g if f(g(x)) = g(f(x)) for any input image x (see291

also [29]). While convolutional feature maps are ap-292

proximately equivariant under translation (but see [30]),293

they are not in general equivariant under reflection or294

rotation. For example, an asymmetrical filter along re-295

flection axes in the first convolutional layer would yield296

an activation map that is not equivariant under reflec-297

tion. And yet, the demands of the task on which a CNN298

is trained may lead to the emergence of representations299

that are approximately equivariant under reflection or ro-300

tation (see [31, 32] for neural network architectures that301

are equivariant to reflection or rotation by construction).302

If a representation f is equivariant under a transforma-303

tion g that is a spatial permutation of its input (e.g., g304

is a horizontal or vertical reflection or a 90° rotation)305

then f(x) and f(g(x)) are spatially permuted versions306

of each other. If a spatially invariant function h(·) (i.e.,307

a function that treats the pixels as a set, such as the308

average or the maximum) is then applied to the feature309

maps, the composed function h◦f is invariant to g since310

h
(
f(g(x))

)
= h

(
g(f(x))

)
= h(f(x)). Transforming a311

stack of feature maps into a channel vector by means312

of global average pooling is a simple case of such a313

spatially invariant function h. Therefore, if task-training314

induces approximately reflection-equivariant represen-315

tations in the deepest convolutional layer of a CNN and316

approximately uniform pooling in the following fully con-317

nected layer, the resulting pooled representation would318

be approximately reflection-invariant.319

We examined the emergence of approximate equivari-320

ance and invariance in CNN layers (Fig. 3). We con-321

sidered three geometric transformations: horizontal re-322

flection, vertical reflection, and 90° rotation. Note that323

given their architecture alone, CNNs are not expected324

to show greater equivariance and invariance for hori-325

zontal reflection compared to vertical reflection or 90°326

rotation. However, greater invariance and equivariance327

for horizontal reflection may be expected on the basis328

of natural image statistics and the demands of invariant329

recognition. Many object categories in the natural world330

are bilaterally symmetric with respect to a plane parallel331

to the axis of gravity and are typically viewed (or pho-332

tographed) in an upright orientation. Horizontal image333

reflection, thus, tends to yield equally natural images334

of similar semantic content, whereas vertical reflection335

and 90° rotation yield unnatural images.336

To measure equivariance and invariance, we presented 337

the CNNs with pairs of original and transformed im- 338

ages. To measure the invariance of a fully-connected 339

CNN layer, we calculated an across-unit Pearson corre- 340

lation coefficient for each pair of activation vectors that 341

were induced by a given image and its transformed ver- 342

sion. We averaged the resulting correlation coefficients 343

across all image pairs (Materials and Methods, Eq. 2). 344

For convolutional layers, this measure was applied af- 345

ter flattening stacks of convolutional maps into vectors. 346

In the case of horizontal reflection, this invariance mea- 347

sure would equal 1.0 if the activation vectors induced 348

by each image and its mirrored version are identical (or 349

perfectly correlated). 350

Equivariance could be quantified only in convolutional 351

layers because units in fully connected layers do not 352

form visuotopic maps that can undergo the same trans- 353

formations as images. It was quantified similarly to in- 354

variance, except that we applied the transformation of 355

interest (i.e., reflection or rotation) not only to the im- 356

age but also to the convolutional map of activity elicited 357

by the untransformed image (Eq. 3). We correlated the 358

representation of the transformed image with the trans- 359

formed representation of the image. In the case of 360

horizontal reflection, this equivariance measure would 361

equal 1.0 if each activation map induced by an image 362

and its reflected version are reflected versions of each 363

other (or are perfectly correlated after horizontally flip- 364

ping one of them). 365

We first evaluated equivariance and invariance with 366

respect to the set of 3D object images described 367

in the previous section. In an ImageNet-trained 368

AlexNet, horizontal-reflection equivariance increased 369

across convolutional layers (Fig. 3A). Equivariance un- 370

der vertical reflection was less pronounced and equiv- 371

ariance under 90° rotation was even weaker (Fig. 3A). In 372

this trained AlexNet, invariance jumped from a low level 373

in convolutional layers to a high level in the fully con- 374

nected layers and was highest for horizontal reflection, 375

lower for vertical reflection, and lowest for 90° rotation. 376

In an untrained AlexNet, the reflection equivariance 377

of the first convolutional layer was higher than in the 378

trained network. However, this measure subsequently 379

decreased in the deeper convolutional layers to a level 380

lower than that observed for the corresponding layers 381

in the trained network. The higher level of reflection- 382

equivariance of the first layer of the untrained network 383

can be explained by the lack of strongly oriented fil- 384

ters in the randomly initialized layer weights. While 385

the training leads to oriented filters in the first layer, 386

it also promotes downstream convolutional represen- 387

tations that have greater reflection-equivariance than 388

those in a randomly-initialized, untrained network. 389

The gap between horizontal reflection and vertical re- 390

flection in terms of both equivariance and invariance 391

was less pronounced in the untrained network (Fig. 3B), 392

indicating a contribution of task training to the special 393

status of horizontal reflection. In contrast, the gap be- 394
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Figure 3. Equivariance and invariance in trained and untrained deep convolutional neural networks. Each solid circle represents an equivariance or invariance
measure, averaged across images. Hues denote different transformations (horizontal flipping, vertical flipping, or 90° rotation). Error bars depict the standard deviation
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Untrained AlexNet tested on the random noise images.

tween vertical reflection and 90° rotation in terms of395

both equivariance and invariance was preserved in the396

untrained network. This indicates that the greater de-397

gree of invariance and equivariance for vertical reflec-398

tion compared to 90° rotation is largely caused by the399

test images’ structure rather than task training. One in-400

terpretation is that, unlike 90° rotation, vertical and hor-401

izontal reflection both preserve the relative prevalence402

of vertical and horizontal edge energy, which may not403

be equal in natural images [33–36]. To test if the emer-404

gence of equivariance and invariance under horizontal405

reflection is unique to our controlled stimulus set (which406

contained many horizontally-symmetrical images), we407

repeated these analyses using natural images sam-408

pled from the ImageNet validation set (Fig. 3C-D). The409

training-dependent layer-by-layer increase in equivari-410

ance and invariance to horizontal reflection was as pro-411

nounced for natural images as it was for the rendered412

3D object images. Therefore, the emergent invariance413

and equivariance under horizontal reflection are not an414

artifact of the synthetic object stimulus set.415

Repeating these analyses on random noise images, the416

ImageNet-trained AlexNet still showed a slightly higher417

level of horizontal reflection-equivariance (Fig. 3E),418

demonstrating the properties of the features learned419

in the task independently of symmetry structure in the420

test images. When we evaluated an untrained AlexNet421

on random noise images (Fig. 3F), that is, when there422

was no structure in either the test stimuli or the network423

weights, the differences between horizontal reflection,424

vertical reflection, and rotation measures disappeared, 425

and the invariance and equivariance measures were 426

zero, as expected (see Fig. 3—figure supplement 1 for 427

the distribution of equivariance and invariance across 428

test images and Fig. 3—figure supplement 2 for anal- 429

ysis of horizontal reflection invariance across different 430

object categories). 431

To summarize this set of analyses, a high level of 432

reflection-invariance is associated with the layer’s pool- 433

ing size and the reflection-equivariance of its feeding 434

representation. The pooling size depends only on the 435

architecture, but the reflection-equivariance of the feed- 436

ing representation depends on both architecture and 437

training. Training on recognizing objects in natural im- 438

ages induces a greater degree of invariance and equiv- 439

ariance to horizontal reflection compared to vertical re- 440

flection or 90° rotation. This is consistent with the statis- 441

tics of natural images as experienced by an upright ob- 442

server looking, along a horizontal axis, at upright bilat- 443

erally symmetric objects. Image reflection, in such a 444

world ordered by gravity, does not change the category 445

of an object (although rare examples of dependence 446

of meaning on handedness exist, such as the letters 447

p and q, and molecules whose properties depend on 448

their chirality). However, the analyses reported thus far 449

leave unclear whether natural image statistics alone or 450

the need to disregard the handedness for categoriza- 451

tion drive mirror-symmetric viewpoint tuning. In the fol- 452

lowing section, we examine what it is about the training 453

that drives viewpoint tuning to be mirror-symmetric. 454
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Figure 4. The effect of training task and training dataset on mirror-symmetric viewpoint tuning. (A) Four datasets are used to train deep neural networks of the
same architecture: CIFAR-10, a natural image dataset with ten bilaterally symmetric object categories; SVHN, a dataset with mostly asymmetric categories (the ten
numerical digits); symSVHN, a version of the SVHN dataset in which the categories were made bilaterally symmetric by horizontally reflecting half of the training
images (so 7 and 7count as members of the same category); asymSVHN, the same image set as in symSVHN but with the mirrored images assigned to ten new
distinct categories (so 7 and 7count as members of distinct categories). (B) Each row represents the RDMs of the face exemplar images from nine viewpoints for
each trained network corresponding to its left side panel. Each entry of the RDM represents the dissimilarity (1 − Pearson’s r) between two pairs of image-induced
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Learning to discriminate among categories of bilat-455

erally symmetric objects induces mirror-symmetric456

viewpoint tuning457

To examine how task demand and visual diet influ-458

ence mirror-symmetric viewpoint tuning, we trained four459

deep convolutional neural networks of the same archi-460

tecture on different datasets and tasks (Fig. 4). The461

network architecture and training hyper-parameters are462

described in the Materials and Methods section (for463

training-related metrics, see Fig. 4—figure supplement464

1). Once trained, each network was evaluated on the465

3D object images used in Fig. 2, measuring mirror-466

symmetric viewpoint tuning qualitatively (Fig. 4B) and467

quantitatively (Fig. 4C).468

First, we considered a network trained on CIFAR-469

10 [37], a dataset of small images of 10 bilaterally sym-470

metric categories (airplanes, cars, birds, cats, deer,471

dogs, frogs, horses, ships, and trucks). Although this 472

dataset contains no human face images (such images 473

appear coincidentally in the ImageNet dataset, [38]), the 474

CIFAR-10-trained network reproduced the result of a 475

considerable level of mirror-symmetric viewpoint tuning 476

for faces in layers fc1 and fc2 (Fig. 4B, top row). This 477

network also showed mirror-symmetric viewpoint tuning 478

for other bilaterally symmetric objects such as cars, air- 479

planes, and boats (Fig. 4C, blue lines). 480

We then considered a network trained on SVHN (Street 481

View House Numbers) [39], a dataset of photographs 482

of numerical digits. Its categories are mostly asym- 483

metric (since all ten digits except for ‘0’ and ‘8’ are 484

asymmetric). Unlike the network trained on CIFAR-10, 485

the SVHN-trained network showed a very low level of 486

mirror-symmetric viewpoint tuning for faces. Further- 487

more, its levels of mirror-symmetric viewpoint tuning for 488
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cars, airplanes, and boats were reduced relative to the489

CIFAR-10-trained network.490

SVHN differs from CIFAR-10 both in its artificial con-491

tent and the asymmetry of its categories. To disentan-492

gle these two factors, we designed a modified dataset,493

“symSVHN”. Half of the images in symSVHN were hori-494

zontally reflected SVHN images. All of the images main-495

tained their original category labels (e.g., images of ‘7’s496

and ‘ 7’s belonged to the same category). We found that497

the symSVHN-trained network reproduced the mirror-498

symmetric viewpoint tuning observed in the CIFAR-10-499

trained network.500

Last, we modified the labels of symSVHN such that501

the flipped digits would count as 10 separate cate-502

gories, in addition to the 10 unflipped digit categories.503

This dataset (“asymSVHN”) has the same images as504

symSVHN, but it is designed to require reflection-505

sensitive recognition. The asymSVHN-trained network506

reproduced the low levels of mirror-symmetric view-507

point tuning observed for the original SVHN dataset.508

Together, these results suggest that given the spa-509

tial pooling carried out by fc1, the task demand of510

reflection-invariant recognition is a sufficient condition511

for the emergence of mirror-symmetric viewpoint tuning512

for faces.513

Equivariant local features drive mirror-symmetric514

viewpoint tuning515

What are the image-level visual features that drive516

the observed mirror-symmetric viewpoint tuning? Do517

mirror-reflected views of an object induce similar repre-518

sentations because of global 2D configurations shared519

between such views? Or alternatively, are reflection-520

equivariant local features sufficient to explain the finding521

of similar responses to reflected views in fc1?522

We used a masking-based importance mapping tech-523

nique [40] to characterize which features drive the re-524

sponses of units with mirror-symmetric viewpoint tuning.525

First, we created importance maps whose elements526

represent how local features influence each unit’s re-527

sponse to different object views. The top rows of panels528

A and B in Fig. 5 show examples of such maps for two529

units, one that shows considerable mirror-symmetric530

viewpoint tuning for cars and another that shows con-531

siderable mirror-symmetric viewpoint tuning for faces.532

Next, we empirically tested whether the local features533

highlighted by the importance maps are sufficient and534

necessary for generating mirror-symmetric viewpoint535

tuning. We used two image manipulations: insertion536

and deletion [40] (Fig. 5A-B, middle rows). When we537

retained only the most salient pixels (i.e., insertion), we538

observed that the units’ mirror-symmetric viewpoint tun-539

ing levels were similar to those induced by unmodified540

images (Fig. 5A-B, dark blue lines). This result demon-541

strates that the local features suffice for driving mirror-542

symmetrically tuned responses. Conversely, greying543

out the most salient pixels (deletion) led to a complete544

loss of mirror-symmetric viewpoint tuning (Fig. 5A-B,545

red lines). This result demonstrates that the local fea- 546

tures are necessary to drive mirror-symmetrically tuned 547

responses. To examine this effect systematically, we 548

selected one unit for each of the 225 3D objects that 549

showed high mirror-symmetric viewpoint tuning. We 550

then tested these 225 units with insertion and dele- 551

tion images produced with different thresholds (Fig. 5C). 552

Across all threshold levels, the response to insertion 553

images was more similar to the response to unmodi- 554

fied images, whereas deletion images failed to induce 555

mirror-symmetric viewpoint tuning. 556

These results indicate a role for local features in mirror- 557

symmetric tuning. However, the features may form 558

larger-scale configurations synergistically. To test the 559

potential role of such configurations, we shuffled con- 560

tiguous pixel patches that were retained in the insertion 561

condition. This manipulation destroyed global structure 562

while preserving local features (Fig. 5A-B, bottom row). 563

We found that the shuffled images largely preserved the 564

units’ mirror-symmetric viewpoint tuning (Fig. 5D). Thus, 565

it is the mere presence of a similar set of reflected lo- 566

cal features (rather than a reflected global configuration) 567

that explains most of the acquired mirror-symmetric 568

viewpoint tuning. Note that such local features must be 569

either symmetric at the image level (e.g., the wheel of 570

a car in a side view), or induce a reflection-equivariant 571

representation (e.g., an activation map that highlights 572

profile views of a nose, regardless of their orientation). 573

The fc6 layer learns highly symmetrical weight maps, 574

reducing the sensitivity to local feature configurations 575

and enabling the generation of downstream reflection- 576

invariant representations compared to convolutional lay- 577

ers (Fig. 5—figure supplement 1). 578

Representational alignment between artificial net- 579

works and macaque face patches 580

How does the emergence of mirror-invariance in CNNs 581

manifest in the alignment of these networks with neu- 582

ral representations of faces in the macaque face-patch 583

system? In line with Yildirim and colleagues (2020) [14], 584

we reanalyzed the neural recordings from Freiwald and 585

Tsao (2010) [4] by correlating neural population RDMs, 586

each describing the dissimilarities among neural re- 587

sponses to face images of varying identities and view- 588

points, with corresponding model RDMs, derived from 589

neural network layer representations of the stimulus set 590

(Fig. 6, top row). In addition to the AL face-patch, we 591

considered MLMF, which is sensitive to reflection [4], 592

and AM, which is mostly viewpoint invariant [4]. Follow- 593

ing the approach of Yildirim and colleagues, the neural 594

networks were presented with segmented reconstruc- 595

tions, where non-facial pixels were replaced by a uni- 596

form background. 597

Consistent with previous findings [14], MLMF was more 598

aligned with the CNNs’ mid-level representation, no- 599

tably the last convolutional layers (Fig. 6, A). The AL 600

face patch showed its highest representational align- 601

ment with the first fully connected layer (Fig. 6, B), coin- 602
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Figure 5. Reflection-invariant viewpoint-specific responses are driven mostly by local features. This figure traces image-level causes for the mirror-symmetric viewpoint
tuning using Randomized Input Sampling for Explanation (RISE, [40]). (A) Analysis of the features of different views of a car exemplar that drive one particular unit
in fully connected layer fc6 of AlexNet. The topmost row in each panel depicts an image-specific importance map overlaid to each view of the car, charting the
contribution of each pixel to the unit’s response. The second row (“deletion”) depicts a version of each input image in which the 25 percent most contributing pixels
are masked with the background gray color. The third row (“insertion”) depicts a version of the input images in which only the most contributing 25 percent of pixels
appear. The last row represents the shuffled spatial configuration of extracted local features, which maintains their structure and changes their locations. The charts
on the right depict the units’ responses to the original, deletion, insertion, and shuffled images. The dashed line indicates the units’ response to a blank image. The
y-axis denotes the unit’s responses compared to its response to a blank image. (B) Analogous analysis of the features of different views of a face that drive a different
unit in fully connected layer fc6 of AlexNet. (C) Testing local contributions to mirror-symmetric viewpoint tuning across all object exemplars and insertion/deletion
thresholds. For each object exemplar, we selected a unit with a highly view-dependent but symmetric viewpoint tuning (the unit whose tuning function was maximally
correlated with its reflection). We then measured the correlation between this tuning function and the tuning function induced by insertion or deletion images that
were generated by a range of thresholding levels (from 10 to 90%). Note that each threshold level consists of images with the same number of non-masked pixels
appearing in the insertion and deletion conditions. In the insertion condition, only the most salient pixels are retained, and in the deletion condition, only the least
salient pixels are retained. The solid circles and error bars indicate the median and standard deviation over 225 objects, respectively. The right y-axis depicts the
difference between insertion and deletion conditions. Error bars represent the SEM. (D) For each of 225 objects, we selected units with mirror-symmetric viewpoint
tuning above the 95 percentile (≈200 units) and averaged their corresponding importance maps. Next, we extracted the top 25 percent most contributing pixels from
the averaged maps (insertion) and shuffled their spatial configuration (shuffled). We then measured the viewpoint-RDMs for either the inserted or shuffled object
image set. The scatterplot compares the mirror-symmetric viewpoint tuning index between insertion and shuffled conditions, calculated across the selected units.
Each solid circle represents an exemplar object. The high explained variance indicates that the global configuration does not play a significant role in the emergence
of mirror-symmetric viewpoint tuning.
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ciding with the surge of the mirror-symmetric viewpoint603

tuning index at this processing level (see Fig. 2). The604

AM face patch aligned most with the fully connected lay-605

ers (Fig. 6, C).606

These correlations between model and neural RDMs re-607

flect the contribution of multiple underlying image fea-608

tures. To disentangle the contribution of reflection-609

invariant and reflection-sensitive representations to the610

resulting RDM correlation, we computed two additional611

model representations for each neural network layer:612

(1) a reflection-invariant representation, obtained by613

element-wise addition of two activation tensors, one614

elicited in response to the original stimuli and the other615

in response to mirror-reflected versions of the stimuli;616

and, (2) a reflection-sensitive representation, obtained617

by element-wise subtraction of these two tensors. The618

two resulting feature components sum to the original619

activation tensor; a fully reflection-invariant representa-620

tion would be entirely accounted for by the first compo-621

nent. For each CNN layer, we obtained the two com-622

ponents and correlated each of them with the unaltered623

neural RDMs. Through the Shapley value feature attri-624

bution method [41], we transformed the resulting cor-625

relation coefficients into additive contributions of the626

reflection-invariant and reflection-sensitive components627

to the original model-brain RDM correlations (Fig. 6, D-628

F).629

In the MLMF face patch, reflection-sensitive features630

contributed more than reflection-invariant ones, con-631

sistent with the dominance of reflection-sensitive in-632

formation in aligning network layers with MLMF data633

(Fig. 6, D). Conversely, in the AL and AM face patches,634

reflection-invariant features accounted for nearly all the635

observed model–brain RDM correlations (Fig. 6, E and636

F). For most of the convolutional layers, the contribu-637

tion of the reflection-sensitive component to AL or AM638

alignment was negative—meaning that if the layers’ rep-639

resentations were more reflection-invariant, they could640

have explained the neural data better.641

Discussion642

In this paper, we propose a simple learning-driven643

explanation for the mirror-symmetric viewpoint tuning644

for faces in the macaque AL face-patch. We found645

that CNNs trained on object recognition reproduce this646

tuning in their fully connected layers. Based on in-647

silico experiments, we suggest two jointly sufficient con-648

ditions for the emergence of mirror-symmetric view-649

point tuning. First, training the network to discrim-650

inate among bilaterally symmetric 3D objects yields651

reflection-equivariant representations in the deeper652

convolutional layers. Then, subsequent pooling of these653

reflection-equivariant responses by units with large re-654

ceptive fields leads to reflection-invariant representa-655

tions with mirror-symmetric view tuning similar to that656

observed in the AL face patch. Like our models, mon-657

keys need to recognize bilaterally symmetric objects658

that are oriented by gravity. To achieve robustness to 659

view, the primate visual system can pool responses 660

from earlier stages of representation. We further show 661

that in CNNs, such tuning is not limited to faces and 662

occurs for multiple object categories with bilateral sym- 663

metry. This result yields a testable prediction for primate 664

electrophysiology and fMRI. 665

Mirror-symmetric viewpoint tuning in brains and 666

machines 667

Several species, including humans, confuse lateral mir- 668

ror images (e.g., the letters b and d) more often than 669

vertical mirror images (e.g., the letters b and p) [42, 43]. 670

Children often experience this confusion when learn- 671

ing to read and write [44–47]. Single-cell recordings in 672

macaque monkeys presented with simple stimuli indi- 673

cate a certain degree of reflection-invariance in IT neu- 674

rons [48, 49]. Human neuroimaging experiments also 675

revealed reflection-invariance across higher-level visual 676

regions for human heads [50–53] and other bilaterally 677

symmetric objects [52, 54]. 678

When a neuron’s response is reflection-invariant and yet 679

the neuron responds differently to different object views, 680

it is exhibiting mirror-symmetric viewpoint tuning. Such 681

tuning has been reported in a small subset of monkeys’ 682

STS and IT cells in early recordings [55, 56]. fMRI- 683

guided single-cell recordings revealed the prevalence of 684

this tuning profile among the cells of face patch AL [4]. 685

The question of why mirror-symmetric viewpoint tun- 686

ing emerges in the cortex has drawn both mechanistic 687

and functional explanations. Mechanistic explanations 688

suggest that mirror-symmetric viewpoint tuning is a by- 689

product of increasing interhemispheric connectivity and 690

receptive field sizes. Due to the anatomical symmetry 691

of the nervous system and its cross-hemispheric inter- 692

connectivity, mirror-image pairs activate linked neurons 693

in both hemispheres [57, 58]. A functional perspective 694

explains partial invariance as a stepping stone toward 695

achieving fully view-invariant object recognition [4]. Our 696

results support a role for both of these explanations. We 697

showed that global spatial pooling is a sufficient condi- 698

tion for the emergence of reflection-invariant responses, 699

if the pooled representation is reflection-equivariant. 700

Global average pooling extends the spatially integrated 701

stimulus region. Likewise, interhemispheric connectivity 702

may result in cells with larger receptive fields that cover 703

both hemifields. 704

A recent work by Revsine and colleagues (2023) [59] 705

incorporated biological constraints, including interhemi- 706

spheric connectivity, into a model processing solely low- 707

level stimulus features, namely intensity and contrast. 708

Their results suggest that such features might be suffi- 709

cient for explaining apparent mirror-symmetric viewpoint 710

tuning in fMRI studies. In our study, we standardized 711

stimulus intensity and contrast across objects and view- 712

points (see Methods), eliminating these features as po- 713

tential confounds. Additionally, applying a dissimilarity 714

measure that is invariant to the overall magnitude of 715
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Figure 6. Reflection-invariant and reflection-sensitive contributions to the representational similarity between monkey face patch neurons and AlexNet layers. The
neural responses were obtained from [4], where electrophysiological recordings were conducted in three faces patches while the monkeys were presented with human
faces of various identities and views. (Top row) linear correlations between RDMs from each network layer and each monkey face patch (MLMF, AL, AM). Error bars
represent standard deviations estimated by bootstrapping individual stimuli (see Materials and Methods). The gray area represents the neural data’s noise ceiling,
whose lower bound was determined by Spearman-Brown-corrected split-half reliability, with the splits applied across neurons. (Bottom row) Each model–brain
RDM correlation is decomposed into the additive contribution of two feature components: reflection-sensitive (purple) and reflection-invariant (yellow). Supplemental
figures 6—figure supplement 1, 6—figure supplement 2, and 6—figure supplement 3 present the same analyses applied to a diverse set of neural network models,
across the three regions.

the representations did not alter the observed trends716

in mirror-symmetric viewpoint tuning results (Fig. 2—717

figure supplement 7). Therefore, we suggest that spatial718

pooling can yield genuine mirror-symmetric viewpoint719

tuning in CNNs and brains by summating equivariant720

mid-level visual features (see Fig. 5) that are learning-721

dependent (Fig. 4).722

We also showed that equivariance can be driven by the723

task demand of discriminating among objects that have724

bilateral symmetry (see Olah and colleagues (2020) [60]725

for an exploration of emergent equivariance using acti-726

vation maximization). The combined effect of equivari-727

ance and pooling leads to a leap in reflection-invariance728

between the last convolutional layer and the fully con-729

nected layers in CNNs. This transition may be sim-730

ilar to the transition from view-selective cells in face731

patches ML/MF to mirror-symmetric viewpoint-selective732

cells in AL. In both CNNs and primate cortex, the mirror-733

symmetrically viewpoint-tuned neurons are a penulti-734

mate stage on the path to full view invariance [4].735

Unifying the computational explanations of mirror-736

symmetric viewpoint tuning737

Two computational models have been suggested to ex-738

plain AL’s mirror-symmetric viewpoint tuning, the first at-739

tributing it to Hebbian learning with Oja’s rule [19], the740

second to training a CNN to invert a face-generative741

model [14]. A certain extent of mirror-symmetric view-742

point tuning was also observed in CNNs trained on face743

identification (Figure 3E-ii in [14], Figure 2 in [12]). In744

light of our findings here, these models can be viewed745

as special cases of a considerably more general class746

of models. Our results generalize the computational ac-747

count in terms of both stimulus domain and model archi- 748

tecture. Both [19] and [14] trained neural networks with 749

face images. Here, we show that it is not necessary to 750

train on a specific object category (including faces) in 751

order to acquire reflection equivariance and invariance 752

for exemplars of that category. Instead, learning mirror- 753

invariant stimulus-to-response mappings gives rise to 754

equivariant and invariant representations also for novel 755

stimulus classes. 756

Our claim that mirror-symmetric viewpoint tuning is 757

learning-dependent may seem to be in conflict with find- 758

ings by Baek and colleagues [17]. Their work demon- 759

strated that units with mirror-symmetric viewpoint tuning 760

profile can emerge in randomly initialized networks. Re- 761

producing Baek and colleagues’ analysis, we confirmed 762

that such units occur in untrained networks (Fig. 5— 763

figure supplement 3). However, we also identified that 764

the original criterion for mirror-symmetric viewpoint tun- 765

ing employed in [17] was satisfied by many units with 766

asymmetric tuning profiles (Figs. 5—figure supplement 767

2 and 5—figure supplement 3). Once we applied a 768

stricter criterion, we observed a more than twofold in- 769

crease in mirror-symmetric units in the first fully con- 770

nected layer of a trained network compared to untrained 771

networks of the same architecture (Fig. 5—figure sup- 772

plement 4). This finding highlights the critical role of 773

training in the emergence of mirror-symmetric viewpoint 774

tuning in neural networks also at the level of individual 775

units. 776

Our results also generalize the computational account 777

of mirror-symmetric viewpoint tuning in terms of the 778

model architectures. The two previous models incorpo- 779

rated the architectural property of spatial pooling: the in- 780
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ner product of inputs and synaptic weights in the penulti-781

mate layer of the HMAX-like model in [19] and the global782

spatial pooling in the f4 layer of the EIG model [14]. We783

showed that in addition to the task, such spatial pool-784

ing is an essential step toward the emergence of mirror-785

symmetric tuning in our findings.786

Limitations787

The main limitation of the current study is that our788

findings are simulation-based and empirical in nature.789

Therefore, they might be limited to the particular design790

choices shared across the range of CNNs we evalu-791

ated. This limitation stands in contrast with the theo-792

retical model proposed by Leibo and colleagues [19],793

which is reflection-invariant by construction. However,794

it is worth noting that the model proposed by Leibo and795

colleagues is reflection-invariant only with respect to the796

horizontal center of the input image (Fig. 2—figure sup-797

plement 8). CNNs trained to discriminate among bilat-798

erally symmetric categories develop mirror-symmetric799

viewpoint tuning across the visual field (Fig. 2—figure800

supplement 8). The latter result pattern is more consis-801

tent with the relatively position-invariant response prop-802

erties of AL neurons (Fig. S10 in [4]).803

A second consequence of the simulation-based nature804

of this study is that our findings only establish that805

mirror-symmetric viewpoint tuning is a viable compu-806

tational means for achieving view invariance; they do807

not prove it to be a necessary condition. In fact, pre-808

vious modeling studies [10, 19, 61] have demonstrated809

that a direct transition from view-specific processing to810

view invariance is possible. However, in practice, we ob-811

serve that both CNNs and the face-patch network adopt812

solutions that include intermediate representations with813

mirror-symmetric viewpoint tuning.814

A novel prediction: mirror-symmetric viewpoint tun-815

ing for non-face objects816

Mirror-symmetric viewpoint tuning has been mostly in-817

vestigated using face images. Extrapolating from the818

results in CNNs, we hypothesize that mirror-symmetric819

viewpoint tuning for non-face objects should exist in cor-820

tical regions homologous to AL. The mirror-symmetric821

tuning of these objects does not necessarily have to be822

previously experienced by the animal.823

This hypothesis is consistent with the recent findings824

of Bao and colleagues [62]. They report a functional825

clustering of IT into four separate networks. Each of826

these networks is elongated across the IT cortex and827

consists of three stages of processing. We hypothesize828

that the intermediate nodes of the three non-face selec-829

tive networks have reflection-invariant yet view-selective830

tuning, analogous to AL’s representation of faces.831

Our controlled stimulus set, which includes systematic832

2D snapshots of 3D real-world naturalistic objects, is833

available online. Future electrophysiological and fMRI834

experiments utilizing this stimulus set can verify whether835

the mirror-symmetric viewpoint tuning for non-face cat-836

egories we observe in task-trained CNNs also occurs in 837

the primate IT. 838

Methods 839

3D object stimulus set 840

We generated a diverse image set of 3D ob- 841

jects rendered from multiple views in the depth ro- 842

tation. Human faces were generated using the 843

Basel Face Model [63]. For the non-face objects, 844

we purchased access to 3D models on TurboSquid 845

(http://www.turbosquid.com). The combined object 846

set consisted of nine categories (cars, boats, faces, 847

chairs, airplanes, animals, tools, fruits, and flowers). 848

Each category included 25 exemplars. We rendered 849

each exemplar from nine views, giving rise a total of 850

2,025 images. The views span from -90° (left profile) 851

to +90°, with steps of 22.5°. The rendered images were 852

converted to grayscale, placed on a uniform gray back- 853

ground, and scaled to 227 × 227 pixels to match the 854

input image size of AlexNet, or to 224 × 224 to match 855

the input image size of the VGG-like network architec- 856

tures. Mean luminance and contrast of non-background 857

pixels were equalized across images using the SHINE 858

toolbox [64]. 859

Pre-trained neural networks 860

We selected both shallow and deep networks with var- 861

ied architectures and objective functions. We evaluated 862

convolutional networks trained on ImageNet, including 863

AlexNet [22], VGG16 [24], ResNet50, ConvNeXt. Ad- 864

ditionally, we evaluated VGGFace–a similar architec- 865

ture to VGG16, trained on the VGG Face dataset [25], 866

ViT with its non-convolutional architecture, EIG as a 867

face generative model, and the shallow, biologically in- 868

spired HMAX model. All these networks, except for 869

VGGFace, EIG, and HMAX, were trained on the Im- 870

ageNet dataset [65], which consists of ∼ 1.2 million 871

natural images from 1000 object categories (available 872

on Matlab Deep Learning Toolbox and Pytorch frame- 873

works, [66, 67]). The VGGFace model was trained on 874

∼ 2.6 million face images from 2622 identities (avail- 875

able on the MatConvNet library, [68]). Each convo- 876

lutional network features a distinct number of convo- 877

lutional (conv), max-pooling (pool), rectified linear unit 878

(relu), normalization (norm), average pooling (avgpool), 879

and fully connected (fc) layers, among others, dictated 880

by its architecture. For untrained AlexNet and VGG16 881

networks, we initialized the weights and biases using a 882

random Gaussian distribution with a zero mean and a 883

variance inversely proportional to the number of inputs 884

per unit [69]. 885

Trained-from-scratch neural networks 886

To control for the effects of the training task and “vi- 887

sual diet”, we trained four networks employing the same 888

convolutional architecture on four different datasets: 889

CIFAR-10, SVHN, symSVHN, and asymSVHN. 890
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CIFAR-10. CIFAR-10 consists of 60,000 RGB images of891

10 classes (airplane, automobile, bird, cat, deer, dog,892

frog, horse, ship, truck) downscaled to 32 × 32 pix-893

els [37]. We randomly split CIFAR-10’s designated894

training set into 45,000 images used for training and895

5,000 images used for validation. No data augmenta-896

tion was employed. The reported classification accu-897

racy (Fig. 4—figure supplement 1) was evaluated on the898

remaining 10,000 CIFAR-10 test images.899

SVHN. SVHN [39] contains 99,289 RGB images of 10900

digits (0 to 9) taken from real-world house number pho-901

tographs [39], cropped to character bounding boxes and902

downsized to 32 × 32 pixels. We split the dataset into903

73,257 images for the training set and 26,032 images for904

the test set. As with the CIFAR-10 dataset, we randomly905

selected 10 percent of training images as the validation906

set.907

symSVHN and asymSVHN. As a control experiment, we908

horizontally flipped half of the SVHN training images909

while keeping their labels unchanged. This manipu-910

lation encouraged the model trained on these images911

to become reflection-invariant in its decisions. This912

dataset was labeled as “symSVHN”.913

In a converse manipulation, we applied the same hori-914

zontal flipping but set the flipped images’ labels to ten915

new classes. Therefore, each image in this dataset916

pertained to one of 20 classes. This manipulation re-917

moved the shared response mapping of mirror-reflected918

images and encouraged the model trained on these im-919

ages to become sensitive to the reflection operation.920

This dataset was labeled as “asymSVHN”.921

Common architecture and training procedure. The net-922

works’ architecture resembled the VGG architecture. It923

contained two convolutional layers followed by a max-924

pooling layer, two additional convolutional layers, and925

three fully connected layers. The size of convolutional926

filters was set to 3 × 3 with a stride of 1. The four con-927

volutional layers consisted of 32, 32, 64, and 128 filters,928

respectively. The size of the max-pooling window was929

set to 2 × 2 with a stride of 2. The fully-connected lay-930

ers had 128, 256, and 10 channels and were followed931

by a softmax operation (the asymSVHN network had 20932

channels in its last fully connected layer instead of 10).933

We added a batch normalization layer after the first and934

the third convolutional layers and a dropout layer (prob-935

ability = 0.5) after each fully-connected layer to promote936

quick convergence and avoid overfitting.937

The networks’ weights and biases were initialized ran-938

domly using the uniform He initialization [70]. We939

trained the models using 250 epochs and a batch940

size of 256 images. The CIFAR-10 network was941

trained using stochastic gradient descent (SGD) opti-942

mizer starting with a learning rate of 10−3 and mo-943

mentum of 0.9. The learning rate was halved ev-944

ery 20 epochs. The SVHN/symSVHN/asymSVHN net-945

works were trained using the Adam optimizer. The ini-946

tial learning rate was set to 10−5 and reduced by half 947

every 50 epochs. The hyper-parameters were deter- 948

mined using the validation data. The models reached 949

around 83% test accuracy (CIFAR-10: 81%, SVHN: 950

89%, symSVHN: 83%, asymSVHN: 80%). Fig. 4— 951

figure supplement 1 shows the models’ learning curves. 952

Measuring representational dissimilarities 953

For the analyses described in Figures 2, 3, and 4, we 954

first normalized the activation level of each individual 955

neural network unit by subtracting its mean response 956

level across all images of the evaluated dataset and di- 957

viding it by its standard deviation. The dissimilarity be- 958

tween the representations of two stimuli in a particular 959

neural network layer (Figs. 2 and 4) was quantified as 960

one minus the Pearson linear correlation coefficient cal- 961

culated across all of the layer’s units (i.e., across the 962

flattened normalized activation vectors). The similarity 963

between representations (Fig. 3) was quantified by the 964

linear correlation coefficient itself. 965

Measuring mirror-symmetric viewpoint tuning 966

Using the representational dissimilarity measure de- 967

scribed above, we generated an n × n dissimilarity ma- 968

trix for each exemplar object i and layer ℓ, where n is 969

the number of views (9 in our dataset). Each element of 970

the matrix, Di
j,k, denotes the representational distance 971

between views j and k of object exemplar i. The views 972

are ordered such that j and n + 1 − k refer to horizon- 973

tally reflected views. 974

We measured the mirror-symmetric viewpoint tuning in- 975

dex of the resulting RDMs by 976

rmsvt = 1
N

N∑
i=1

r
(
Di,DiH)

, (1)

where r(·, ·) is the Pearson linear correlation coefficient 977

across view pairs, DH refers to horizontally flipped ma- 978

trix such that DH
j,k = Dj,n+1−k, and N refers to number 979

of object exemplars. The frontal view (which is unaltered 980

by reflection) was excluded from this measure to avoid 981

spurious inflation of the correlation coefficient. 982

Previous work quantified mirror-symmetric viewpoint 983

tuning by comparing neural RDMs to idealized mirror- 984

symmetric RDM (see Fig. 3c-iii in [14]). Although 985

highly interpretable, such an idealized RDM inevitably 986

encompasses implicit assumptions about representa- 987

tional geometry that are unrelated to mirror-symmetry. 988

For example, consider a representation featuring perfect 989

mirror-symmetric viewpoint tuning and wherein for each 990

view, the representational distances among all of the ex- 991

emplars are equal. Its neural RDM would fit an idealized 992

mirror-symmetric RDM better than the neural RDM of a 993

representation featuring perfect mirror-symmetric view- 994

point tuning yet non-equidistant exemplars. In contrast, 995

the measure proposed in Eq. 1 equals 1.0 in both cases. 996
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Measuring equivariance and invariance997

Representational equivariance and invariance were998

measured for an ImageNet-trained AlexNet and an un-999

trained AlexNet with respect to three datasets: the 3D1000

object image dataset described above, a random sam-1001

ple of 2,025 ImageNet test images, and a sample of1002

2,025 random noise images (Fig. 3). Separately for1003

each layer ℓ and image set x1, . . . ,x2025, we measured1004

invariance by1005

rinvariance = 1
N

N∑
i=1

r
(
fℓ(xi),fℓ(g(xi))

)
, (2)

where fℓ(·) is the mapping from an input image x to unit1006

activations in layer ℓ, g(·) is the image transformation of1007

interest–vertical reflection, horizontal reflection, or rota-1008

tion and r is the Pearson linear correlation coefficient1009

calculated across units, flattening the units’ normalized1010

activations into a vector in the case of convolutional lay-1011

ers.1012

In order to estimate equivariance, we used the following1013

definition:1014

requivariance = 1
N

N∑
i=1

r
(
fℓ(g(xi)),g(fℓ(xi))

)
(3)

Note that in this case, g(·) was applied both to the in-1015

put images and the feature maps. This measure can1016

be viewed as the inverse of an additive realization of la-1017

tent space G-empirical equivariance deviation (G-EED)1018

[29]. To prevent spurious correlations that may result1019

from flipping and rotating operations, we have removed1020

the central column when flipping horizontally, the central1021

row when flipping vertically, and the central pixel when1022

rotating 90 degrees. As a result, any correlations we1023

observe are unbiased.1024

Importance mapping1025

We used an established masking-based importance1026

mapping procedure [40] to identify visual features that1027

drive units that exhibit mirror-symmetric viewpoint tun-1028

ing profiles. Given an object for which the target unit1029

showed mirror-symmetric viewpoint tuning, we dimmed1030

the intensities of the images’ pixels in random combi-1031

nations to estimate the importance of image features.1032

Specifically, for each image, we generated 5000 random1033

binary masks. Multiplying the image with these masks1034

yielded 5000 images in which different subsets of pixels1035

were grayed out. These images were then fed to the1036

network as inputs. The resulting importance maps are1037

averages of these masks, weighted by target unit activ-1038

ity. To evaluate the explanatory power of the importance1039

map of each stimulus, we sorted the pixels according to1040

their absolute values in the importance map and iden-1041

tified the top quartile of salient pixels. We then either1042

retained (“insertion”) or grayed out (“deletion”) these1043

pixels, and the resulting stimulus was fed into the net-1044

work (Fig. 5A-B). Due to the uniform gray background,1045

we only considered foreground pixels. A second analy- 1046

sis compared viewpoint tuning between original images, 1047

deletion images, and insertion images across 10 thresh- 1048

olds, from 10% to 90%, with steps of 10% (Fig. 5C). 1049

We conducted an additional analysis to examine the 1050

influence of global structure on the mirror-symmetric 1051

viewpoint tuning of the first fully connected layer 1052

(Fig. 5D). To conduct this analysis at the unit popula- 1053

tion level, we generated one insertion image-set per ob- 1054

ject. First, we correlated each unit’s view tuning curve 1055

against a V-shaped tuning template (i.e., a response 1056

proportional to the absolute angle of deviation from a 1057

frontal view) and retained only the units with positive 1058

correlations. We then correlated each unit’s view-tuning 1059

curve with its reflected counterpart. We selected the top 1060

5% most mirror-symmetric units (i.e., those showing the 1061

highest correlation coefficients). 1062

For each object view, we generated an importance map 1063

for each of the selected units and averaged these maps 1064

across units. Using this average importance map, we 1065

generated an insertion image by retaining the top 25% 1066

most salient pixels. To test the role of global configura- 1067

tion, we generated a shuffled version of each insertion 1068

image by randomly relocating connected components. 1069

To assess model response to these images for each 1070

object exemplar, we computed the corresponding (9 × 1071

9 views) RDM of fc1 responses given either the inser- 1072

tion images or their shuffled versions and quantified the 1073

mirror-symmetric viewpoint tuning of each RDM. 1074

Measuring brain alignment 1075

To measure the alignment between artificial networks 1076

and macaque face patches, we used the face-identities- 1077

view (FIV) stimulus set [4], as well as single-unit 1078

responses to these stimuli previously recorded from 1079

macaque face patches [4]. The FIV stimulus set in- 1080

cludes images of 25 identities, each depicted in five 1081

views: left-profile, left-half profile, straight (frontal), right- 1082

half profile, and right-profile. The original recordings 1083

also included views of the head from upward, down- 1084

ward, and rear angles; these views were not analyzed 1085

in the current study to maintain comparability with its 1086

other analyses, which focused on yaw rotations. We 1087

measured the dissimilarity between the representations 1088

of each image pair using 1 minus the Pearson correla- 1089

tion and constructed an RDM. To assess the variability 1090

of this measurement, we adopted a stimulus-level boot- 1091

strap analysis, as outlined in [14]. A bootstrap sample 1092

was generated by selecting images with replacement 1093

from the FIV image set. From this sample, we cal- 1094

culated both the neural and model RDMs. To prevent 1095

spurious positive correlations, any nondiagonal identity 1096

pairs resulting from the resampling were removed. Sub- 1097

sequently, we determined the Pearson correlation coef- 1098

ficient between each pair of RDMs. This entire process 1099

was repeated across 1,000 bootstrap samples. 1100

ACKNOWLEDGEMENTS
Research reported in this publication was supported by the National Eye Insti-

Farzmahdi et al. | Brain-like mirror-symmetric viewpoint tuning in convolutional neural networks | 14



tute of the National Institutes of Health under Award Numbers R01EY021594
and R01EY029998; by the National Institute Of Neurological Disorders And
Stroke of the National Institutes of Health under Award Number RF1NS128897;
and by the Department of the Navy, Office of Naval Research under ONR award
number N00014-20-1-2292. This publication was made possible in part with the
support of the Charles H. Revson Foundation to TG. The content is solely the re-
sponsibility of the authors and does not necessarily represent the official views
of the National Institutes of Health or the Charles H. Revson Foundation. We
thank Fernando Ramírez for an insightful discussion of an earlier version of this
manuscript. We acknowledge Dr. T. Vetter, Department of Computer Science,
and the University of Basel, for the Basel Face Model.

COMPETING FINANCIAL INTERESTS
The authors declare no competing interest.

DATA AND CODE AVAILABILITY
The stimulus set and the source code required for reproducing our results will
be available at the following link: https://github.com/amirfarzmahdi/A
L-Symmetry.

Bibliography
1. Simon B Laughlin, Rob R de Ruyter van Steveninck, and John C Ander-

son. The metabolic cost of neural information. Nature neuroscience, 1(1):
36–41, 1998.

2. Doris Y Tsao, Winrich A Freiwald, Roger BH Tootell, and Margaret S Liv-
ingstone. A cortical region consisting entirely of face-selective cells. Sci-
ence, 311(5761):670–674, 2006. doi:10.1126/science.1119983.

3. Sebastian Moeller, Winrich A Freiwald, and Doris Y Tsao. Patches with
links: a unified system for processing faces in the macaque temporal lobe.
Science, 320(5881):1355–1359, 2008. doi:10.1126/science.1157436.

4. Winrich A Freiwald and Doris Y Tsao. Functional compartmentalization
and viewpoint generalization within the macaque face-processing system.
Science, 330(6005):845–851, 2010. doi:10.1126/science.1194908.

5. Janis K Hesse and Doris Y Tsao. The macaque face patch system: a
turtle’s underbelly for the brain. Nature Reviews Neuroscience, 21(12):
695–716, 2020. doi:10.1038/s41583-020-00393-w.

6. Winrich A Freiwald. The neural mechanisms of face processing: cells,
areas, networks, and models. Current Opinion in Neurobiology, 60:184–
191, 2020. doi:10.1016/j.conb.2019.12.007.

7. Elias B Issa and James J DiCarlo. Precedence of the eye region in neural
processing of faces. Journal of Neuroscience, 32(47):16666–16682, 2012.
doi:10.1523/JNEUROSCI.2391-12.2012.

8. Daniel L. K. Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon,
Darren Seibert, and James J. DiCarlo. Performance-optimized hierarchi-
cal models predict neural responses in higher visual cortex. Proceed-
ings of the National Academy of Sciences, 111(23):8619–8624, 2014.
doi:10.1073/pnas.1403112111.

9. Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep su-
pervised, but not unsupervised, models may explain it cortical rep-
resentation. PLOS Computational Biology, 10(11):1–29, 11 2014.
doi:10.1371/journal.pcbi.1003915.

10. Amirhossein Farzmahdi, Karim Rajaei, Masoud Ghodrati, Reza Ebrahim-
pour, and Seyed-Mahdi Khaligh-Razavi. A specialized face-processing
model inspired by the organization of monkey face patches explains sev-
eral face-specific phenomena observed in humans. Scientific reports, 6
(1):1–17, 2016. doi:10.1038/srep25025.

11. Naphtali Abudarham, Idan Grosbard, and Galit Yovel. Face recognition de-
pends on specialized mechanisms tuned to view-invariant facial features:
Insights from deep neural networks optimized for face or object recogni-
tion. Cognitive Science, 45(9):e13031, 2021. doi:10.1111/cogs.13031.

12. Rajani Raman and Haruo Hosoya. Convolutional neural networks ex-
plain tuning properties of anterior, but not middle, face-processing ar-
eas in macaque inferotemporal cortex. Communications Biology, 3(1):
221, May 2020. ISSN 2399-3642. doi:10.1038/s42003-020-0945-x. URL
https://www.nature.com/articles/s42003-020-0945-x.

13. Le Chang, Bernhard Egger, Thomas Vetter, and Doris Y. Tsao. Ex-
plaining face representation in the primate brain using different com-
putational models. Current Biology, 31(13):2785–2795.e4, 2021.
doi:10.1016/j.cub.2021.04.014.

14. Ilker Yildirim, Mario Belledonne, Winrich Freiwald, and Josh Tenenbaum.
Efficient inverse graphics in biological face processing. Science Advances,
6(10):eaax5979, 2020. doi:10.1126/sciadv.aax5979.

15. Haruo Hosoya and Aapo Hyvärinen. A mixture of sparse coding mod-
els explaining properties of face neurons related to holistic and parts-
based processing. PLOS Computational Biology, 13(7):1–27, July 2017.
doi:10.1371/journal.pcbi.1005667. Publisher: Public Library of Science.

16. Irina Higgins, Le Chang, Victoria Langston, Demis Hassabis, Christopher
Summerfield, Doris Tsao, and Matthew Botvinick. Unsupervised deep
learning identifies semantic disentanglement in single inferotemporal face

patch neurons. Nature Communications, 12(1):6456, December 2021.
doi:10.1038/s41467-021-26751-5.

17. Seungdae Baek, Min Song, Jaeson Jang, Gwangsu Kim, and Se-Bum
Paik. Face detection in untrained deep neural networks. Nature Commu-
nications, 12(1):7328, December 2021. doi:10.1038/s41467-021-27606-9.

18. Katharina Dobs, Julio Martinez, Alexander J. E. Kell, and Nancy Kan-
wisher. Brain-like functional specialization emerges spontaneously in
deep neural networks. Science Advances, 8(11):eabl8913, 2022.
doi:10.1126/sciadv.abl8913.

19. Joel Z Leibo, Qianli Liao, Fabio Anselmi, Winrich A Freiwald, and Tomaso
Poggio. View-tolerant face recognition and hebbian learning imply mirror-
symmetric neural tuning to head orientation. Current Biology, 27(1):62–67,
2017. doi:10.1016/j.cub.2016.10.015.

20. Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of
object recognition in cortex. Nature Neuroscience, 2(11):1019–1025,
November 1999. doi:10.1038/14819.

21. Erkki Oja. Simplified neuron model as a principal component
analyzer. Journal of mathematical biology, 15(3):267–273, 1982.
doi:10.1007/BF00275687.

22. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classifi-
cation with deep convolutional neural networks. In Advances in Neural In-
formation Processing Systems 25, pages 1097–1105. Curran Associates,
Inc., 2012. doi:10.1145/3065386.

23. Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Rep-
resentational similarity analysis - connecting the branches of sys-
tems neuroscience. Frontiers in Systems Neuroscience, 2:4, 2008.
doi:10.3389/neuro.06.004.2008.

24. Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. In International Conference on
Learning Representations, 2015. doi:10.48550/arXiv.1409.1556.

25. Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep
face recognition. In Proceedings of the British Machine Vision Con-
ference (BMVC), pages 41.1–41.12. BMVA Press, September 2015.
doi:10.5244/C.29.41.

26. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778, 2016. URL
https://openaccess.thecvf.com/content_cvpr_2016/html/He_De
ep_Residual_Learning_CVPR_2016_paper.html.

27. Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor
Darrell, and Saining Xie. A convnet for the 2020s, 2022.

28. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at
scale, 2021.

29. Henry Kvinge, Tegan Emerson, Grayson Jorgenson, Scott Vasquez, Tim-
othy Doster, and Jesse Lew. In what ways are deep neural networks in-
variant and how should we measure this? In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Infor-
mation Processing Systems, 2022. URL https://openreview.net/f
orum?id=SCD0hn3kMHw.

30. Aharon Azulay and Yair Weiss. Why do deep convolutional networks gen-
eralize so poorly to small image transformations? Journal of Machine
Learning Research, 20(184):1–25, 2019. doi:10.48550/arXiv.1805.12177.

31. Taco Cohen and Max Welling. Group equivariant convolutional net-
works. In International conference on machine learning, pages 2990–
2999. PMLR, 2016. URL http://proceedings.mlr.press/v48/
cohenc16.html.

32. Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable
filters for rotation equivariant cnns. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 849–858, 2018. URL
https://openaccess.thecvf.com/content_cvpr_2018/html/Weile
r_Learning_Steerable_Filters_CVPR_2018_paper.html.

33. David M. Coppola, Harriett R. Purves, Allison N. McCoy, and Dale
Purves. The distribution of oriented contours in the real world. Pro-
ceedings of the National Academy of Sciences, 95(7):4002–4006, 1998.
doi:10.1073/pnas.95.7.4002.

34. Antonio Torralba and Aude Oliva. Statistics of natural image categories.
Network: Computation in Neural Systems, 14(3):391–412, jan 2003.
doi:10.1088/0954-898x_14_3_302.

35. Margaret Henderson and John T. Serences. Biased orientation represen-
tations can be explained by experience with nonuniform training set statis-
tics. Journal of Vision, 21(8):10–10, 08 2021. doi:10.1167/jov.21.8.10.

36. Ahna R Girshick, Michael S Landy, and Eero P Simoncelli. Car-
dinal rules: visual orientation perception reflects knowledge of envi-
ronmental statistics. Nature Neuroscience, 14(7):926–932, July 2011.

Farzmahdi et al. | Brain-like mirror-symmetric viewpoint tuning in convolutional neural networks | 15

https://github.com/amirfarzmahdi/AL-Symmetry
https://github.com/amirfarzmahdi/AL-Symmetry
https://doi.org/10.1126/science.1119983
https://doi.org/10.1126/science.1157436
https://doi.org/10.1126/science.1194908
https://doi.org/10.1038/s41583-020-00393-w
https://doi.org/10.1016/j.conb.2019.12.007
https://doi.org/10.1523/JNEUROSCI.2391-12.2012
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1038/srep25025
https://doi.org/10.1111/cogs.13031
https://doi.org/10.1038/s42003-020-0945-x
https://www.nature.com/articles/s42003-020-0945-x
https://doi.org/10.1016/j.cub.2021.04.014
https://doi.org/10.1126/sciadv.aax5979
https://doi.org/10.1371/journal.pcbi.1005667
https://doi.org/10.1038/s41467-021-26751-5
https://doi.org/10.1038/s41467-021-27606-9
https://doi.org/10.1126/sciadv.abl8913
https://doi.org/10.1016/j.cub.2016.10.015
https://doi.org/10.1038/14819
https://doi.org/10.1007/BF00275687
https://doi.org/10.1145/3065386
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.5244/C.29.41
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openreview.net/forum?id=SCD0hn3kMHw
https://openreview.net/forum?id=SCD0hn3kMHw
https://doi.org/10.48550/arXiv.1805.12177
http://proceedings.mlr.press/v48/cohenc16.html
http://proceedings.mlr.press/v48/cohenc16.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Weiler_Learning_Steerable_Filters_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Weiler_Learning_Steerable_Filters_CVPR_2018_paper.html
https://doi.org/10.1073/pnas.95.7.4002
https://doi.org/10.1088/0954-898x_14_3_302
https://doi.org/10.1167/jov.21.8.10


doi:10.1038/nn.2831.
37. Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features

from tiny images. Technical Report 0, University of Toronto, Toronto, On-
tario, 2009. URL https://www.cs.toronto.edu/~kriz/learning-f
eatures-2009-TR.pdf.

38. Kaiyu Yang, Jacqueline H. Yau, Li Fei-Fei, Jia Deng, and Olga Rus-
sakovsky. A study of face obfuscation in ImageNet. In Proceedings of
the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 25313–25330. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/yang2
2q.html.

39. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y. Ng. Reading digits in natural images with unsupervised feature
learning. In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning 2011, 2011. URL https://research.google/pubs/pub3764
8/.

40. Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sam-
pling for explanation of black-box models. In British Machine Vision Con-
ference (BMVC), 2018. doi:10.48550/arXiv.1806.07421.

41. L. S. Shapley. 17. A Value for n-Person Games, pages 307–318.
Princeton University Press, Princeton, 1953. ISBN 9781400881970.
doi:10.1515/9781400881970-018.

42. NS Sutherland. Visual discrimination of orientation by octopus:
Mirror images. British Journal of Psychology, 51(1):9–18, 1960.
doi:10.1111/j.2044-8295.1960.tb00719.x.

43. David C Todrin and Donald S Blough. The discrimination of mirror-image
forms by pigeons. Perception & Psychophysics, 34(4):397–402, 1983.
doi:10.3758/BF03203053.

44. Rosemery O Nelson and Arthur Peoples. A stimulus-response analysis
of letter reversals. Journal of Reading Behavior, 7(4):329–340, 1975.
doi:10.1080/10862967509547152.

45. Marc H Bornstein, Charles G Gross, and Joan Z Wolf. Perceptual
similarity of mirror images in infancy. Cognition, 6(2):89–116, 1978.
doi:10.1016/0010-0277(78)90017-3.

46. James M Cornell. Spontaneous mirror-writing in children. Canadian Jour-
nal of Psychology/Revue canadienne de psychologie, 39(1):174, 1985.
doi:10.1037/h0080122.

47. Stanislas Dehaene, Kimihiro Nakamura, Antoinette Jobert, Chihiro
Kuroki, Seiji Ogawa, and Laurent Cohen. Why do children make
mirror errors in reading? neural correlates of mirror invariance in
the visual word form area. Neuroimage, 49(2):1837–1848, 2010.
doi:10.1016/j.neuroimage.2009.09.024.

48. JE Rollenhagen and CR Olson. Mirror-image confusion in single neurons
of the macaque inferotemporal cortex. Science, 287(5457):1506–1508,
2000. doi:10.1126/science.287.5457.1506.

49. Gordon C Baylis and Jon Driver. Shape-coding in it cells generalizes over
contrast and mirror reversal, but not figure-ground reversal. Nature neuro-
science, 4(9):937–942, 2001. doi:10.1038/nn0901-937.

50. Vadim Axelrod and Galit Yovel. Hierarchical processing of face viewpoint
in human visual cortex. Journal of Neuroscience, 32(7):2442–2452, 2012.
doi:10.1523/JNEUROSCI.4770-11.2012.

51. Tim C Kietzmann, Jascha D Swisher, Peter König, and Frank Tong. Preva-
lence of selectivity for mirror-symmetric views of faces in the ventral and
dorsal visual pathways. Journal of Neuroscience, 32(34):11763–11772,
2012. doi:10.1523/JNEUROSCI.0126-12.2012.

52. Fernando M Ramírez, Radoslaw M Cichy, Carsten Allefeld, and John-
Dylan Haynes. The neural code for face orientation in the human
fusiform face area. Journal of Neuroscience, 34(36):12155–12167, 2014.
doi:10.1523/JNEUROSCI.3156-13.2014.

53. Tim C Kietzmann, Anna L Gert, Frank Tong, and Peter König. Repre-
sentational dynamics of facial viewpoint encoding. Journal of cognitive
neuroscience, 29(4):637–651, 2017. doi:10.1162/jocn_a_01070.

54. Daniel D Dilks, Joshua B Julian, Jonas Kubilius, Elizabeth S Spelke, and
Nancy Kanwisher. Mirror-image sensitivity and invariance in object and
scene processing pathways. Journal of Neuroscience, 31(31):11305–
11312, 2011. doi:10.1523/JNEUROSCI.1935-11.2011.

55. DI Perrett, MW Oram, MH Harries, R Bevan, JK Hietanen, PJ Benson,
and S Thomas. Viewer-centred and object-centred coding of heads in the
macaque temporal cortex. Experimental brain research, 86(1):159–173,
1991. doi:10.1007/BF00231050.

56. Nikos K Logothetis, Jon Pauls, and Tomaso Poggio. Shape representation
in the inferior temporal cortex of monkeys. Current biology, 5(5):552–563,
1995. doi:10.1016/S0960-9822(95)00108-4.

57. Michael C. Corballis and Ivan L. Beale. The psychology of left and right.
The psychology of left and right. Lawrence Erlbaum, Oxford, England,
1976.

58. Charles G Gross, David B Bender, and Mortimer Mishkin. Contributions

of the corpus callosum and the anterior commissure to visual activa-
tion of inferior temporal neurons. Brain research, 131(2):227–239, 1977.
doi:10.1016/0006-8993(77)90517-0.

59. Cambria Revsine, Javier Gonzalez-Castillo, Elisha P Merriam, Peter A
Bandettini, and Fernando M Ramírez. A unifying model for discordant
and concordant results in human neuroimaging studies of facial viewpoint
selectivity. bioRxiv, 2023.

60. Chris Olah, Nick Cammarata, Chelsea Voss, Ludwig Schu-
bert, and Gabriel Goh. Naturally occurring equivariance in
neural networks. Distill, 2020. doi:10.23915/distill.00024.004.
https://distill.pub/2020/circuits/equivariance.

61. Joel Z Leibo, Qianli Liao, Fabio Anselmi, and Tomaso Poggio.
The invariance hypothesis implies domain-specific regions in vi-
sual cortex. PLoS computational biology, 11(10):e1004390, 2015.
doi:10.1371/journal.pcbi.1004390.

62. Pinglei Bao, Liang She, Mason McGill, and Doris Y Tsao. A map of ob-
ject space in primate inferotemporal cortex. Nature, 583(7814):103–108,
2020. doi:10.1038/s41586-020-2350-5.

63. Thomas Gerig, Andreas Morel-Forster, Clemens Blumer, Bernhard Egger,
Marcel Luthi, Sandro Schönborn, and Thomas Vetter. Morphable face
models-an open framework. In 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018), pages 75–82. IEEE,
2018. doi:10.1109/FG.2018.00021.

64. Verena Willenbockel, Javid Sadr, Daniel Fiset, Greg O Horne, Frédéric
Gosselin, and James W Tanaka. Controlling low-level image properties:
the SHINE toolbox. Behavior research methods, 42(3):671–684, 2010.
doi:10.3758/BRM.42.3.671.

65. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet large
scale visual recognition challenge. International Journal of Computer Vi-
sion (IJCV), 115(3):211–252, 2015. doi:10.1007/s11263-015-0816-y.

66. The MathWorks, Inc. Deep Learning Toolbox. Natick, Massachusetts,
United State, 2019. URL https://www.mathworks.com/help/deeplea
rning/.

67. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc., 2019. URL
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee
7f92f2bfa9f7012727740-Paper.pdf.

68. A. Vedaldi and K. Lenc. MatConvNet – convolutional neural networks
for MATLAB. In Proceeding of the ACM Int. Conf. on Multimedia, 2015.
doi:10.1145/2733373.2807412.

69. Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller.
Efficient backprop. In Neural networks: Tricks of the trade, pages 9–48.
Springer, 2012. doi:10.1007/978-3-642-35289-8_3.

70. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classifi-
cation. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), December 2015. URL https://openaccess.thecvf.co
m/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_pa
per.html.

Farzmahdi et al. | Brain-like mirror-symmetric viewpoint tuning in convolutional neural networks | 16

https://doi.org/10.1038/nn.2831
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.mlr.press/v162/yang22q.html
https://proceedings.mlr.press/v162/yang22q.html
https://research.google/pubs/pub37648/
https://research.google/pubs/pub37648/
https://doi.org/10.48550/arXiv.1806.07421
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1111/j.2044-8295.1960.tb00719.x
https://doi.org/10.3758/BF03203053
https://doi.org/10.1080/10862967509547152
https://doi.org/10.1016/0010-0277(78)90017-3
https://doi.org/10.1037/h0080122
https://doi.org/10.1016/j.neuroimage.2009.09.024
https://doi.org/10.1126/science.287.5457.1506
https://doi.org/10.1038/nn0901-937
https://doi.org/10.1523/JNEUROSCI.4770-11.2012
https://doi.org/10.1523/JNEUROSCI.0126-12.2012
https://doi.org/10.1523/JNEUROSCI.3156-13.2014
https://doi.org/10.1162/jocn_a_01070
https://doi.org/10.1523/JNEUROSCI.1935-11.2011
https://doi.org/10.1007/BF00231050
https://doi.org/10.1016/S0960-9822(95)00108-4
https://doi.org/10.1016/0006-8993(77)90517-0
https://doi.org/10.23915/distill.00024.004
https://doi.org/10.1371/journal.pcbi.1004390
https://doi.org/10.1038/s41586-020-2350-5
https://doi.org/10.1109/FG.2018.00021
https://doi.org/10.3758/BRM.42.3.671
https://doi.org/10.1007/s11263-015-0816-y
https://www.mathworks.com/help/deeplearning/
https://www.mathworks.com/help/deeplearning/
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1145/2733373.2807412
https://doi.org/10.1007/978-3-642-35289-8_3
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html


Supplementary Information

90

67.5

45

22.50-22.5

-45

-67.5

-90
0.5 1

car

0.5 1

boat

0.5 1

face

0.5 1

chair

0.5 1

airplane

0.5 1

tool

0.5 1

animal

0.5 1

fruit

0.5 1

flower

Figure 2—figure supplement 1. Assessment of symmetry planes in 3D renders across viewpoints. For each 3D object (25
exemplars for each of the nine categories) and each rendering viewpoint (nine viewpoints from -90° to 90° at 22.5° intervals)
used in the stimulus set, we measured the horizontal symmetry of the resulting 2D render by correlating the left half of the 2D
image with a flipped version of its right half. In each such measurement, we systematically shifted the plane of reflection and used
the highest correlation across all shifts. The resulting correlation coefficients, representing horizontal symmetry as a function of
viewpoint, are displayed on polar plots. In these plots, each depicting a single object category, thin lines indicate individual object
exemplars (e.g., a particular face), and bold lines indicate the average correlation coefficients across the 25 exemplars of each
category. By setting a threshold at half a standard deviation above the mean correlation, we heuristically counted the number of
symmetry axes for each object category. Notably, images of cars and boats have strong image-space symmetry in both frontal
and side views, explaining the pronounced mirror-symmetric viewpoint tuning index observed already in early convolutional layers.
These two categories exhibit dual symmetry axes—left–right and front–back. In comparison, objects like faces, chairs, airplanes,
tools, and animals have a single left-right symmetry plane, expressed in the 2D renders as high horizontal symmetry of the frontal
view. Fruits and flowers have relatively uniform correlation values across views, which is indicative of radial symmetry. This radial
symmetry translates to a lower mirror-symmetric viewpoint tuning index of the neural network representations of these categories.
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Figure 2—figure supplement 2. The mirror-symmetric viewpoint tuning index remains unchanged as the signal moves into the
fully connected layers of the untrained network. (A) Each solid circle represents the average index for 25 exemplars within each
object category (car, boat, face, chair, airplane, animal, tool, fruit, flower) for the untrained AlexNet network. (B) Each solid circle
refers to the difference between the mirror-symmetric viewpoint tuning index of the trained versus the untrained AlexNet network.
We evaluated the difference using the rank-sum test. We used the Benjamini and Hochberg (1995) procedure for controlling the
False discovery rate (FDR) across 90 comparisons at q < .05 (9 categories and 10 layers, excluding the input layer, as it is the
same in both networks). The solid circles with gray outlines indicate where the difference after FDR adjustment is significant.
Error bars indicate the standard error of the mean.
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Figure 2—figure supplement 3. Convolutional networks, regardless of their architecture and training objectives, exhibit peak
mirror-symmetric viewpoint tuning at the fully-connected and average pooling layers. (A-H) The colored curves represent the
mirror-symmetric viewpoint tuning indices across nine object categories (car, boat, face, chair, airplane, animal, tool, fruit, and
flower) across the neural network layers. Each solid circle indicates the average index value across 25 exemplars within each
object category. Error bars denote the standard error of the mean. In all of the convolutional networks, the mirror-symmetric
viewpoint tuning index peaks at the fully-connected or average pooling layers. ViT, with its non-convolutional architecture, does
not exhibit this tuning profile. For face stimuli, there is a unique progression in mirror-symmetric viewpoint tuning: the index is
negative for the convolutional layers, and it abruptly becomes highly positive when transitioning to the first fully connected layer.
The negative indices in the convolutional layers can be attributed to the image-space asymmetry of non-frontal faces; compared to
other categories, faces demonstrate pronounced front-back asymmetry, which translates to asymmetric images for all but frontal
views (Fig. 2—figure supplement 1). The features that drive the highly positive mirror-symmetric viewpoint tuning for faces in the
fully connected layers are training-dependent (Fig. 2—figure supplement 2), and hence, may reflect asymmetric image features
that do not elicit equivariant maps in low-level representations; for example, consider a profile view of a nose. Note that cars
and boats elicit high mirror-symmetric viewpoint tuning indices already in early processing layers. This early mirror-symmetric
tuning is independent of training (Fig. 2—figure supplement 2), and hence, may be driven by low-level features. Both of these
object categories show pronounced quadrilateral symmetry, which translates to symmetric images for both frontal and side views
(Fig. 2—figure supplement 1).
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Figure 2—figure supplement 4. Mirror-symmetric viewpoint tuning of various neural network architectures measured with re-
spect to the FIV face stimulus set [4] and compared to the mirror-symmetric viewpoint tuning of three face-patches (MLMF, AL, and
AM). This figure contrasts the mirror-symmetric viewpoint tuning index of macaque face patches with equivalent measurements
in different neural network layers. Solid circles indicate indices for network layers, averaged across 25 face exemplars of the FIV
stimulus set. The error bars show the standard error. The colored horizontal lines represent estimated mirror-symmetric viewpoint
indices for three face patches (MLMF, AL, AM). To ensure that neural noise does not attenuate the measured mirror-symmetric
viewpoint tuning, we divided the raw index estimated for each patch with a reliability estimate. This estimate was obtained by
correlating neural RDMs pertaining to two equally sized disjoint sets of neurons recorded in that patch, averaging the result over
100 random splits, and applying a Spearman-Brown correction. Notably, the AL face patch demonstrates the most pronounced
mirror-symmetric viewpoint tuning among the face patches, closely aligning with the measurements in deeper network layers.
Conversely, the MLMF patch, characterized by its asymmetric representation, shows a negative index value, similar to the early
and mid-level network layers. The positive index of the AM face patch, though lower than that of the AL, is consistent with a
view-invariant representation [4]. Diverse convolutional architectures mimic the emergence of mirror-symmetric viewpoint
tuning between the MLMF and AL face patches.
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Figure 2—figure supplement 5. The highest mirror-symmetric viewpoint tuning index across all layers of each evaluated neural
network model. We evaluated the following networks: HMAX, VGG-Face, VGG16, AlexNet, EIG, ResNet50, ConvNeXt, and ViT.
Each panel indicates the layer displaying the peak mirror-symmetric viewpoint tuning index for one object category, measured
separately for each network. The deepest layers of the ConvNeXt network, especially the average pooling (avgpool) and classi-
fier layers, exhibit the highest indices for nearly all categories. Yildirim and colleagues [14] reported that CNNs trained on faces,
notably VGGFace, exhibited lower mirror-symmetric viewpoint tuning compared to neural representations in area AL. Consistent
with their findings, our results demonstrate that VGGFace, trained on face identification, has a low mirror-symmetric viewpoint tun-
ing index. This is especially notable in comparison to ImageNet-trained models such as VGG16. This difference between VGG16
and VGGFace can be attributed to the distinct characteristics of their training datasets and objective functions. The VGGFace
training task consists of mapping frontal face images to identities; this task may exclusively emphasize higher-level physiognomic
information. In contrast, training on recognizing objects in natural images may result in a more detailed, view-dependent rep-
resentation. To test this potential explanation, we measured the average correlation-distance between the fc6 representations
of different views of the same face exemplar in VGGFace and VGG16 trained on ImageNet. The average correlation-distance
between views is 0.70±0.04 in VGGFace and 0.93±0.04 in VGG16 trained on ImageNet. The converse correlation distance be-
tween different exemplars depicted from the same view is 0.84±0.14 in VGGFace and 0.58±0.06 in VGG16 trained on ImageNet.
Therefore, as suggested by Yildirim and colleagues, training on face identification alone may result in representations that cannot
explain intermediate levels of face processing.

Farzmahdi et al. | Brain-like mirror-symmetric viewpoint tuning in convolutional neural networks Supplementary Information | 21



-1 -0.5 0 0.5 1
Mirror-symmetric viewpoint tuning
following GAP applied on pool5

-1

-0.5

0

0.5

1

M
irr

or
-s

ym
m

et
ric

 v
ie

w
po

in
t t

un
in

g
fo

llo
w

in
g 

fc
6

n = 225

Figure 2—figure supplement 6. One of the key operations in fully-connected layers is spatial pooling. We analyzed the impact of
this operation by artificially introducing global average pooling (GAP) instead of the first fully-connected layer (fc6) of ImageNet-
trained AlexNet. Each element of the GAP representation refers to a spatial average of unit activations of one pool5 feature
map. The scatterplot shows the mirror-symmetric viewpoint tuning index of GAP applied to pool5 (x-axis) relative to an fc6
representation (y-axis). Each circle represents one exemplar object. These results indicate that global spatial pooling introduced
instead of fc6 is sufficient for rendering the pool5 representation mirror-symmetric viewpoint selective, reproducing the symmetry
levels of the different fc6 view tuning curves across objects.
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Figure 2—figure supplement 7. Layer-wise mirror-symmetric viewpoint tuning profiles measured by linear correlation without
employing unit-specific z-score normalization. As in Fig. 2, colored curves show the mirror-symmetric viewpoint tuning indices
for nine object categories across AlexNet layers. Each solid circle indicates the average index value derived from 25 exemplars
in each object category. Error bars indicate the standard error of the mean. In Fig. 2, representational dissimilarities were
measured using unit activations first centered and normalized across images (a procedure denoted as RSACorrDem in Revsine
et al., 2023 [59]). Here, first-level correlations were calculated using raw activations (a procedure denoted as RSACorr in [59]).
Revsine and colleagues noted that under linear-system assumptions, RSACorr yields a representational dissimilarity measure
invariant to response gain; response gain might be strongly influenced by low-level factors such as luminance and contrast. The
similarity of the tuning profiles observed here and in Fig. 2 is consistent with the interpretation of the emergent mirror-symmetric
viewpoint tuning in our models as driven by learned equivariant mid-level features rather than low-level stimulus features. This
result, however, does not preclude the possibility that other, uncontrolled stimulus sets could elicit viewpoint-tuning profiles that
are driven by low-level confounds, as demonstrated by Revsine and colleagues.
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Figure 2—figure supplement 8. Comparison of mirror-symmetric viewpoint tuning in a supervised, PCA-based model [19] and
a supervised CNN (AlexNet) trained on object recognition. Panels A and B depict how mirror-symmetric viewpoint tuning in a
re-implementation of the Leibo and colleagues model [19] sharply declines for off-center test stimuli. In contrast, the same shift
in center of the test stimuli has only a negligible effect on mirror-symmetric viewpoint tuning in AlexNet (Panel C). Implementation
details: To reproduce the model described in [19], we generated a training stimulus set using the Basel Face Model. The stimulus
set consisted of untextured synthetic faces of 40 identities, each depicted from 39 viewpoints. For panel A, we estimated a PCA
of the pixel-space representation of this stimulus set. For panel B, we estimated a PCA of the stimulus set’s HMAX C1 layer
representation. In both cases, the resulting latent representation had 1560 features (40×39). To test the model, we used the face
stimulus set containing 25 exemplars in 9 viewpoints employed in Fig. 2. The viewpoints ranged from -90°to 90°, with a step of
22.5°. Mirror-symmetric viewpoint tuning was extracted from a representational dissimilarity matrix (RDM) created per exemplar.
Green and purple circles represent mirror-symmetric viewpoint tuning in centered and shifted images (with 15-pixel shifts in the x
and y axes), respectively. White circles indicate the mean across all exemplars.
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Figure 3—figure supplement 1. Image-specific representational invariance and equivariance across 3D object renders, natural
images, and random noise images, measured in a deep convolutional neural network (AlexNet) trained on ImageNet or alterna-
tively, left untrained. Invariance is measured by the linear correlation between the activity pattern elicited by an image and the
activity pattern elicited by a transformed version of the image. Equivariance is measured by the linear correlation between the
activity pattern elicited by a transformed image and a transformed version of the activity pattern of the untransformed image. Each
violin plot depicts the distribution of invariance (panels A-C) or equivariance (D-F) image-specific measures across 2025 images.
The different hues denote the transformations against which the equivariance and invariance were measured: horizontal flipping
(red), vertical flipping (green), or 90° rotation (blue). The solid circles denote the median, and the thick bars, the first and third
quantiles. Panels A, B, and C show the invariance over horizontally flipped, vertically flipped, and 90° rotated images, respec-
tively. Panels D, E, and F depict the equivariance over the same transformations. ImageNet training induces equivariance (in
convolutional layers) and invariance (in fully connected layers) to the horizontal reflection of most natural images and
3D renders. This effect is less pronounced for vertical reflection and 90° rotation.
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Figure 3—figure supplement 2. Training-induced enhancement of horizontal reflection invariance in the first fully connected
layer (fc6), across different object categories. Elaborating on Figures 3 and 3—figure supplement 1, we examined horizontal
reflection invariance in each object category in a trained (left panel) and an untrained (right panel) AlexNet network. Reflection
invariance was quantified as the correlation between representations of horizontally flipped images. The violin plots show the
distribution of these correlation coefficients across views and exemplars for each object category, with vertical bars marking the
median and the first and third quartiles. In an untrained network, the differences between object categories primarily reflect
pixel-level symmetry. Note that frontal faces, due to their inherent left-right symmetry, elicit a higher correlation compared to other
viewpoints (appearing as a positive outlier).
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Figure 4—figure supplement 1. Network learning curves. (A-D) Loss and accuracy curves for the networks trained by CIFAR-
10 (A), SVHN (B), symSVHN (C), asymSVHN (D) datasets. The x-axis denotes training epochs. Note that the accuracy of
asymSVHN might be negatively affected by the inclusion of relatively symmetric categories such as 0 and 8. We used drop-out
during training, which resulted in higher training loss compared to the validation loss.
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Figure 5—figure supplement 1. The emergence of mirror symmetric weight tensors in AlexNet. In order to examine the symme-
try of neural network weights, we measured the linear correlation between each convolutional weight kernel and its horizontally
(panel A) or vertically (panel B) flipped counterpart. To avoid replicated observations in the correlation analysis, we considered
only the left (or top) half of the matrix, and excluded the central column (or row). Each dot represents one channel. This measure-
ment was done for each convolutional layer in an AlexNet trained on ImageNet, as well as in an untrained AlexNet. The symmetry
of the incoming weights to fc6 was evaluated in a similar fashion (note that the weights leading into this layer still have an explicit
spatial layout, unlike fc7 and fc8). This analysis demonstrates that in the ImageNet-trained AlexNet network, weight symmetry
increases with depth. Note that ImageNet training induces some highly asymmetrical kernels in conv1 and conv2. Together, these
results suggest that while asymmetrical filters are useful low-level representations, the trained network incorporates symmetric
weight kernels to generate downstream reflection-invariant representations.
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Figure 5—figure supplement 2. Individual neural network units exhibiting mirror-symmetric view tuning according to the criterion
employed by Baek and colleagues (2021) [17]. We screened the units of the deepest convolutional layer of an untrained AlexNet
according to the selection criterion proposed by Baek and colleagues (Figure S10 in [17]), using the official code shared on
https://github.com/vsnnlab/Face. Each trace represents an individual unit response profile. The x-axis shows the views:
left profile (LP), left half-profile (LHP), frontal (F), right half-profile (RHP), and right profile (RP). The y-axis depicts the response of
an individual unit, z-scored standardized across images. The left panel displays units with full-profile symmetry response tuning,
and the right panel displays units with half-profile response tuning. Reproducing Baek and colleagues’ findings, we identified
many randomly initialized units that met the selection criterion Baek and colleagues proposed. However, as this figure illustrates,
a large proportion of these units exhibit markedly asymmetric tuning profiles. Specifically, while the selection criterion requires unit
activation to peak at either full-profile or half-profile views, many such units exhibit less pronounced or even minimal responses to
opposite views. In our subsequent analyses (Figures 5—figure supplement 3 and 5—figure supplement 4), we applied a stricter
selection criterion.
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Figure 5—figure supplement 3. Selecting individual units with genuine mirror-symmetric viewpoint tuning. (Left column)
Aggregated full-profile (panel A) and half-profile (panel D) mirror-symmetric units (detailed individually in Figure 5—figure supple-
ment 2), accompanied by their average tuning curves (represented as thick lines). Note that the average viewpoint tuning profile
demonstrates strong mirror symmetry, yet this profile is unrepresentative of the individual units. (Middle column) The tuning
profiles of units selected using a revised selection criterion. Specifically, we required the second peak to occur in response to
the view opposite the first peak and ensured that the frontal view elicited the lowest response. This criterion led to fewer units
being selected yet ensured each unit individually exhibited mirror-symmetric viewpoint tuning. (Right column) Units meeting
the revised criterion in a trained network. Training increased the number of units individually exhibiting mirror-symmetry tuning
profiles, as quantified further in Fig. 5—figure supplement 4.
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Figure 5—figure supplement 4. Training-dependent emergence of units with mirror-symmetric viewpoint tuning across neural
network layers. Using our revised criterion for identifying units with mirror-symmetric tuning, we estimated the percentage of such
units in each layer of an AlexNet network (Torchvision implementation), before and after training on ImageNet. (Left panel) The
percentage of units with mirror-symmetric tuning out of units defined as “face-selective” according to the face-selectivity criterion
proposed by Baek and colleagues (2021, [17]). (Right panel) The percentage of units with mirror-symmetric viewpoint tuning, out
of all of the units in each layer. Note that the latter measurement aligns more closely with the population RSA analyses in the main
text, which likewise consider all units rather than just a face-selective sub-population. For each layer, the orange bars indicate
the average percentage of mirror-symmetric units observed across 10 random network initializations, with the orange error bars
denoting a 95% confidence interval for this proportion. The blue bars indicate the percentage of such units post-training. Since
we used a single trained network for this analysis, the blue error bars denote 95% binomial confidence intervals calculated within
each layer rather than across realizations. The first fully connected layer shows the most pronounced training-dependent
emergence of mirror-symmetric viewpoint tuning units, consistent with the findings obtained with the population-level
RSA findings described in the main text.
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Figure 6—figure supplement 1. Alignment of MLMF and neural network representations across diverse architecures. As
in Fig. 6, representational alignment was measured with respect to the FIV dataset. Top row depicts the correlation between
model RDMs, measured in each individual neural network layer, and a neural population RDM estimated using neural recordings
from the MLMF face patch. Black circles represent correlation coefficients averaged across bootstrap simulations (resampling
individual stimuli), with error bars denoting standard deviations across bootstrap simulations. The gray area represents the
neural RDM’s noise ceiling; its lower bound was determined through a Spearman-Brown corrected split-half reliability estimate,
splitting the neurons into equally sized random subsets. The bottom row displays Shapley values reflecting the contributions
of the reflection-invariant and reflection-sensitive components in the model RDMs. Deeper convolutional layers in various
convolutional architectures demonstrated strong alignment with MLMF data; this alignment is primarily explained by
reflection-sensitive features.
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Figure 6—figure supplement 2. Alignment of AL and neural network representations across diverse architecures. The analysis
is analogous to what is described in 6—figure supplement 1, but for the AL face patch. In various convolutional architectures,
the fully connected and average pooling layers showed notable representational alignment with the AL patch. This alignment is
predominantly explained by features that are invariant to reflection, rather than those sensitive to reflection.
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Figure 6—figure supplement 3. Alignment of AM and neural network representations across diverse architecures. The analysis
is analogous to what is described in 6—figure supplement 1, but for the AM face patch. The deepest layers in different network
architectures, with the exception of ViT, show strong representational alignment with the AM face patch. This alignment is
predominantly explained by features that are invariant to reflection, rather than those sensitive to it.
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