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Abstract

Recent work has suggested that feedforward residual neural networks (ResNets) approxi-

mate iterative recurrent computations. Iterative computations are useful in many domains,

so they might provide good solutions for neural networks to learn. However, principled meth-

ods for measuring and manipulating iterative convergence in neural networks remain lack-

ing. Here we address this gap by 1) quantifying the degree to which ResNets learn iterative

solutions and 2) introducing a regularization approach that encourages the learning of itera-

tive solutions. Iterative methods are characterized by two properties: iteration and conver-

gence. To quantify these properties, we define three indices of iterative convergence.

Consistent with previous work, we show that, even though ResNets can express iterative

solutions, they do not learn them when trained conventionally on computer-vision tasks. We

then introduce regularizations to encourage iterative convergent computation and test

whether this provides a useful inductive bias. To make the networks more iterative, we

manipulate the degree of weight sharing across layers using soft gradient coupling. This

new method provides a form of recurrence regularization and can interpolate smoothly

between an ordinary ResNet and a “recurrent” ResNet (i.e., one that uses identical weights

across layers and thus could be physically implemented with a recurrent network computing

the successive stages iteratively across time). To make the networks more convergent we

impose a Lipschitz constraint on the residual functions using spectral normalization. The

three indices of iterative convergence reveal that the gradient coupling and the Lipschitz

constraint succeed at making the networks iterative and convergent, respectively. To show-

case the practicality of our approach, we study how iterative convergence impacts generali-

zation on standard visual recognition tasks (MNIST, CIFAR-10, CIFAR-100) or challenging

recognition tasks with partial occlusions (Digitclutter). We find that iterative convergent com-

putation, in these tasks, does not provide a useful inductive bias for ResNets. Importantly,

our approach may be useful for investigating other network architectures and tasks as well
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and we hope that our study provides a useful starting point for investigating the broader

question of whether iterative convergence can help neural networks in their generalization.

Introduction

An iterative method solves a difficult estimation or optimization problem by starting from an

initial guess and repeatedly applying a transformation that is known to improve the estimate,

leading to a sequence of estimates that converges to the solution. Iterative methods provide a

powerful approach to finding exact or approximate solutions where direct methods fail (e.g., for

difficult inverse problems or solutions to systems of equations that are nonlinear and/or large).

Recurrent neural networks (RNNs) iteratively apply the same transformation to their inter-

nal representation, suggesting that they may learn algorithms similar to the iterative methods

used in mathematics and engineering. The idea of iterative refinement of a representation has

also driven recent progress in the context of feedforward networks. New architectures, based

on the idea of iterative refinement, have allowed for the training of very deep feedforward

models with hundreds of layers. Prominent architectures for achieving high depth are residual

[ResNets; 1] and highway networks [2], which use skip connections to drive the network to

learn the residual: a pattern of adjustments to the input, thus encouraging the model to learn

successive refinements of a representation of the input that is shared across layers.

These architectures combine two ideas. The first is to use skip connections to alleviate the

problem of vanishing or exploding gradients [3]. The second is to make these skip connections

fixed identity connections, such that the layers learn successive refinements of a shared repre-

sentational format.

The second idea relates residual and highway networks to RNNs and iterative methods.

Learning a single transformation that can be iteratively applied is attractive because it enables

trading speed for accuracy by iterating longer [4]. In addition, a preference for an iterative

solution may provide a useful inductive bias for certain computational tasks.

Moreover, deep neural networks were originally inspired by neuroscience and have, in

turn, contributed to a better understanding of human cognition and, in particular, vision. The

primate visual system, in turn, has often been suggested to perform iterative refinement [5, 6].

This principle could therefore allow us to better understand the shared ideas behind deep neu-

ral networks and primate vision. Moreover, enhancing ResNets’ preference for an iterative

solution could potentially make them more similar to the primate visual system. In the reverse

direction, it is still unclear under which conditions (or to what extent) primate visual cortex

actually implements an approximately convergent computation and investigating this question

in deep neural networks could serve as a useful model for investigating it in primates.

However, it is unclear whether ResNets indeed learn solutions akin to iterative methods

and, if they do, whether this is a useful inductive bias. The two defining features of iterative

methods are (a) iteration and (b) convergence. Here we introduce a set of three indices (Con-

vergence Index, Recurrence Index, and Divergence Index) that can measure the degree to

which ResNets implement an iteratively convergent computation. We then analyze to what

extent these features emerge in ResNets. In order to investigate whether iterative convergence

provides a useful inductive bias, we introduce two simple modifications of classical ResNets

and study their impact on a number of datasets. First, we study CIFAR-10, CIFAR-100, and

MNIST [7, 8] as examples of classical vision tasks, assessing the networks’ performance and

sample efficiency. Since iterative and convergent inductive biases may be more useful for tasks
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that require some degree of recurrence, we also assess the networks’ performance and sample

efficiency on several variations of Digitclutter, a task which requires the recognition of multiple

digits that occlude each other [9].

To study the effect of iteration, we manipulate the degree of weight sharing in ResNets,

smoothly interpolating between ordinary and recurrent ResNets. We find that a higher degree

of weight sharing tends to make the network more iterative, but does not result in improved

performance or sample efficiency. This suggests that in ordinary ResNets, recurrent connec-

tions do not provide a useful inductive bias and the networks can harness the additional

computational flexibility provided by non-recurrent residual blocks.

Recurrence implies iteration, but not convergence, and so is not sufficient for a network to

implement an iterative method as defined above. ResNets, whether they are recurrent (i.e.

sharing weights across layers) or not, are therefore neither required nor encouraged to learn a

convergent algorithm during training. We demonstrate empirically that ResNets in general do

not exhibit convergent behavior and that recurrent ResNets are more convergent than non-

recurrent networks. To study the effect of convergence, we upper bound the residual blocks’

Lipschitz constant. This modification adversely impacts performance, suggesting that the non-

convergent behavior in ordinary ResNets is not merely due to lack of incentive, but underpins

the networks’ high performance. Across convergent ResNets, a higher degree of weight sharing

does not negatively affect performance. This suggests that convergent ResNets, in contrasts to

non-convergent ones, do not benefit from the increased computational flexibility of non-

recurrent residual blocks.

Taken together, our results suggest that an inductive bias favoring an iterative convergent

solution does not outweigh the computational flexibility of non-recurrent residual blocks for

the considered tasks. Importantly, our findings do not imply that neural networks cannot ben-

efit from iterative convergence. Rather, this principle may only be useful for a different task

and/or network architecture. The methods we have introduced for measuring and manipulat-

ing iterative convergence can be helpful for investigating alternative settings as well.

Related work

Prior theoretical work has focused on explaining the success of ResNets [1] and the more gen-

eral class of highway networks [2] by studying the learning dynamics in ResNets [3, 10, 11]

and their interpretation as an ensemble of shallow networks [12, 13], as a discretized dynam-

ical system [14–16], and as performing iterative refinement.

The iterative refinement hypothesis

Our work builds on [17] who argue that the sequential application of the residual blocks in a

ResNet iteratively refines a representational estimate. Their work builds on observations that

dropping out residual blocks, shuffling their order, or evaluating the last block several times

retains reasonable performance [12, 18] and can be used for training [19]. Another set of

methods uses such perturbations to train deep neural networks, using stochastic depth

[19–21]. Other methods learn to evaluate a limited number of layers that depends on the input

[22, 23] or learn increasingly fine-grained object categories across layers [24]. Instead of using

perturbations to encourage stability of the trained network, [25] propose a method inspired by

dynamical systems theory to guarantee such stability in their model.

Iterative refinement and inverse problems

The iterative refinement hypothesis is particularly important in the context of inverse prob-

lems, which are often solved using iterative methods. This is particularly relevant for ResNets
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trained for perceptual tasks since perception is often conceptualized as an inverse problem

[5, 6]. [26] modeled visual cortex using recurrent neural networks that iteratively infer the

latent causes of a hierarchical Bayesian model. Though these networks have been applied to

complex datasets [27], most models either learn the inverse model [28, 29] or define an analyti-

cally invertible forward model [30, 31]. A notable exception are invertible ResNets [32], whose

inverse can be computed through a fixed point iteration. Another set of works starts out with a

classical iterative algorithm and unfolds this algorithm to create a deep network, approaching

a similar problem from the opposite direction [33–36]. Moreover, [37] refine CNNs to yield

an inference algorithm on a specific generative model [recently implemented by [38]].

Recurrent and residual neural networks

The idea of iterative refinement has motivated an increasing number of recurrent convolu-

tional neural networks being applied to computer vision without an explicit implementation

of iterative inference [9, 39]. ResNets may be seen as RNNs that have been unfolded for a fixed

number of iterations. Sharing weights between the different blocks allows us to train a recur-

rent residual neural network [40]. In this framework, recurrent residual neural networks may

be seen as a special case of residual neural networks where the weights are equal between all

blocks. [41, 42] relaxed this constraint by defining the weights of the different blocks as a linear

combination of a smaller set of underlying weights. The work by [41] is particularly interesting

in this context, as their method yielded a more efficient parameterization of Wide ResNets

[43], which generally have more channels, but far fewer layers than the architectures we con-

sider here.

Inductive bias of recurrent operations on visual tasks

The inverse problem perspective on perception suggests that ordinary recognition tasks in

computer vision may already benefit from an iteratively convergent inductive bias. For other

tasks, we have additional reasons to believe that recurrent processing may be beneficial. For

example, object recognition in the primate ventral stream can be well captured by feedforward

models [44, 45] but benefits from recurrent processing under challenging conditions. This

includes tasks where the presented objects are partially occluded or degraded [46] or tasks that

involve perceptual grouping according to local statistical regularities [47] or object-level infor-

mation [48]. These observations have inspired tasks such as Digitclutter and Digitdebris [9] as

well as Pathfinder [49] and cABC [50]. For these datasets, recurrent networks have been

shown to outperform corresponding feedforward control models [9, 51].

Implicit recurrent computations

Beyond a potentially useful inductive bias, recurrent neural networks can provide additional

computational advantages. If the recurrent operation converges to a fixed point, this fixed

point can be determined more efficiently by classical iterative algorithms such as ODE solvers

[52]. Moreover, in this case, recurrent backpropagation [53, 54] can compute the parameters’

gradients much more efficiently than backpropagation through time [55] because it does not

require storing the intermediate activation. Its memory cost is therefore constant in depth.

This method has inspired several promising models in computer vision. Deep equilibrium

models [56] harness a quasi-Newton method to find the fixed point of their recurrent opera-

tion. They have recently been applied to object recognition and image segmentation tasks [57].

These works empirically demonstrated the existence of a fixed point under their parameteriza-

tion. Other models enforce such a fixed point by the Lipschitz constraints we here employ as

well. [25] use an upper bound based on the Frobenius norm, whereas [58] approximate the
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Lipschitz constant using a vector-Jacobian product. Our method (see below) is based on [59]

and has recently been employed (for different purposes) by [32, 60].

Do ResNets implement iterative computations?

Iterative methods are characterized by two key properties: iteration (i.e., recurrent computa-

tion) and convergence. In this section, we examine whether residual neural networks have

these properties. We start by showing that ResNets can express iterative algorithms, but then

demonstrate that ResNets do not automatically learn iterative algorithms. We show that this

observation extends to large-scale neural networks trained on real data. Finally, we introduce a

paradigm that allows us to compare neural networks to iterative methods.

ResNets can represent iterative computations

A popular application for iterative methods is given by inverse problems of the form x = f(z). It

is often not possible to directly compute the inverse, f−1, of the forward model, because of ana-

lytical or combinatorial intractability. Instead, approximations [61] or iterative error-correc-

tive algorithms [62] are used. Consider the linear forward model x = f(z)≔ (α1z1, α2z2).

Though f has an analytical inverse, it serves as an illustrative example. Based on an input x, we

can infer the latent variable z using the iterative update

ẑ ð0Þ≔ x; ẑ ðtþ1Þ

i ≔ ẑ ðtÞi � si � �i � ðaiẑ
ðtÞ
i � xiÞ; si ≔ signðaiÞ;

where ẑ ðTÞ, for some T, is the estimate of z and �i> 0 should be sufficiently small. In the case of

a linear function, any �i� 1 works. The example given in Fig 1 uses �1 = 0.3, �2 = 0.8.

This update can be implemented in a small ResNet. Fig 1a contains a schematic illustration

of one block of this network. The representation spanned by an encoder in the beginning of

the network contains an input representation x and a representation of the current estimate z.

In the hidden layer of the residual block, we determine the positive and negative prediction

errors and use them to update z:

pðtÞi ≔ ReLUðaiz
ðtÞ
i � xiÞ; nðtÞi ≔ ReLUðxi � aiz

ðtÞ
i Þ;

zðtþ1Þ

i ≔ zðtÞi � si�ip
ðtÞ
i þ si�in

ðtÞ
i :

This recurrent residual building block would implement an iteratively convergent computa-

tion in a ResNet. The linear model is, of course, a trivial case, but serves as an illustration of the

Fig 1. Illustration of iterative computations in ResNets. a A recurrent ResNet implementing a simple error-corrective inverse model.

The prediction based on the current estimate ẑ is compared to the input x (via positive and negative errors p and n). The error is used to

update ẑ , whereas x is simply retained throughout all blocks. b Trajectories of the estimates ẑ1, ẑ2 across blocks in a feedforward network,

iterative steps in an the error-corrective algorithm, residual blocks in a trained ResNet, and residual blocks in a trained recurrent ResNet.

All four methods converge to the correct estimate (indicated by black ‘x’). c Dropping out the fourth block (unbroken line) has a minor

impact on the ResNet. d If the last block is iteratively applied to the final estimate, the value diverges for both the residual and the

recurrent network (broken lines), indicating that they do not learn a convergent structure.

https://doi.org/10.1371/journal.pone.0293440.g001
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appeal of this approach. A wide neural network is a flexible function approximator and learn-

ing to represent the prediction error instead of the prediction is easier in many cases [24].

ResNets do not automatically learn iterative computations

The fact that ResNets can express iterative computations does not imply that they necessarily

learn iterative solutions when trained via backpropagation.

Here we consider the simple example from above to better understand the behavior that

may emerge. We highlight three behaviors that distinguish iterative from non-iterative compu-

tations and will examine the behavior of large-scale neural networks in the following sections.

As an example, we train a conventional ResNet, and a ResNet that uses the same weights in

each block (equivalent to a recurrent network) to invert the function f ðzÞ≔ 3

2
z1;

3

4
z2

� �
. We

contrast their behavior with the iterative error-corrective algorithm outlined above.

Due to the lack of constraints, a non-residual feedforward neural network changes its repre-

sentation in every layer. As a consequence, the linear decoder at the end of the network is not

aligned to the intermediate representation and early readout (as depicted by the orange dots in

Fig 1b) leads to a meaningless estimate. In contrast, the skip connections encourage a ResNet

to use the same representational format across blocks. This is to say that its intermediate repre-

sentations are better aligned with the final decoder. Early readout is therefore possible and the

representation across blocks will approach the final estimate. As a consequence, the across-

block dynamics of the non-residual network are meaningless, whereas the recurrent and resid-

ual network’s early readouts are close to the final estimate and approach it in a smooth man-

ner, just like the error-corrective algorithm (Fig 1b). Since iterative methods iteratively refine

their initial estimate, their behavior is more similar to the ResNets’ monotonic convergence.

Aside from their smooth convergence, a fundamental property of iterative methods is their

recurrence (i.e., the repeated use of the same computation). This means that dropping out an

earlier block has the same effect as dropping out the last one. We can relax the requirement for

exact repetition (weight sharing) and require merely similar computations. Fig 1c illustrates

that the trained ResNet is indeed relatively robust to block dropout.

Yet the learned models fall short of an iterative method, which is apparent from a third

mode of investigation. Iterative convergence would imply that applying the last block’s trans-

formation iteratively should keep the readout in the vicinity of the actual estimate. This is

clearly not the case in our toy example (Fig 1d). Rather than representing a convergent esti-

mate, this result is more compatible with understanding ResNets as approaching their final

estimate at a constant speed and, in the case of late readout, moving past this estimate and

overshooting at the same speed. Notably, both the non-recurrent and recurrent networks

exhibit this behavior.

Iterative convergence indices

This behavior is not surprising. After all, the network is trained to work for a fixed number of

steps and not constrained to stay within the vicinity of its final estimate if more steps are

added. However, it reveals that even recurrent ResNets do not automatically learn iterative

convergent computations. To assess the extent to which they do learn iterative convergent

computations we define three continuous indices, which measure convergence, recurrence,

and divergence (defined below).

We evaluate the indices for six instances of ResNet-101, trained on CIFAR-10 [7]. This

ResNet consists of three stages of 16 residual blocks with 16, 32, and 64 channels, respectively,

using the architecture recommended by [63]. S1 Appendix includes details on the architecture

and the training paradigm. The ResNet achieved 5.2% classification error on the validation set.
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To characterize the extent to which the ResNets have learned an iterative convergent computa-

tion, we introduce three indices measuring different aspects of such computations.

Convergence Index. Viewing ResNets as performing iterative refinement suggests that

each stage gradually approaches its final estimate before passing this estimate to the next stage

using a downsampling layer. By passing the estimate at each of the residual blocks to the next

stage, we can monitor how the stages approach their final estimate across blocks (see Fig 2a,

left panel). In accordance with previous results [17], we find that all stages smoothly approach

their final estimate, confirming the earlier intuition of a shared representational format. To

measure the rate of convergence, we compute the area under the curve (AUC) of the classifica-

tion error, which we call the Convergence Index. We invert and normalize this value such that

a Convergence Index of 0 corresponds chance level read-out at each residual block, whereas a

Convergence Index of 1 corresponds to an instant convergence to the final classification error

at the first residual block. Fig 2b, left panel, depicts this value for each stage, and averaged

across stages.

Note that while the Convergence Index can be used to compare different networks with the

same architecture, comparing networks with different architectures (e.g. different numbers of

layers) is less straightforward. For example, if a network with twice the number of layers

applies the same set of operations in the first half of its layers and then simply applies the iden-

tity operation in the latter half, it will have a much smaller Convergence Index. From one per-

spective, this makes sense, as it converges more quickly. However, from another perspective,

the two networks apply the same set of operations and should therefore have the same Conver-

gence Index. A comparison between different network architectures will therefore require

committing to one of these two intuitions.

Recurrence Index. To measure the degree of recurrence, we evaluated the effect of drop-

ping out individual blocks on the error rate of the network (see Fig 2a, middle panel). In a

non-recurrent ResNet, dropping out earlier blocks may have a stronger effect on the error rate

than dropping out the last block. In contrast, in a recurrent ResNet, the effect on error rate is

the same for dropping out either earlier blocks or the last block. We therefore computed the

difference in error rate observed after these two manipulations. We summarized the behavior

by the AUC, which we refer to as Recurrence Index (RI). We invert and normalize this value

such that the RI is 0 if dropping out any block leads to an error rate at chance level and the RI

Fig 2. Iterative convergence in ResNets with standard training. a The different perturbation methods (early read-out for

determining convergence, dropping-out blocks for determining recurrence, and additional evaluations of the last block for

determining divergence) are illustrated for the three stages of the ResNet. The x axis depicts the residual block targeted by

the perturbation and the y axis the error rate resulting from the corresponding perturbation (chance performance at 90%).

For clarity, one of the six instances is emphasized in the plots. b The resulting index values for each stage (small translucent

dots) and their averages across instances (large dots). c The error rate for the individual network instances is plotted against

Convergence and Divergence Index.

https://doi.org/10.1371/journal.pone.0293440.g002
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is 1 in the case of a recurrent algorithm. Importantly, a network can be recurrent even if it

does not implement an iteratively convergent algorithm. The RI captures this, as it is con-

cerned with the difference in performance between removing different blocks in the network.

Put differently, dropping a particular block can have a substantial effect on network perfor-

mance and still give rise to a high RI, as long as this effect is equally high for early and late

blocks. Even though we study non-recurrent ResNets, dropping out any block other than the

very first leads to a negligible drop in performance, replicating previous results [12, 17]. As a

consequence, the RI, across all stages, is close to 1.0 (see Fig 2b, middle panel).

Divergence Index. ResNets may either converge to their final estimate or simply approach

it in a sequence of steps. An iterative algorithm should not be negatively affected by additional

applications of the same function. To examine this property, we apply the last block of each

stage for an additional up to sixteen steps (see Fig 2a, right panel) and determine the AUC

(Divergence Index, DI, see Fig 2b, right panel). We find that no stage is particularly robust to

such additional evaluations, though the first stage has the lowest DI, indicating that it is the

most robust. This suggests that ResNets approach and move away from their final estimate in a

sequence of steps, with their computations bearing little similarity to an iterative convergent

algorithm. A high DI does not indicate that the ResNet has failed in some way. After all, it was

not trained to be robust to such perturbations. However, it indicates that the ResNet may not

implement an iterative convergent computation.

Manipulating convergence and iteration in residual networks

We provided indices measuring convergence, recurrence, and divergence to assess the degree

to which a ResNet implements an iterative method. Even though they are able to, ResNets do

not necessarily learn to implement a purely iterative method. In particular, they show diver-

gent behavior. Nevertheless, as we have shown above, their behavior does show some similarity

to iterative methods and their success has been attributed to these similarities [17, 18]. This

suggests that even though the parameterization and optimization does not promote the emer-

gence of an iterative method in a ResNet, a ResNet with iteratively convergent behavior may

still have a better inductive bias. To test this hypothesis, we therefore here control the inductive

bias, namely recurrence and convergence, of ResNets.

Soft gradient coupling can interpolate smoothly between ordinary and

recurrent optimization

We propose a method to blend between recurrent and non-recurrent networks without chang-

ing the architecture or the loss landscape. The method is motivated by the observation that we

can train a recurrent neural network by sharing the different blocks’ gradients [17, 40]. In ordi-

nary ResNets, the residual block t with the weights Wt is changed by following the gradient

Dt ¼ @Wt
L, whereas RNNs impose as gradient

D ¼ T � 1
XT

t¼1

@Wt
L; ð1Þ

where the weights across residual blocks within a stage must start from the same initialization.

The former means that we do not employ any inductive bias towards recurrence, whereas the

latter imposes a possibly overly restrictive function space on the architecture. To address both

limitations, we propose soft gradient coupling, which uses as its update rule

~Dt ¼ ð1 � lÞDt þ lD; l 2 ½0; 1�: ð2Þ
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For λ< 1, this retains the entire space of computations enabling both non-recurrent as well as

recurrent computations. However, for λ> 0, the optimization is biased to find more recurrent

optima. In contrast to penalty regularizations or strict weight sharing models [41, 42], this

does not change the network or loss landscape, but simply the accessibility of different local

minima of the loss landscape.

For networks with coupled gradients (i. e., 0< λ� 1), we initialize their weights recurrently

(i.e., all residual blocks within one stage share the same initialization). We unshare batch norm

statistics as suggested by [17], but leave their parameters (softly) coupled.

Spectral normalization can guarantee convergence in residual networks

Iterative methods preserve a stable output when applied repeatedly. In contrast, the output of

the ResNets diverged when the last block was applied repeatedly beyond the number of steps it

was trained for. In order to control the degree of convergence in a ResNet, we constrain the

Lipschitz constant L of the residual function f. L is defined as the minimal value such that for

any input x, y, kf(x) − f(y)k � Lkx − yk. The smaller L, the more stable f. The Lipschitz constant

is hard to determine accurately as it is a global property of f. We therefore determine an upper

bound L̂ðf Þ � L based on the linear operations within f. The next section will detail how this

upper bound is computed. Using this upper bound, we replace f by its spectral normalization

~f ðxÞ≔ f ðxÞ=c; c≔maxðm=L̂ð f Þ; 1Þ; ð3Þ

for a certain value μ. If L̂ð f Þ � m, the corrective factor c will not change the function. If

L̂ð f Þ > m, it will set the corresponding upper bound of ~f at L̂ð~f Þ ¼ m, constraining the resid-

ual function’s Lipschitz constant.

For a given input x, a recurrent residual stage is defined by the iterative application z0 ≔ x,

zt≔ R(zt−1), where R defines the recurrently applied residual block. We wish to guarantee that

zt eventually converges to a fixed point z1 and hope that empirically, zT, the representation

after the specified number of iterations, will be close to this fixed point. According to the

Banach fixed point theorem, one way to guarantee such convergence is to require that the

residual block’s Lipschitz constant LR be smaller than one.

We can achieve this by replacing the residual connections between adjacent blocks by resid-

ual connections between the input x to the stage and each block, i. e. ~RðzÞ≔ xþ ~f ðzÞ. ~R has

the same Lipschitz constant as ~f . Setting μ< 1, we therefore guarantee that ~R converges to a

fixed point defined by x. We call this network the properly convergent ResNet (PCR).

To get a network more similar to an ordinary ResNet, we consider RðzÞ≔ z þ ~f ðzÞ.
Though convergence is not guaranteed for the network defined by this residual block, we will

demonstrate its empirical convergence. We thus call this network the improperly convergent
ResNet (ICR).

Upper bound on the Lipschitz constant

To determine an upper bound on the Lipschitz constant of f, we use an alternative characteri-

zation based on the Jacobian Jf(x). The spectral norm kAk2 of a matrix A is defined as its maxi-

mal singular value. The Lipschitz constant is then given by

Lðf Þ ¼ max
x
kJf ðxÞk2:
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According to the chain rule,

Jf ðxÞ ¼ JConv2
� JReLUðz2Þ � JBN2�Conv1

� JReLUðz1Þ � JBN1
:

Here z1 and z2 are given by the representation at the appropriate intermediate stages of the

residual function, i. e. z1 is the representation after BN1 and z2 is the representation after BN2.

The Jacobians of the batch normalizations and convolutions do not depend on the input as

these are linear operations. Since JReLU and JBN1
are both diagonal matrices, they commute and

therefore,

Jf ðxÞ ¼ JConv2
� JReLUðz2Þ � JBN2�Conv1

� JBN1
� JReLUðz1Þ

¼ JConv2
� JReLUðz2Þ � JBN2�Conv1�BN1

� JReLUðz1Þ:

We have therefore split the Jf into a product of two constant functions and two Jacobian of

the rectified linear unit.

The spectral norm k � k2 is known to be sub-multiplicative. This means that for matrices A
and B, kBAk2� kBk2kAk2. Moreover, JReLU, depending on whether its input is positive or neg-

ative is given by a diagonal matrix with ones or zeros on the diagonal. Its singular values are

therefore at most 1. Putting this together, we can upper bound the Lipschitz constant as

Lðf Þ ¼ max
x
kJf ðxÞk2

� max
x
kJConv2

k
2
kJReLUðz2Þk2

kJBN2�Conv1�BN1
k

2

� kJConv2
k

2
kJBN2�Conv1�BN1

k
2
≕ L̂ðf Þ:

Theoretically, we could determine the maximal singular value of the convolution using a

singular value decomposition. However, the singular value decomposition of such a large

matrix is computationally expensive. Instead, Yoshida & Miyato [59] lay out how the maximal

singular value can be approximated using a power iteration [64]. The only difference to their

method consists in the fact that our first convolution additionally involves multiplying the

input by the diagonal matrices given by the two batch normalizations.

Results

To assess our hypotheses, we considered non-recurrently initialized (ordinary) ResNets as well

as recurrently initialized ResNets with coupling parameters 0, 0.5, 0.9, and 1. In addition, we

considered properly and improperly convergent ResNets across the same coupling parameters,

setting μ = 0.95 (we only trained these networks on CIFAR-10). We trained several instances

of all these ResNets with 8, 16, 32, and 64 channels in the first stage on classical visual recogni-

tion tasks (CIFAR-10, MNIST, and CIFAR-100) as well as Digitclutter, a challenging task with

partially occluded objects, which has previously been observed to benefit from recurrent con-

nections [9].

Soft gradient coupling improves iterative recurrence indices

As Fig 3a shows, soft gradient coupling indeed improves iterative convergence, increasing the

Convergence Index and decreasing the Divergence Index. The Recurrence Index is centered

closely around 1 (see S1 Fig). Convergence and Divergence Index, on the other hand, tend to

increase and decrease, respectively, both with higher coupling parameters and with a higher

number of channels. Notably, this trend appears to not hold up for a fully recurrent ResNet,

corresponding to a coupling parameter of 1. These results show that soft gradient coupling is

an effective way of manipulating a ResNet’s behavior. Increasing weight similarity across

blocks leads to more iterative convergence in a ResNet.
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Moreover, increasing width makes networks converge faster and diverge more slowly. This

could potentially be mediated by the fact that the wide networks’ increased computational

expressivity allows them to move closer to the ultimate target within the first layers (faster con-

vergence). This, in turn, would mean that the last layer would have had less work to do, which

could have attenuated detrimental effects of its repeated application (slower divergence).

Spectral normalization makes ResNets convergent

Both the properly and improperly convergent ResNets have a high Convergence Index as well

as a Divergence Index at almost zero (see Fig 4a for ICRs and S2 Fig for PCRs). The

Fig 3. Iterative convergence and performance of coupled ResNets. a Effect of gradient coupling and initialization (rec.: recurrent; non-rec.: non-

recurrent) on indices of iterative convergence for architectures with different numbers of channels. b Effect of gradient coupling and initialization on the

performance on CIFAR-10 and Digitclutter-5. c Relationship between performance and iterative convergence, i.e., Convergence (left) and Divergence

Index (right). Models with the same number of parameters are visualized by the same color and individual lines. Results in a, c are on CIFAR-10.

https://doi.org/10.1371/journal.pone.0293440.g003
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Recurrence Index is again centered around one (see S1 Fig). For improperly convergent

ResNets with 16 or 32 channels in the first stage, higher coupling parameters generally have a

lower Convergence Index and a higher Divergence Index. Nevertheless, these indices indicate

that the spectrally normalized ResNets exhibit much more convergent behavior than the ordi-

nary networks. This was only guaranteed for the recurrent, properly convergent ResNets and

is therefore an important observation. Perhaps surprisingly, we find that higher recurrence

does not necessarily lead to more convergent behavior. This may indicate that less recurrent

ResNets use their increased expressivity to more quickly approach their final estimate.

Stronger iterative convergence does not provide a useful inductive bias

We first assessed the effect of gradient coupling on the performance of non-convergent

ResNets. As Fig 3b shows, a higher coupling parameter consistently leads to a higher error

rate, both for CIFAR-10 and Digitclutter. Additional supporting experiments on CIFAR-

100, MNIST, the Digitclutter task, and on sample efficiency can be found in S3 Fig. However,

for intermediate coupling parameters of 0.5 and 0.9, this increase in error rate is smaller for

networks with higher capacity (i.e., more channels). This effect can also be seen from the

relationship between iterative convergence indices and performance. In particular, Fig 3c

demonstrates that performance is higher for ResNets with a higher Convergence Index and a

lower Divergence Index. This effect, however, is driven by the fact that ResNets with a higher

number of channels also show higher measures of iterative convergence (see Fig 3a). When

controlling for the number of parameters (see lines in Fig 3c), we find no clear relationship

between Convergence and Divergence Index and performance. In part, higher divergence

index even seems to lead to higher performance, which would seem to indicate that less itera-

tive computations lead to a better inductive bias. This is most likely caused by the fact that

we manipulated the divergence index using recurrence regularization. More specifically,

higher recurrence regularization seems to lead to a lower divergence index and lower

performance.

We then assessed the effect of convergence regularization on performance by training sev-

eral convergent ResNets on CIFAR-10 (see Fig 4b for ICRs). Convergence regularization led to

a higher error rate across all coupling parameters and architectures. A notable exception is the

fully coupled ResNet with 16 channels, which performs equally with and without convergence

Fig 4. Iterative convergence and performance of improperly convergent ResNets. a Effects of gradient coupling and initialization (rec.: recurrent; non.-

rec.: non-recurrent) on iterative convergence indices. b Error rates on CIFAR-10 as a function of gradient coupling and initialization.

https://doi.org/10.1371/journal.pone.0293440.g004
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regularization. This suggests that convergence is not a useful inductive bias in ResNets. Taken

together, these experiments suggest that iterative convergence may not provide a useful induc-

tive bias for ResNets.

Discussion

We introduced soft gradient coupling, a new method of recurrence regularization, and dem-

onstrated that this enabled us to manipulate iterative convergence properties in ResNets. To

measure these properties, we introduced three indices of iterative convergence, quantifying

the effect of perturbations previously introduced in the literature [12, 17].

Iterative methods are considered powerful approaches in particular for solving difficult

inverse problems. However, here we did not find iterative convergence to be a useful inductive

bias for ResNets. Moreover, we found that higher degrees of weight sharing did not improve a

ResNet’s parameter efficiency. One reason for this may be that soft gradient coupling or the

spectral normalization are the wrong methods for this purpose or require a different optimiza-

tion strategy. We explored minor variations of soft gradient coupling. More specifically, we

selectively coupled only the last eight layers or used a non-uniform kernel in coupling the dif-

ferent layers. These variations did not have an overall effect on our findings (see S1 Appendix).

Similarly, future research could explore selectively applying spectral normalization only to the

last layers of each stage.

Our findings also suggest, however, that deep feedforward computations should perhaps

not be characterized as iterative refinement on a latent representation, but simply as a

sequence of operations smoothly approaching their final estimate. Our conclusions are based

on experiments on four visual classification tasks. Visual tasks have been proposed to be

inverse problems and therefore lend themselves to iterative inference algorithms. Recognition

tasks like Digitclutter that involve partial occlusions of objects have in particular been shown

to benefit from recurrent computations [9, 46]. However, an iterative method like an error-

corrective algorithm that would require a forward model of the data may be more complex

and therefore harder to learn than a purely discriminative model. Hence, for the four tested

tasks, ResNets may learn direct inference rather than error-corrective inference via a forward

model.

The primate visual system has been suggested to solve an inverse problem using iterative

refinement [5, 6]. Deep neural networks, in turn, have emerged as the best image-computable

models of the ventral visual stream [65–67]. Recently, recurrent neural networks have been

shown to predict the temporal dynamics of the ventral stream better than any other computa-

tional model [39, 68]. In light of these successes, the fact that the behavior of ResNets is more

consistent with direct inference than iterative refinement may highlight an important discrep-

ancy between these models and the primate visual system.

Uncovering the role of iterative computations in the visual system may benefit from more

discerning tests of iterative computations. We have focused here on classical object classifica-

tion (perhaps made harder by occlusions). Performance on this task has been proposed to ben-

efit from iterative computations, but object classification can also be solved without such

computations (even with occlusions, in most cases). Moreover, if ResNets implemented itera-

tive computations at all, they would implement ones that are focused on local interactions.

Future research may benefit from tasks for which high performance necessitates iterative com-

putations uncovering long-range context. This may be the case, for example, for Pathfinder or

cABC.

It is also possible that a different architecture than ResNets would benefit more easily from

an iteratively convergent inductive bias. The iterative convergence indices introduced here, as
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well as our proposed methods for manipulating the degree of iterative convergence, may be

useful for an investigation of alternative tasks and/or networks.

Although it did not improve performance here, soft gradient coupling provides a method

for smoothly interpolating between feedforward and recurrent neural networks. More gener-

ally, soft gradient coupling provides a simple way to encourage sets of weights to remain simi-

lar to each other. This technique may find further use in relaxing weight-sharing constraints

and studying the benefit of various forms of weight sharing, including recurrence and convo-

lution, in deep neural networks.

Supporting information

S1 Appendix. The appendix contains details on the used software and the ResNets’ archi-

tecture and training paradigm. It also details a few variations on gradient coupling that were

explored. As detailed in the appendix, the findings on these variations were consistent with the

results presented in the main article.

(PDF)

S1 Fig. Recurrence Index for gradient-coupled and improperly convergent ResNets. a

Recurrence Index for gradient-coupled ResNets. b Recurrence Index for improperly conver-

gent ResNets.

(PDF)

S2 Fig. Results on properly convergent ResNets (PCRs) trained on CIFAR-10. a The indices

of iterative convergence demonstrate that the PCRs indeed converge. b As the error rate on

CIFAR-10 indicates, PCRs tend to perform a bit worse than the improperly convergent

ResNets we studied in the main article.

(PDF)

S3 Fig. Additional experiments on gradient-coupled ResNets. a Performance of gradient-

coupled ResNets on variations of Digitclutter with a different number of overlapping digits

and different size of training data. b Performance of gradient-coupled ResNets on CIFAR-100,

c CIFAR-10 with few training data, and d MNIST.

(PDF)

S4 Fig. Performance of training variations on CIFAR-10. a The effect of initializing batch-

norm with γ = 0.1 instead of γ = 1. b The effect of using a triangular kernel for gradient cou-

pling instead of a uniform kernel. c A variation of gradient coupling where the first five blocks

in each stage were uncoupled.

(PDF)

S5 Fig. The indices of iterative convergence plotted against the coupling parameters for

the different training variations.

(PDF)

S1 File. Repository for the model training and analysis. This repository contains the code to

train the models, the resulting performance metrics, and code to analyse these metrics.

(ZIP)
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