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Testing the limits of natural language models 
for predicting human language judgements

Tal Golan    1,2,6 , Matthew Siegelman3,6, Nikolaus Kriegeskorte    1,3,4,5  
& Christopher Baldassano    3

Neural network language models appear to be increasingly aligned with how 
humans process and generate language, but identifying their weaknesses 
through adversarial examples is challenging due to the discrete nature of 
language and the complexity of human language perception. We bypass 
these limitations by turning the models against each other. We generate 
controversial sentence pairs where two language models disagree about 
which sentence is more likely to occur. Considering nine language models 
(including n-gram, recurrent neural networks and transformers), we created 
hundreds of controversial sentence pairs through synthetic optimization 
or by selecting sentences from a corpus. Controversial sentence pairs 
proved highly effective at revealing model failures and identifying models 
that aligned most closely with human judgements of which sentence is 
more likely. The most human-consistent model tested was GPT-2, although 
experiments also revealed substantial shortcomings in its alignment with 
human perception.

Neural network language models are not only key tools in natural lan-
guage processing (NLP), but are also drawing an increasing scientific 
interest as potential models of human language processing. Ranging 
from recurrent neural networks (RNNs)1,2 to transformers3–7, each of 
these language models (explicitly or implicitly) defines a probabil-
ity distribution over strings of words, predicting which sequences 
are likely to occur in natural language. There is substantial evidence 
from measures such as reading times8, functional magnetic resonance 
imaging (fMRI)9, scalp electroencephalograms10 and intracranial elec-
trocorticography (ECoG)11 that humans are sensitive to the relative 
probabilities of words and sentences as captured by language models, 
even among sentences that are grammatically correct and semanti-
cally meaningful. Furthermore, model-derived sentence probabilities 
can also predict human-graded acceptability judgements12,13. These 
successes, however, have not yet addressed two central questions of 
interest: (1) which of the models is best aligned with human language 
processing and (2) how close is the best-aligned model to the goal of 
fully capturing human judgements?

A dominant approach for evaluating language models is to use a 
set of standardized benchmarks such as those in the General Language 
Understanding Evaluation (GLUE)14, or its successor, SuperGLUE15. 
Though instrumental in evaluating the utility of language models 
for downstream NLP tasks, these benchmarks prove insufficient for 
comparing such models as candidate explanations of human language 
processing. Many components of these benchmarks do not aim to 
measure human alignment, but instead assess the usefulness of the 
models’ language representation when tuned to a specific downstream 
task. Some benchmarks challenge language models more directly by 
comparing the probabilities they assign to grammatical and ungram-
matical sentences (for example, BLiMP16). However, because such 
benchmarks are driven by theoretical linguistic considerations, they 
might fail to detect novel and unexpected ways in which language 
models may diverge from human language understanding. Finally, an 
additional practical concern is that the rapid pace of NLP research has 
led to quick saturation of these types of static benchmark, making it 
difficult to distinguish between models17.
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Efficient model comparison using natural controversial pairs
As a baseline, we randomly sampled and paired eight-word sentences 
from a corpus of Reddit comments. However, as shown in Fig. 1a, these 
sentences fail to uncover meaningful differences between the models. 
For each sentence pair, all models tend to prefer the same sentence 
(Extended Data Fig. 2), and therefore perform similarly in predicting 
human preference ratings (Supplementary section 2.1).

We can instead use an optimization procedure (Supplemen-
tary section 1.2) to search for controversial sentence pairs, in which 
one language model assigns a high probability (above the median 
probability for natural sentences) only to sentence 1 and a second 
language model assigns a high probability only to sentence 2 (exam-
ples are presented in Table 1). Measuring each model’s accuracy in 
predicting human choices for sentence pairs in which it was one of 
the two targeted models indicated many significant differences in 
terms of model–human alignment (Fig. 1b), with GPT-2 and RoB-
ERTa showing the best human consistency and 2-gram the worst. 
We can also compare each model pair separately (using only the 
stimuli targeting that model pair), yielding a similar pattern of pair-
wise dominance (Extended Data Fig. 3a). All models except GPT-2, 
RoBERTa and ELECTRA performed significantly below our lower 
bound on the noise ceiling (the accuracy obtained by predicting 
each participant’s responses from the other participants’ responses), 
indicating a misalignment between these models’ predictions and 
human judgements that was only revealed when using controversial  
sentence pairs.

Greater model disentanglement with synthetic sentence pairs
Selecting controversial natural-sentence pairs may provide greater 
power than randomly sampling natural-sentence pairs, but this search 
procedure considers a very limited part of the space of possible sen-
tence pairs. Instead, we can iteratively replace words in a natural sen-
tence to drive different models to make opposing predictions, forming 
synthetic controversial sentences that may lie outside any natural 
language corpora, as illustrated in Fig. 2 (see Methods, ‘Generating 
synthetic controversial sentence pairs’ for full details). Examples of 
controversial synthetic-sentence pairs that maximally contributed to 
the models’ prediction error are shown in Table 2.

We evaluated how well each model predicted the human sentence 
choices in all of the controversial synthetic-sentence pairs in which the 
model was one of the two models targeted (Fig. 3a). This evaluation 
of model–human alignment resulted in an even greater separation 
between the models’ prediction accuracies than was obtained when 
using controversial natural-sentence pairs, pushing the weaker models 
(RNN, 3-gram and 2-gram) far below the 50% chance accuracy level. 
GPT-2, RoBERTa and ELECTRA were found to be significantly more accu-
rate than the alternative models (BERT, XLM, LSTM, RNN, 3-gram and 
2-gram) in predicting the human responses to these trials (with similar 
results when comparing model pair separately; Extended Data Fig. 3b). 
All of the models except for GPT-2 were found to be significantly below 
the lower bound on the noise ceiling, demonstrating misalignment 
with human judgements.

Pairs of natural and synthetic sentences uncover blindspots
Finally, we considered trials in which the participants were asked to 
choose between a natural sentence and one of the synthetic sentences, 
which was generated from that natural sentence. If the language model 
is fully aligned with human judgements, we would expect humans to 
agree with the model and select the synthetic sentence at least as 
much as the natural sentence. In reality, human participants showed 
a systematic preference for the natural sentences over their synthetic 
counterparts (Fig. 3b), even when the synthetic sentences were formed 
such that the stronger models (that is, GPT-2, RoBERTA or ELECTRA) 
favoured them over the natural sentences (Extended Data Table 1 pre-
sents examples). Evaluating natural sentence preference separately for 

One proposed solution to these issues is the use of dynamic 
human-in-the-loop benchmarks where people actively stress-test 
models with an evolving set of tests. However, this approach faces the 
major obstacle that ‘finding interesting examples is rapidly becom-
ing a less trivial task’17. We propose to complement human-curated 
benchmarks with model-driven evaluation. Guided by model predic-
tions rather than experimenter intuitions, we would like to identify 
particularly informative test sentences, where different models make 
divergent predictions. This approach of running experiments that 
are mathematically optimized to ‘put in jeopardy’ particular models 
belongs to a long-standing scientific philosophy of design optimiza-
tion18. We can find these critical sentences in large corpora of natural 
language or synthesize novel test sentences that reveal how different 
models generalize beyond their training distributions.

In this Article we propose a systematic, model-driven approach 
for comparing language models in terms of their consistency with 
human judgements. We generate controversial sentence pairs—pairs of 
sentences designed such that two language models strongly disagree 
about which sentence is more likely to occur. In each of these sentence 
pairs, one model assigns a higher probability to the first sentence 
than the second sentence, while the other model prefers the second 
sentence to the first. We then collect human judgements of which 
sentence in each pair is more probable to settle this dispute between 
the two models.

This approach builds on previous work on controversial images 
for models of visual classification19. That work relied on absolute judge-
ments of a single stimulus, which are appropriate for classification 
responses. However, asking the participants to rate each sentence’s 
probability on an absolute scale is complicated by between-trial 
context effects common in magnitude estimation tasks20–22, which 
have been shown to impact judgements like acceptability23. A binary 
forced-choice behavioural task presenting the participants with a 
choice between two sentences in each trial, the approach we used 
here, minimizes the role of between-trial context effects by setting 
an explicit local context within each trial. Such an approach has been 
used previously for measuring sentence acceptability24 and provides 
substantially more statistical power compared to designs in which 
acceptability ratings are provided for single sentences25.

Our experiments demonstrate that (1) it is possible to procedur-
ally generate controversial sentence pairs for all common classes of 
language models, either by selecting pairs of sentences from a corpus 
or by iteratively modifying natural sentences to yield controversial 
predictions; (2) the resulting controversial sentence pairs enable effi-
cient model comparison between models that otherwise are seem-
ingly equivalent in their human consistency; and (3) all current NLP 
model classes incorrectly assign high probability to some non-natural 
sentences (one can modify a natural sentence such that its model prob-
ability does not decrease but human observers reject the sentence as 
unnatural). This framework for model comparison and model testing 
can give us new insight into the classes of model that best align with 
human language perception and suggest directions for future model 
development.

Results
We acquired judgements from 100 native English speakers tested 
online. In each experimental trial, the participants were asked to judge 
which of two sentences they would be ‘more likely to encounter in the 
world, as either speech or written text’, and provided a rating of their 
confidence in their answer on a three-point scale (Extended Data Fig. 1  
provides a trial example). The experiment was designed to compare 
nine different language models (Supplementary section 1.1): probabil-
ity models based on corpus frequencies of two-word and three-word 
sequences (2-grams and 3-grams) and a range of neural network models 
including an RNN, a long short-term memory network (LSTM) and 
five transformer models (BERT, RoBERTa, XLM, ELECTRA and GPT-2).
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each model pairing (Extended Data Fig. 4), we find that these imper-
fections can be uncovered even when pairing a strong model with a 
relatively weak model (such that the strong model accepts the synthetic 
sentence and the weak model rejects it).

Evaluating the entire dataset reveals a hierarchy of models
Rather than evaluating each model’s prediction accuracy with respect 
to the particular sentence pairs that were formed to compare this model 
to alternative models, we can maximize our statistical power by com-
puting the average prediction accuracy for each model with respect 
to all of the experimental trials we collected. Furthermore, rather than 
binarizing the human and model judgements, here we measure the 
ordinal correspondence between the graded human choices (taking 
confidence into account) and the log ratio of the sentence probabilities 
assigned by each candidate model. Using this more sensitive bench-
mark (Fig. 4), we found GPT-2 to be the most human-aligned, followed 
by RoBERTa, then ELECTRA, BERT, XLM and LSTM, and the RNN, 3-gram 
and 2-gram models. However, all of the models (including GPT-2) were 

found to be significantly less accurate than the lower bound on the 
noise ceiling.

One possible reason for the poorer performance of the bidirec-
tional transformers (RoBERTa, ELECTRA, BERT and XLM) compared 
to the unidirectional transformer (GPT-2) is that computing sentence 
probabilities in these models is complex, and the probability estima-
tor we developed (see Methods, ‘Evaluating sentence probabilities 
in tranformer models’) could be non-optimal; indeed, the popular 
pseudo-log-likelihood (PLL) approach yields slightly higher accuracy 
for randomly sampled natural-sentence pairs (Extended Data Fig. 5a).  
Yet, when we directly compared our estimator to PLL by means of 
generating and administrating new synthetic controversial sentences, 
our estimator was found to be markedly better aligned to human judge-
ments (Extended Data Fig. 5b and Extended Data Table 2).

Finally, a control analysis employing probability measures normal-
ized by token count revealed that such normalization had a minimal 
influence on the observed differences among models (Supplementary 
section 2.2 and Supplementary Fig. 1).
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Fig. 1 | Model comparison using natural sentences. a, Left: percentile-
transformed sentence probabilities for GPT-2 and RoBERTa (defined relative 
to all sentences used in the experiment) for randomly sampled pairs of natural 
sentences. Each pair of connected circles depicts one sentence pair. The two 
models are highly congruent in their rankings of sentences within a pair (lines 
have an upward slope). Right: accuracy of model predictions of human choices, 
measured as the proportion of trials in which the same sentence was preferred 
by both the model and the human participant. Each circle depicts the prediction 
accuracy of one candidate model averaged across a group of ten participants 
presented with a unique set of trials. The coloured bars depict grand averages 
across all 100 participants. The grey bar is the noise ceiling, with its left and right 
edges being lower and upper bounds on the grand-average performance an ideal 
model would achieve (based on the consistency across human subjects). There 

were no significant differences in model performance on the randomly sampled 
natural sentences. b, Left: controversial natural-sentence pairs were selected 
such that the models’ sentence probability ranks were incongruent (lines have 
a downward slope). Right: controversial sentence pairs enable efficient model 
comparison, revealing that BERT, XLM, LSTM, RNN and the n-gram models 
perform significantly below the noise ceiling (asterisks indicate significance—
two-sided Wilcoxon signed-rank test, controlling the false discovery rate for nine 
comparisons at q < 0.05). On the right of the plot, each filled circle indicates a 
model significantly dominating the alternative models, indicated by open circles 
(two-sided Wilcoxon signed-rank test, controlling the false discovery rate for 
all 36 model pairs at q < 0.05). GPT-2 outperforms all models except RoBERTA at 
predicting human judgements.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | September 2023 | 952–964 955

Article https://doi.org/10.1038/s42256-023-00718-1

Discussion
In this study we have probed the ability of language models to predict 
human relative sentence probability judgements using controversial 
sentence pairs, selected or synthesized so that two models disagreed 
about which sentence was more probable. We found that (1) GPT-2 (a 
unidirectional transformer model trained on predicting upcoming 
tokens) and RoBERTa (a bidirectional transformer trained on a held-out 
token prediction task) were the most predictive of human judgements 

on controversial natural-sentence pairs (Fig. 1b); (2) GPT-2, RoBERTa 
and ELECTRA (a bidirectional transformer trained on detecting cor-
rupted tokens) were the most predictive of human judgements on 
pairs of sentences synthesized to maximize controversiality (Fig. 3a); 
and (3) GPT-2 was the most human-consistent model when considering 
the entire behavioural dataset we collected (Fig. 4). However, all of the 
models, including GPT-2, exhibited behaviour inconsistent with human 
judgements—using an alternative model as a counterforce, we could 

Table 1 | Examples of controversial natural-sentence pairs that maximally contributed to each model’s prediction error

Sentence Log probability (model 1) Log probability (model 2) No. of human choices

n1: Rust is generally caused by salt and sand. logp(n1|GPT-2) = −50.72 logp(n1|ELECTRA) = −38.54 10

n2: Where is Vernon Roche when you need him. logp(n2|GPT-2)= −32.26 logp(n2|ELECTRA) = −58.26 0

n1:  Excellent draw and an overall great smoking 
experience.

logp(n1|RoBERTa) = −67.78 logp(n1|GPT-2) = −36.76 10

n2: I should be higher and tied to inflation. logp(n2|RoBERTa) = −54.61 logp(n2|GPT-2) = −50.31 0

n1: You may try and ask on their forum. logp(n1|ELECTRA) = −51.44 logp(n1|LSTM) = −44.24 10

n2: I love how they look like octopus tentacles. logp(n2|ELECTRA) = −35.51 logp(n2|LSTM) = −66.66 0

 n1:  Grow up and quit whining about minor  
inconveniences.

logp(n1|BERT) = −82.74 logp(n1|GPT-2) = −35.66 10

n2: The extra a is the correct Sanskrit pronunciation. logp(n2|BERT) = −51.06 logp(n2|GPT-2) = −51.10 0

n1: I like my password manager for this reason. logp(n1|XLM) = −68.93 logp(n1|RoBERTa) = −49.61 10

n2: Kind of like clan of the cave bear. logp(n2|XLM) = −44.24 logp(n2|RoBERTa) = −67.00 0

n1: We have raised a generation of computer geeks. logp(n1|LSTM) = −66.41 logp(n1|ELECTRA) = −36.57 10

n2: I mean when the refs are being sketchy. logp(n2|LSTM) = −42.04 logp(n2|ELECTRA) = −52.28 0

n1: This is getting ridiculous and ruining the hobby. logp(n1|RNN) = −100.65 logp(n1|LSTM) = −43.50 10

n2: I think the boys and invincible are better. logp(n2|RNN) = −45.16 logp(n2|LSTM) = −59.00 0

n1: Then attach them with the supplied wood screws. logp(n1|3-gram) = −119.09 logp(n1|GPT-2) = −34.84 10

n2: Sounds like you were used both a dog. logp(n2|3-gram) = −92.07 logp(n2|GPT-2) = −52.84 0

n1: Cream cheese with ham and onions on crackers. logp(n1|2-gram) = −131.99 logp(n1|RoBERTa) = −54.62 10

n2: I may have to parallel process that drinking. logp(n2|2-gram) = −109.46 logp(n2|RoBERTa) = −70.69 0

For each model (double row, ‘model 1’), the table shows results for two sentences on which the model failed severely. In each case, the failing model 1 prefers sentence n2 (higher log 
probability in bold), while the model it was pitted against (‘model 2’) and all ten human subjects presented with that sentence pair prefer sentence n1. (When more than one sentence pair 
induced an equal maximal error in a model, the example included in the table was chosen at random.)
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Fig. 2 | Synthesizing controversial sentence pairs. The small open circles 
denote 500 randomly sampled natural sentences. The big open circle denotes the 
natural sentence used for initializing the controversial sentence optimization, 
and the filled circles are the resulting synthetic sentences. a, In this example, we 
start with the randomly sampled natural sentence ‘Luke has a ton of experience 
with winning’. If we adjust this sentence to minimize its probability according 
to GPT-2 (while keeping the sentence at least as likely as the natural sentence 
according to ELECTRA), we obtain the synthetic sentence ‘Nothing has a world 
of excitement and joys’. By repeating this procedure while switching the roles of 

the models, we generate the synthetic sentence ‘Diddy has a wealth of experience 
with grappling’, which decreases ELECTRA’s probability while slightly increasing 
that of GPT-2. b, In this example, we start with the randomly sampled natural 
sentence ‘I need to see how this played out’. If we adjust this sentence to minimize 
its probability according to RoBERTa (while keeping the sentence at least as likely 
as the natural sentence according to 3-gram), we obtain the synthetic sentence 
‘You have to realize is that noise again’. If we instead decrease only 3-gram’s 
probability, we generate the synthetic sentence ‘I wait to see how it shakes out’.
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corrupt natural sentences such that their probability under a model 
did not decrease, but humans tended to reject the corrupted sentence 
as unlikely (Fig. 3b).

Implications for computational psycholinguistic modelling
Unlike convolutional neural networks, whose architectural design prin-
ciples are roughly inspired by biological vision26, the design of current 
neural-network language models is largely uninformed by psycholin-
guistics and neuroscience. However, there is an ongoing effort to adopt 
and adapt neural-network language models to serve as computational 
hypotheses of how humans process language, making use of a variety 
of different architectures, training corpora and training tasks11,27–35. 
We found that RNNs make markedly human-inconsistent predictions 
once pitted against transformer-based neural networks. This finding 
coincides with recent evidence that transformers also outperform 
recurrent networks for predicting neural responses as measured by 
ECoG or fMRI11,32, as well as with evidence from model-based predic-
tion of human reading speed33,36 and N400 amplitude36,37. Among the 
transformers, GPT-2, RoBERTa and ELECTRA showed the best perfor-
mance. These models are trained to optimize only word-level prediction 
tasks, as opposed to BERT and XLM, which are additionally trained on 
next-sentence prediction and cross-lingual tasks, respectively (and have 
the same architecture as RoBERTa). This suggests that local word predic-
tion provides better alignment with human language comprehension.

Despite the agreement between our results and previous work in 
terms of model ranking, the significant failure of GPT-2 in predicting 
the human responses to natural versus synthetic controversial pairs  
(Fig. 3b) demonstrates that GPT-2 does not fully emulate the computa-
tions employed in human processing of even short sentences. This out-
come is in some ways unsurprising, given that GPT-2 (like all of the other 
models we considered) is an off-the-shelf machine-learning model 
that was not designed with human psycholinguistic and physiologi-
cal details in mind. However, the considerable human inconsistency 
we observed seems to stand in stark contrast with the recent report of 
GPT-2 explaining about 100% of the explainable variance in fMRI and 
ECoG responses to natural sentences32. Part of this discrepancy could be 
explained by the fact that Schrimpf et al.32 mapped GPT-2 hidden-layer 
activations to brain data by means of regularized linear regression, 
which can identify a subspace within GPT-2’s language representa-
tion that is well-aligned with brain responses even if GPT-2’s overall 
sentence probabilities are not human-like. More importantly, when 
language models are evaluated with natural language, strong statistical 
models might capitalize on features in the data that are distinct from, 
but highly correlated with, features that are meaningful to humans. 
Therefore, a model that performs well on typical sentences might 
employ computational mechanisms that are very distinct from the 
brain’s, which will only be revealed by testing the model in a more chal-
lenging domain. Note that, even the simplest model we considered—a 

Table 2 | Examples of controversial synthetic-sentence pairs that maximally contributed to each model’s prediction error

Sentence Log probability (model 1) Log probability (model 2) No. of human choices

s1: You can reach his stories on an instant. logp(s1|GPT-2) = −64.92 logp(s1|RoBERTa) = −59.98 10

s2:  Anybody can behead a rattles an an 
antelope.

logp(s2|GPT-2) = −40.45 logp(s2|RoBERTa) = −90.87 0

s1:  However they will still compare you to 
others.

logp(s1|RoBERTa) = −53.40 logp(s1|GPT-2) = −31.59 10

s2:  Why people who only give themselves to 
others.

logp(s2|RoBERTa) = −48.66 logp(s2|GPT-2) = −47.13 0

s1:  He healed faster than any professional 
sports player.

logp(s1|ELECTRA) = −48.77 logp(s1|BERT) = −50.21 10

s2: One gets less than a single soccer team. logp(s2|ELECTRA) = −38.25 logp(s2|BERT) = −59.09 0

s1: That is the narrative we have been sold. logp(s1|BERT) = −56.14 logp(s1|GPT-2) = −26.31 10

s2: This is the week you have been dying. logp(s2|BERT) = −50.66 logp(s2|GPT-2) = −39.50 0

s1:  The resilience is made stronger by early 
adversity.

logp(s1|XLM) = −62.95 logp(s1|RoBERTa) = −54.34 10

s2: Every thing is made alive by infinite Ness. logp(s2|XLM) = −42.95 logp(s2|RoBERTa) = −75.72 0

s1:  President Trump threatens to storm the 
White House.

logp(s1|LSTM) = −58.78 logp(s1|RoBERTa) = −41.67 10

s2:  West Surrey refused to form the White 
House.

logp(s2|LSTM) = −40.35 logp(s2|RoBERTa) = −67.32 0

s1: Las beans taste best with a mustard sauce. logp(s1|RNN) = −131.62 logp(s1|RoBERTa) = −60.58 10

s2:  Roughly lanes being alive in a statement 
ratings.

logp(s2|RNN) = −49.31 logp(s2|RoBERTa) = −99.90 0

s1:  You are constantly seeing people play the 
multi.

logp(s1|3-gram) = −107.16 logp(s1|ELECTRA) = −44.79 10

s2:  This will probably the happiest contradicts 
the hypocrite.

logp(s2|3-gram) = −91.59 logp(s2|ELECTRA) = −75.83 0

s1: A buyer can own a genuine product also. logp(s1|2-gram) = −127.35 logp(s1|ELECTRA) = −40.21 10

s2:  One versed in circumference of highschool 
I rambled.

logp(s2|2-gram) = −113.73 logp(s2|ELECTRA) = −92.61 0

For each model (double row, ‘model 1’), the table shows results for two sentences on which the model failed severely. In each case, the failing model 1 prefers sentence s2 (higher log probability 
in bold), while the model it was pitted against (‘model 2’) and all ten human subjects presented with that sentence pair prefer sentence s1. (When more than one sentence pair induced an equal 
maximal error in a model, the example included in the table was chosen at random.)
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2-gram frequency table—actually performed quite well on predicting 
human judgements for randomly sampled natural sentences, and its 
deficiencies only became obvious when challenged by controversial 
sentence pairs. We predict that there will be substantial discrepancies 
between neural representations and current language models when 
using stimuli that intentionally stress-test this relationship, using our 
proposed sentence-level controversiality approach or complemen-
tary ideas such as maximizing controversial transition probabilities 
between consecutive words38.

Using controversial sentences can be seen as a generalization 
test of language models: can models predict what kinds of change to a 
natural sentence will lead to humans rejecting the sentence as improb-
able? Humans are sometimes capable of comprehending language 
with atypical constructions (for example, in cases when pragmatic 
judgements can be made about a speaker’s intentions from environ-
mental and linguistic context39), but none of the models we tested were 
fully able to predict which syntactic or semantic perturbations would 
be accepted or rejected by humans. One possibility is that stronger 
next-word prediction models, using different architectures, learning 
rules or training data, might close the gap between models and humans. 

Alternatively, it might be that optimizing for other linguistic tasks, 
or even non-linguistic task demands (in particular, representing the 
external world, the self and other agents), will turn out to be critical 
for achieving human-like NLP40.

Controversial sentence pairs as adversarial attacks
Machine vision models are highly susceptible to adversarial exam-
ples41,42. Such adversarial examples are typically generated by choosing 
a correctly classified natural image and then searching for a minuscule 
(and therefore human-imperceptible) image perturbation that would 
change the targeted model’s classification. The prospect that similar 
covert model failure modes may exist also for language models has 
motivated proposed generalizations of adversarial methods to textual 
inputs43. However, imperceptible perturbations cannot be applied 
to written text: any modified word or character is humanly percepti-
ble. Previous work on adversarial examples for language models have 
instead relied on heuristic constraints aiming to limit the change in the 
meaning of the text, such as flipping a character44,45, changing number 
or gender46, or replacing words with synonyms47–49. However, because 
these heuristics are only rough approximations of human language 

a

b

Synthetic controversial sentence pairs

Synthetic versus natural sentences

100

80

60

40

20

0

Ro
BE

RT
a

p(
se

nt
en

ce
) p

er
ce

nt
ile

0 50

GPT-2
p(sentence) percentile

100

GPT-2

RoBERTa

ELECTRA

BERT

XLM

LSTM

RNN

3-gram

2-gram

Human-choice prediction accuracy (%)
0 25 50 75 100

Natural sentence Synthetic sentence

100

80

60

40

20

0

Ro
BE

RT
a

p(
se

nt
en

ce
) p

er
ce

nt
ile

0 50

GPT-2
p(sentence) percentile

100

GPT-2

RoBERTa

ELECTRA

BERT

XLM

LSTM

RNN

3-gram

2-gram

Human-choice prediction accuracy (%)
0 25 50 75 100

Fig. 3 | Model comparison using synthetic sentences. a, Left: percentile-
transformed sentence probabilities for GPT-2 and RoBERTa for controversial 
synthetic-sentence pairs. Each pair of connected circles depicts one sentence 
pair. Right: model prediction accuracy, measured as the proportion of trials 
in which the same sentence was preferred by both the model and the human 
participant. GPT-2, RoBERTa and ELECTRA significantly outperformed the other 
models (two-sided Wilcoxon signed-rank test, controlling the false discovery 
rate for all 36 model comparisons at q < 0.05). All of the models except for 
GPT-2 were found to perform below the noise ceiling (grey) of predicting each 
participant’s choices from the majority votes of the other participants (asterisks 
indicate significance—two-sided Wilcoxon signed-rank test, controlling the 
false discovery rate for nine comparisons at q < 0.05). b, Left: each connected 

triplet of circles depicts a natural sentence and its derived synthetic sentences, 
optimized to decrease the probability only under GPT-2 (left circles in a triplet) or 
only under RoBERTa (bottom circles in a triplet). Right: each model was evaluated 
across all of the synthetic-natural sentence pairs for which it was targeted to keep 
the synthetic sentence at least as probable as the natural sentence (Extended 
Data Fig. 6 presents the complementary data binning). This evaluation yielded 
a below-chance prediction accuracy for all of the models, which was also 
significantly below the lower bound on the noise ceiling. This indicates that, 
although the models assessed that these synthetic sentences were at least as 
probable as the original natural sentence, humans disagreed and showed a 
systematic preference for the natural sentence. See the caption to Fig. 1 for 
details on the visualization conventions used in this figure.
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processing, many of these methods fail to preserve semantic meaning50. 
Interactive (‘human-in-the-loop’) adversarial approaches allow human 
subjects to repeatedly alter model inputs such that it confuses target 
models but not secondary participants17,51, but these approaches are 
inherently slow and costly and are limited by mental models the human 
subjects form about the evaluated language models.

By contrast, testing language models on controversial sentence 
pairs does not require approximating or querying a human ground 
truth during optimization—the objective of controversiality is inde-
pendent of correctness. Instead, by designing inputs to elicit conflict-
ing predictions among the models and assessing human responses 
to these inputs only once the optimization loop has terminated, we 
capitalize on the simple fact that if two models disagree with respect 
to an input, at least one of the models must be making an incorrect 
prediction. Pitting language models against other language models 
can also be conducted by other approaches such as ‘red-teaming’, 
where an alternative language model is used as a generator of potential 
adversarial examples for a targeted model, and a classifier is used to 
filter the generated examples such that the output they induce in the 
targeted model is indeed incorrect52. Our approach shares the under-
lying principle that an alternative language model can drive a more 
powerful test than handcrafted heuristics, but here the models have 
symmetric roles (there are no ‘attacking’ and ‘attacked’ models) and we 
can optimize stimuli directly without relying on filtering.

Limitations and future directions
Although our results demonstrate that using controversial stimuli can 
identify subtle differences in language models’ alignment with human 
judgements, our study was limited in a number of ways. Our stimuli were 
all eight-word English sentences, limiting our ability to make cognitively 
meaningful claims that apply to language use globally. Eight-word 
sentences are long enough to include common syntactic construc-
tions and convey meaningful ideas, but may not effectively probe 
long-distance syntactic dependencies53. Future work may introduce 
additional sentence lengths and languages, as well as (potentially adap-
tive) controversial sentence optimization procedures that consider 
large sets of candidate models, allowing for greater model coverage 
than our simpler pairwise approach. Future work may also comple-
ment the model-comparative experimental design with procedures 
designed to identify potential failure modes common to all models.

A more substantial limitation of the current study is that, like 
any comparison of pre-trained neural networks as potential models 

of human cognition, there could be multiple reasons (training data, 
architecture, training tasks and learning rules) why particular models 
are better aligned with human judgements. For example, as we did 
not systematically control the training corpora used for training the 
models, it is possible that some of the observed differences are due 
to differences in the training sets rather than the model architecture. 
Therefore, although our results expose failed model predictions, they 
do not readily answer why these failed predictions arise. Future experi-
ments could compare custom-trained or systematically manipulated 
models, which reflect specific hypotheses about human language 
processing. In Extended Data Fig. 5, we demonstrate the power of 
using synthetic controversial stimuli to conduct sensitive comparisons 
between models with subtle differences in how sentence probabilities 
are calculated.

It is important to note that our analyses considered human relative 
probability judgements as reflecting a scalar measure of acceptability. 
We made this assumption to bring the language models (which assign 
a probability measure to each sentence) and the human participants 
onto a common footing. However, it is possible that different types of 
sentence pair engage different human cognitive processes. For pairs of 
synthetic sentences, both sentences may be unacceptable in different 
ways (for example, exhibit different kinds of grammatical violation), 
requiring a judgement that weighs the relative importance of multiple 
dimensions54 and could therefore produce inconsistent rankings across 
participants or across trials55. By contrast, asking participants to com-
pare a natural sentence and a synthetic sentence (Fig. 3b and Extended 
Data Table 1) may be more analogous to previous work measuring 
human acceptability judgements for sentence pairs24. Nonetheless, 
it is worth noting that for all of the controversial conditions, the noise 
ceiling was significantly above the models’ prediction accuracy, indicat-
ing non-random human preferences unexplained by current models 
that should be accounted for by future models, which may have to be 
more complex and capture multiple processes.

Finally, the use of synthetic controversial sentences can be 
extended beyond probability judgements. A sufficiently strong lan-
guage model may enable constraining the experimental design search 
space to particular sentence distributions (for example, movie reviews 
or medical questions). Given such a constrained space, we may be able 
to search for well-formed sentences that elicit contradictory predic-
tions in alternative domain-specific models (for example, sentiment 
classifiers or question-answering models). However, as indicated by our 
results, the task of capturing distributions of well-formed sentences 
is less trivial than it seems.

Methods
Language models
We tested nine models from three distinct classes: n-gram models, RNNs 
and transformers. The n-gram models were trained with open-source 
code from the Natural Language Toolkit56, the RNNs were trained with 
architectures and optimization procedures available in PyTorch57, and 
the transformers were implemented with the open-source repository 
HuggingFace58. For full details see Supplementary section 1.1.

Evaluating sentence probabilities in transformer models
We then sought to compute the probability of arbitrary sentences 
under each of the models described above. The term ‘sentence’ is used 
in this context in its broadest sense—a sequence of English words, not 
necessarily restricted to grammatical English sentences. Unlike some 
classification tasks in which valid model predictions may be expected 
only for grammatical sentences (for example, sentiment analysis), the 
sentence probability comparison task is defined over the entire domain 
of eight-word sequences.

For the set of unidirectional models, evaluating sentence prob-
abilities was performed simply by summing the log probabilities of 
each successive token in the sentence from left to right, given all the 
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and models’ sentence pair probability
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Fig. 4 | Ordinal correlation of the models’ sentence probability log ratios and 
human Likert ratings. For each sentence pair, model prediction was quantified 

by log p(s1|m)
p(s2|m)

. This log ratio was correlated with the Likert ratings of each 

particular participant, using signed-rank cosine similarity (Methods). This 
analysis, taking all trials and human confidence level into account, indicates that 
GPT-2 performed best in predicting human sentence probability judgements. 
However, its predictions are still significantly misaligned with the human choices. 
See the caption to Fig. 1 for details on the visualization convention.
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previous tokens. For bidirectional models, this process was not as 
straightforward. One challenge is that transformer model probabilities 
do not necessarily reflect a coherent joint probability; the summed 
log sentence probability resulting from adding words in one order 
(for example, left to right) does not necessarily equal the probability 
resulting from a different order (for example, right to left). Here we 
developed a novel formulation of bidirectional sentence probabilities 
in which we considered all permutations of serial word positions as 
possible construction orders (analogous to the random word visita-
tion order used to sample serial reproduction chains59). In practice, 
we observed that the distribution of log probabilities resulting from 
different permutations tends to centre tightly around a mean value (for 
example, for RoBERTa evaluated with natural sentences, the average 
coefficient of variation was ~0.059). Therefore, to efficiently calculate 
bidirectional sentence probability, we evaluate 100 different random 
permutations and define the overall sentence log probability as the 
mean log probability calculated from each permutation. Specifically, 
we initialized an eight-word sentence with all tokens replaced with 
the ‘mask’ token used in place of to-be-predicted words during model 
training. We selected a random permutation P of positions 1 to 8, and 
started by computing the probability of the word at the first of these 
positions P1, given the other seven ‘mask’ tokens. We then replaced the 
‘mask’ at position P1 with the actual word at this position and computed 
the probability of the word at P2 given the other six ‘mask’ tokens and 
the word at P1. This process was repeated until all ‘mask’ tokens had 
been filled by the corresponding word.

A secondary challenge in evaluating sentence probabilities in 
bidirectional transformer models stems from the fact that these mod-
els use word-piece tokenizers (as opposed to whole words), and that 
these tokenizers are different for different models. For example, one 
tokenizer might include the word ‘beehive’ as a single token, whereas 
others strive for a smaller library of unique tokens by evaluating ‘bee-
hive’ as the two tokens ‘bee’ and ‘hive’. The model probability of a 
multi-token word—similar to the probability of a multi-word sentence—
may depend on the order in which the chain rule is applied. Therefore, 
all unique permutations of token order for each multi-token word were 
also evaluated within their respective masks. For example, the prob-
ability of the word ‘beehive’ would be evaluated as follows:

logp(w = beehive)

= 0.5 (logp(w1 = bee|w2 = MASK) + logp(w2 = hive|w1 = bee))

+0.5 (logp(w2 = hive|w1 = MASK) + logp(w1 = bee|w2 = hive))

(1)

This procedure aimed to yield a fairer estimate of the conditional 
probabilities of word-piece tokens and therefore the overall probabili-
ties of multi-token words by (1) ensuring that the word-piece tokens 
were evaluated within the same context of surrounding words and 
masks and (2) eliminating the bias of evaluating the word-piece tokens 
in any one particular order in models that were trained to predict 
bidirectionally.

One more procedure was applied to ensure that all models were 
computing a probability distribution over sentences with exactly 
eight words. When evaluating the conditional probability of a masked 
word in models with word-piece tokenizers, we normalized the model 
probabilities to ensure that only single words were being considered, 
rather than splitting the masked tokens into multiple words. At each 
evaluation step, each token was restricted to come from one of four 
normalized distributions: (1) single-mask words were restricted to be 
tokens with appended white space, (2) masks at the beginning of a word 
were restricted to be tokens with preceding white space (in models 
with preceding white space, for example BERT), (3) masks at the end of 
words were restricted to be tokens with trailing white space (in models 
with trailing white space, for example XLM) and (4) masks in the mid-
dle of words were restricted to tokens with no appended white space.

Assessing potential token count effects on sentence 
probabilities
Note that, because tokenization schemes varied across models, the 
number of tokens in a sentence could differ for different models. These 
alternative tokenizations can be conceived of as different factoriza-
tions of the modelled language distribution, changing how a sen-
tence’s log probability is additively partitioned across the conditional 
probability chain (but not affecting its overall probability)60. Had we 
attempted to normalize across models by dividing the log probability 
by the number of tokens, as is often done when aligning model predic-
tions to human acceptability ratings12,13, our probabilities would have 
become strongly tokenization-dependent60. To empirically confirm 
that tokenization differences were not driving our results, we statisti-
cally compared the token counts of each model’s preferred synthetic 
sentences with the token counts of their non-preferred counterparts. 
Although we found significant differences for some of the models, 
there was no systematic association between token count and model 
sentence preferences (Supplementary Table 1). In particular, lower 
sentence probabilities were not systematically confounded by higher  
token counts.

Defining a shared vocabulary
To facilitate the sampling, selection and synthesis of sentences that 
could be evaluated by all of the candidate models, we defined a shared 
vocabulary of 29,157 unique words. Defining this vocabulary was neces-
sary to unify the space of possible sentences between the transformer 
models (which can evaluate any input due to their word-piece tokeniz-
ers) and the neural network and n-gram models (which include whole 
words as tokens), and to ensure we only included words that were suffi-
ciently prevalent in the training corpora for all models. The vocabulary 
consisted of the words in the SUBTLEX database61, after removing words 
that occurred fewer than 300 times in the 300-million-word corpus (see 
Supplementary section 1.1) used to train the n-gram and RNN models 
(that is, with frequencies lower than one in a million).

Sampling of natural sentences
Natural sentences were sampled from the same four text sources used 
to construct the training corpus for the n-gram and RNN models, while 
ensuring that there was no overlap between training and testing sen-
tences. Sentences were filtered to include only those with eight distinct 
words and no punctuation aside from periods, exclamation points 
or question marks at the end of a sentence. Then, all eight-word sen-
tences were further filtered to include only the words included in the 
shared vocabulary and to exclude those included in a predetermined 
list of inappropriate words and phrases. To identify controversial 
pairs of natural sentences, we used integer linear programming to 
search for sentences that had above-median probability in one model 
and minimum probability rank in another model (Supplementary  
section 1.2).

Generating synthetic controversial sentence pairs
For each pair of models, we synthesized 100 sentence triplets. Each tri-
plet was initialized with a natural sentence n (sampled from Reddit). The 
words in sentence n were iteratively modified to generate a synthetic 
sentence with reduced probability according to the first model but not 
according to the second model. This process was repeated to generate 
another synthetic sentence from n, in which the roles of the two models 
were reversed. Conceptually, this approach resembles maximum dif-
ferentiation (MAD) competition62, introduced to compare models of 
image quality assessment. Each synthetic sentence was generated as 
a solution for a constrained minimization problem:

s∗ = argmin
s

logp (s|mreject)

subject to logp (s|maccept) ≥ logp (n|maccept)
(2)
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where mreject denotes the model targeted to assign reduced sentence 
probability to the synthetic sentence compared to the natural sen-
tence, and maccept denotes the model targeted to maintain a synthetic 
sentence probability greater or equal to that of the natural sentence. 
For one synthetic sentence, one model served as maccept and the other 
model as mreject, and for the other synthetic sentence the model roles 
were flipped.

At each optimization iteration, we selected one of the eight words 
pseudorandomly (so that all eight positions would be sampled N times 
before any position would be sampled N + 1 times) and searched the 
shared vocabulary for the replacement word that would minimize 
logp(s|mreject) under the constraint. We excluded potential replace-
ment words that already appeared in the sentence, except for a list 
of 42 determiners and prepositions such as ‘the’, ‘a’ or ‘with’, which 
were allowed to repeat. The sentence optimization procedure was 
concluded once eight replacement attempts (that is, words for which 
no loss-reducing replacement had been found) have failed in a row.

Word-level search for bidirectional models
For models for which the evaluation of logp(s|m) is computationally 
cheap (2-gram, 3-gram, LSTM and the RNN), we directly evaluated the 
log probability of the 29,157 sentences resulting from each of the 29,157 
possible word replacements. When such probability vectors were avail-
able for both models, we simply chose the replacement minimizing 
the loss. For GPT-2, whose evaluation is slower, we evaluated sentence 
probabilities only for word replacements for which the new word had a 
conditional log probability (given the previous words in the sentence) 
of no less than −10; in rare cases when this threshold yielded fewer than 
ten candidate words, we reduced the threshold in steps of five until 
there were at least ten words above the threshold. For the bidirectional 
models (BERT, RoBERTa, XLM and ELECTRA), for which the evaluation 
of logp(s|m) is costly even for a single sentence, we used a heuristic to 
prioritize which replacements to evaluate.

Since bidirectional models are trained as masked language 
models, they readily provide word-level completion probabilities. 
These word-level log probabilities typically have positive but imper-
fect correlation with the log probabilities of the sentences resulting 
from each potential completion. We hence formed a simple linear 
regression-based estimate of logp(s{i} ← w|m), the log probability of 
the sentence s with word w assigned at position i, predicting it from 
logp(s{i} = w|m, s{i} ← mask), the completion log probability of word 
w at position i, given the sentence with the ith word masked:

log ̂p(s{i} ← w|m) = β1 logp(s{i} = w|m, s{i} ← mask) + β0 (3)

This regression model was estimated from scratch for each 
word-level search. When a word was first selected for replacement, 
the log probability of two sentences was evaluated: the sentence result-
ing from substituting the existing word with the word with the highest 
completion probability and the sentence resulting from substituting 
the existing word with the word with the lowest completion prob-
ability. These two word-sentence log-probability pairs, as well as the 
word-sentence log-probability pair pertaining to the current word, 
were used to fit the regression line. The regression prediction, together 
with the sentence probability for the other model (either the exact 
probability, or approximate probability if the other model was also 
bidirectional) was used to predict logp(s|mreject) for each of the 29,157 
potential replacements. We then evaluated the true (non-approximate) 
sentence probabilities of the replacement word with the minimal pre-
dicted probability. If this word indeed reduced the sentence probabil-
ity, it was chosen to serve as the replacement and the word-level search 
was terminated (that is, proceeding to search a replacement for another 
word in the sentence). If it did not reduce the probability, the regression 
model (equation (3)) was updated with the new observation, and the 
next replacement expected to minimize the sentence probability was 

evaluated. This word-level search was terminated after five sentence 
evaluations that did not reduce the loss.

Selecting the best triplets from the optimized sentences
Because the discrete hill-climbing procedure described above is highly 
local, the degree to which this succeeded in producing highly contro-
versial pairs varied depending on the starting sentence n. We found 
that, typically, natural sentences with lower than average log prob-
ability gave rise to synthetic sentences with greater controversiality. 
To better represent the distribution of natural sentences while still 
choosing the best (most controversial) triplets for human testing, we 
used stratified selection.

First, we quantified the controversiality of each triplet as

cm1 ,m2 (n, s1, s2) = log p(n|m1)
p(s1|m1)

+ log p(n|m2)
p(s2|m2)

(4)

where s1 is the sentence generated to reduce the probability in model m1, 
and s2 is the sentence generated to reduce the probability in model m2.

We employed integer programming to choose the ten most con-
troversial triplets from the 100 triplets optimized for each model pair 
(maximizing the total controversiality across the selected triplets), 
while ensuring that, for each model, there was exactly one natural sen-
tence in each decile of the natural sentences probability distribution. 
The selected ten synthetic triplets were then used to form 30 unique 
experimental trials per model pair, comparing the natural sentence 
with one synthetic sentence, comparing the natural sentence with the 
other synthetic sentence, and comparing the two synthetic sentences.

Design of the human experiment
Our experimental procedures were approved by the Columbia Univer-
sity Institutional Review Board (protocol no. IRB-AAAS0252) and were 
performed in accordance with the approved protocol. All participants 
provided prior informed consent. We presented the controversial 
sentence pairs selected and synthesized by the language models to 
100 native English-speaking, US-based participants (55 male) recruited 
from Prolific (www.prolific.co), and paid each participant $US5.95. 
The average participant age was 34.08 ± 12.32 years. The subjects were 
divided into ten groups, and each ten-subject group was presented 
with a unique set of stimuli. Each stimulus set contained exactly one 
sentence pair from every possible combination of model pairs and 
the four main experimental conditions: selected controversial sen-
tence pairs; natural versus synthetic pair, where one model served as 
maccept and the other as mreject; a natural versus synthetic pair with the 
reverse model role assignments; and directly pairing the two synthetic 
sentences. These model-pair condition combinations accounted for 
144 (36 × 4) trials of the task. In addition to these trials, each stimulus 
set also included nine trials consisting of sentence pairs randomly 
sampled from the database of eight-word sentences (and not already 
included in any of the other conditions). All subjects also viewed 12 
control trials consisting of a randomly selected natural sentence and 
the same natural sentence with the words scrambled in a random order. 
The order of trials within each stimulus set as well as the left–right 
screen position of sentences in each sentence pair were randomized 
for all participants. Although each sentence triplet produced by the 
optimization procedure (section ‘Generating synthetic controversial 
sentence pairs’) gave rise to three trials, these were allocated such that 
no subject viewed the same sentence twice.

On each trial of the task, participants were asked to make a binary 
decision about which of the two sentences they considered more prob-
able (for the full set of instructions given to participants, see Supple-
mentary Fig. 2). In addition, they were asked to indicate one of three 
levels of confidence in their decision: somewhat confident, confident 
or very confident. The trials were not timed, but a 90-min time limit was 
enforced for the whole experiment. A progress bar at the bottom of the 
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screen indicated to participants how many trials they had completed 
and had remaining to complete.

We rejected the data of 21 participants who failed to choose 
the original, unshuffled sentence in at least 11 of the 12 control tri-
als, and acquired data from 21 alternative participants instead, all of 
whom passed this data-quality threshold. In general, we observed 
high agreement in sentence preferences among our participants, 
although the level of agreement varied across conditions. There 
was complete or near-complete agreement (at least nine of ten 
participants with the same binary sentence preference) in 52.2% 
of trials for randomly sampled natural-sentence pairs, 36.6% of 
trials for controversial natural-sentence pairs, 67.6% of trials for 
natural-synthetic pairs, and 60.0% of trials for synthetic-synthetic 
pairs (versus a chance rate of 1.1%, assuming a binomial distribution  
with p = 0.5).

Evaluation of model–human consistency
To measure the alignment on each trial between model judgements 
and human judgements, we binarized both measures: we determined 
which of the two sentences was assigned with a higher probability by 
the model, regardless of the magnitude of the probability difference, 
and which of the two sentences was favoured by the subject, regardless 
of the reported confidence level. When both the subject and model 
chose the same sentence, the trial was considered as correctly pre-
dicted by that model. This correctness measure was averaged across 
sentence pairs and across the ten participants who viewed the same 
set of trials. For the lower bound on the noise ceiling, we predicted 
each subject’s choices from a majority vote of the nine other sub-
jects who were presented with the same trials. For the upper bound 
(that is, the highest possible accuracy attainable on this data sam-
ple), we included the subject themselves in this majority vote-based  
prediction.

As each of the ten participant groups viewed a unique trial set, 
these groups provided ten independent replications of the experi-
ment. Models were compared to each other and to the lower bound 
of the noise ceiling by a Wilcoxon signed-rank test using these ten 
independent accuracy outcomes as paired samples. For each analysis, 
the false discovery rate across multiple comparisons was controlled by 
the Benjamini–Hochberg procedure63.

In Fig. 4, we instead measure model–human consistency in a more 
continuous way, comparing the sentence probability ratio in a model to 
the graded Likert ratings provided by humans (Supplementary section 
1.3 presents full details).

Selecting trials for model evaluation
All of the randomly sampled natural-sentence pairs (Fig. 1a) were evalu-
ated for each of the candidate models. Controversial sentence pairs, 
either natural (Fig. 1b) or synthetic (Fig. 3), were included in a model’s 
evaluation set only if they were formed to target that model specifi-
cally. The overall summary analysis (Fig. 4) evaluated all models on all 
available sentence pairs.

Comparison to pseudo-log-likelihood acceptability measures
Wang and Cho64 proposed an alternative approach for computing 
sentence probabilities in bidirectional (BERT-like) models, using a 
pseudo-log-likelihood measure that simply sums the log probability 
of each token conditioned on all of the other tokens in the sentence. 
Although this measure does not reflect a true probability distribu-
tion65, it is positively correlated with human acceptability judgements 
for several bidirectional models13,66. To directly compare this exist-
ing approach to our novel method for computing probabilities, we 
again used the method of controversial sentence pairs to identify the 
approach most aligned with human judgements. For each bidirec-
tional model (BERT, RoBERTa and ELECTRA), we created two copies 
of the model, each using a different approach for computing sentence 

probabilities. We synthesized 40 sentence pairs to maximally differen-
tiate between the two copies of each model, with each copy assigning 
a higher probability to a different sentence in the pair. Subsequently, 
we tested 30 human participants, presenting each participant with 
all 120 sentence pairs. Model–human consistency was quantified as 
in the main experiment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this Article.

Data availability
The experimental stimuli, detailed behavioural testing results and code 
for reproducing all analyses and figures are available at github.com/
dpmlab/contstimlang (ref. 67).

Code availability
Sentence optimization code is available at github.com/dpmlab/con-
tstimlang (ref. 67).
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Extended Data Fig. 1 | An example of one experimental trial, as presented to the participants. The participant must choose one sentence while providing their 
confidence rating on a 3-point scale.
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Extended Data Fig. 2 | Between-model agreement rate on the probability 
ranking of the 90 randomly sampled and paired natural sentence pairs 
evaluated in the experiment. Each cell represents the proportion of sentence 

pairs for which two models make congruent probability ranking (that is, both 
models assign a higher probability to sentence 1, or both models assign a higher 
probability to sentence 2).
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Extended Data Fig. 3 | Pairwise model comparison of model-human 
consistency. For each pair of models (represented as one cell in the matrices 
above), the only trials considered were those in which the stimuli were either 
selected (a) or synthesized (b) to contrast the predictions of the two models. For 
these trials, the two models always made controversial predictions (that is, one 
sentence is preferred by the first model and the other sentence is preferred by the 

second model). The matrices above depict the proportion of trials in which the 
binarized human judgments aligned with the row model (‘model 1’). For example, 
GPT-2 (top-row) was always more aligned (green hues) with the human choices 
than its rival models. In contrast, 2-gram (bottom-row) was always less aligned 
(purple hues) with the human choices than its rival models.
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Extended Data Fig. 4 | Pairwise model analysis of human response for natural 
vs. synthetic sentence pairs. In each optimization condition, a synthetic 
sentence s was formed by modifying a natural sentence n so the synthetic 
sentence would be ‘rejected’ by one model (mreject, columns), minimizing  
p(s∣mreject), and would be ‘accepted’ by another model (maccept, rows), satisfying 
the constraint p(s∣maccept)≥p(n∣maccept). Each cell above summarizes model-human 
agreement in trials resulting from one such optimization condition. The color 
of each cell denotes the proportion of trials in which humans judged a synthetic 

sentence to be more likely than its natural counterpart and hence aligned with 
maccept. For example, the top-right cell depicts human judgments for sentence 
pairs formed to minimize the probability assigned to the synthetic sentence by 
the simple 2-gram model while ensuring that GPT-2 would judge the synthetic 
sentence to be at least as likely as the natural sentence; humans favored the 
synthetic sentence in only 22 out the 100 sentence pairs in this condition.
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Extended Data Fig. 5 | Human consistency of bidirectional transformers: 
approximate log-likelihood versus pseudo-log-likelihood (PLL). Each dot 
in the plots above depicts the ordinal correlation between the judgments of 
one participant and the predictions of one model. (a) The performance of 
BERT, RoBERTa, and ELECTRA in predicting the human judgments of randomly 
sampled natural sentence pairs in the main experiment, using two different 
likelihood measures: our novel approximate likelihood method (that is, 
averaging multiple conditional probability chains, see Methods) and pseudo-
likelihood (PLL, summating the probability of each word given all of the other 
words64). For each model, we statistically compared the two likelihood measures 
to each other and to the noise ceiling using a two-sided Wilcoxon signed-rank 
test across the participants. False discovery rate was controlled at q < 0.05 for the 
9 comparisons. When predicting human preferences of natural sentences, 

the pseudo-log-likelihood measure is at least as accurate as our proposed 
approximate log-likelihood measure. (b) Results from a follow-up experiment, 
in which we synthesized synthetic sentence pairs for each of the model pairs, 
pitting the two alternative likelihood measures against each other. Statistical 
testing was conducted in the same fashion as in panel a. These results indicate 
that for each of the three bidirectional language models, the approximate log-
likelihood measure is considerably and significantly (q < 0.05) more human-
consistent than the pseudo-likelihood measure. Synthetic controversial 
sentence pairs uncover a dramatic failure mode of the pseudo-log-likelihood 
measure, which remains covert when the evaluation is limited to randomly-
sampled natural sentences. See Extended Data Table 2 for synthetic sentence 
pair examples.
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Extended Data Fig. 6 | Model prediction accuracy for pairs of natural and 
synthetic sentences, evaluating each model across all of the sentence pairs 
in which it was targeted to rate the synthetic sentence to be less probable 
than the natural sentence. The data binning applied here is complementary 
to the one used in Fig. 3b, where each model was evaluated across all of the 
sentence pairs in which it was targeted to rate the synthetic sentence to be at 

least as probable as the natural sentence. Unlike Fig. 3b, where all of the models 
performed poorly, here no models were found to be significantly below the lower 
bound on the noise ceiling; typically, when a sentence was optimized to decrease 
its probability under any model (despite the sentence probability not decreasing 
under a second model), humans agreed that the sentence became less probable.
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Extended Data Table 1 | Examples of pairs of synthetic and natural sentences that maximally contributed to each model’s 
prediction error

For each model (double row, ‘model 1’), the table shows results for two sentences on which the model failed severely. In each case, the failing model 1 prefers synthetic sentence s (higher log 
probability bolded), while the model it was pitted against (‘model 2’) and all 10 human subjects presented with that sentence pair prefer natural sentence n. (When more than one sentence 
pair induced an equal maximal error in a model, the example included in the table was chosen at random.
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Extended Data Table 2 | Examples of controversial synthetic-sentence pairs that maximally contributed to the prediction 
error of bidirectional transformers using pseudo-log-likelihood (PLL)

For each bidirectional model, the table displays two sentence pairs on which the model failed severely when its prediction was based on pseudo-log-likelihood (PLL) estimates64. In each of 
these sentence pairs, the PLL estimate favors sentence s2 (higher PLL bolded), while the approximate log-likelihood estimate and most of the human subjects presented with that sentence 
pair preferred sentence s1. (When more than one sentence pair induced an equal maximal error in a model, the example included in the table was chosen at random.) Sentences with 
long, multi-token words (for example, ‘methamphetamine’) have high PLL estimates since each of their tokens is well predicted by the other tokens. And yet, the entire sentence is 
improbable according to human judgments and approximate log-probability estimates based on proper conditional probability chains.
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