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Representational similarity analysis (RSA) is a method to characterize neural rep-

resentations and evaluate computational models based on neural representational

geometries. Here we present a wave of recent methodological advances, including

improved measures of representational distances, evaluators for representational mod-

els, and statistical inference methods, which are available to the community in a new

open-source toolbox in Python. The rsatoolbox enables neuroscientists to explore neu-

ral representational geometries and to evaluate neural network models, connecting

theory to experiment in the new era of big models and big data.
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1 Introduction

Neuroscience now has many methods to measure brain activity with ever increas-

ing precision and coverage. Recently, these improved methods have begun to be used

to collect large datasets of brain responses to natural stimuli [e.g. 1–6]. These large

datasets aim to constrain the complex computational models we need to capture the

complexity of brain processing in our complex world [7–9]. Recent advances in deep

learning and AI [10–13] now allows to develop complex models that can perform cog-

nitive tasks at scale. To connect our complex models to the large datasets poses a new

set of statistical challenges. Here we present an integrated methodology implemented

in an open-source Python toolbox that addresses these challenges.

The evaluation of models with neural activity measurements is usually based

on comparisons of internal representations, i.e. whether internal activities computed

from the input are similar. The data for such comparisons are matrices of activi-

ties with dimensions for the conditions and the measurement channels (fMRI Voxels,

MEG/EEG channels, neurons, electrodes/multiunit activities, features in a model,

etc.). We can compare these activity matrices, whether or not our brains and/or mod-

els represent the condition in a meaningful way. Representing something would imply

that these activity patterns are used for some computation [14–16], or at very least

provide information about the conditions.

We focus on a particular method for comparing representations called represen-

tational similarity analysis [RSA 17]. See section 3.3 for alternative approaches. RSA

compares models or brains based on the dissimilarities between the response patterns

elicited by the different conditions. These dissimilarities determine how well a down-

stream area could decode which condition was presented and the geometry of the

activity patterns [18]. Critically, RSA allows us to compare activity matrices without

creating a mapping between features and response channels. In practice, RSA entails

four steps: First, we pre-process data to estimate the activity pattern for each stimulus
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or condition. Second, we compute the dissimilarity between each pair of conditions for

both the data and the model. A matrix of dissimilarity values across all conditions is

called a Representational Dissimilarity Matrix (RDM). Third, we compare the RDMs.

Fourth, we perform statistical inference to estimate the uncertainty about our results.

RSA is historically rooted in the use of multidimensional scaling (MDS) to infer the

geometry of mental representations on the basis of behavioral data [19, 20] and in the

concept of second-order isomorphism, which posits that relationships among cognitive

representations are isomorphic to relationships among the things in the world that

they represent [21, 22].

RSA has enabled numerous and impactful research studies. The abstraction from

measurement channels inherent to RSA has allowed us to compare brains across

species [18, 23] and age groups [24]; across measurement modalities [25–27], and across

stimulus modalities (e.g. orthographic and visual [28], orthographic and phonologi-

cal [29], natural sounds [30]). RSA has been employed across many fields of study as

diverse as linguistics [31] anthropology [32] and computational psychiatry [33], but

particularly in neuroscience to study perception [e.g. 34–37] and memory [38–40].

Although RSA has predominantly been popular in human neuroimaging, there is a

growing body of literature with RSA on neural recordings [41–46]. Another promis-

ing avenue is that of relating Artificial Neural Network models to brain data using

RSA [25, 44, 47–57], but see [58]. RSA has been related to other analysis perspectives

such as neural tuning curves [59], linear encoding models [60, 61], generalized shape

metrics [62], kernel based methods [63], and pattern component modeling [64].

Since its inception many improvements were added to RSA, which make the

method more powerful, but require more complex implementations. First, statistical

considerations [65, 66] provide strong arguments in favor of other measures of dis-

similarity for the construction of RDMs than the classical correlation distance [17].

In particular, (squared) euclidean distances, Mahalanobis distances that take noise
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covariances into account, and cross-validated distances that remove the positive bias

contained in distances computed from noisy signals are now standard [65]. Second,

new metrics have been proposed for comparing RDMs: It has been proposed to use

a distance on the Riemannian manifold of positive semi-definite matrices [67]. It has

been proposed to use transformations of the distances that focus the analysis more

on topology [68, 69]. Finally, whitened cosine similarity and correlation were pro-

posed to compensate for the correlations between distances in the RDM [70]. Third,

the methodology for statistical inference in RSA has crystallized: In RSA, we usually

want to generalize over conditions as well as subjects, which requires complex boot-

strap methods for accurate inference [71]. Additionally, model evaluation for flexible

models is now possible by using cross-validation techniques [72]. Although the basic

principles of RSA are straightforward to implement, many of the improvements to

RSA are not. Thus, a wider adoption of the improvements requires a standardized

and validated implementation of the best practices for RSA.

Here, we present our new rsatoolbox, which fills this gap with an implementation

in Python that includes the new developments. We choose Python [73], because the

neuroscience community has adopted Python as a programming language of choice.

Python’s open-source nature and the batteries-included philosophy have led to a num-

ber of key tools, like NiBabel [74], the NIPY ecosystem [75], MNE [76], fMRIprep

[77], or Neurodata without borders [NWB; 78–80] and others [81–83]. Therefore, it

makes sense for our new library to plug into this growing ecosystem of Python tools

for neuroscientists.

The body of this manuscript follows the workflow of a typical RSA analysis with

new developments, their validation, best practice recommendations and a guide for

how these can be performed using the rsatoolbox with examples. Afterwards we discuss

the current state and outlook on how the toolbox may be extended in the future,
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Fig. 1 Processing flow for representational similarity analysis (RSA). Experimental stimuli
or conditions are presented to both the subjects and the model we want to test. Using an estimator
for the representational dissimilarity matrix (RDM), we compute the dissimilarities between all pairs
of stimuli. These matrices can then be compared using an RDM comparator. Uncertainty estimates
for the comparison results can be obtained from bootstrap resampling.

integration into the wider context of Python packages for neuroscience and compare

to alternative approaches for comparisons of brains and models.

2 Representational similarity analysis step by step

Step 1: Importing data and estimating activity patterns

Data to be analyzed with RSA varies widely in its dimensions and how it is annotated.

To bridge the gap between these varied data formats, the first analysis step is to bring

the raw data into a common input structure, the Dataset class (see Fig. 2 for an

overview). This class then provides methods for selection and organization and serves

as a standardized input format for the rest of the toolbox.

The main content of a Dataset object is a matrix of activity data, with rows cor-

responding to individual measurements and columns to measurement channels like

voxels, sensors, or neurons. Additionally, the object contains annotations, including
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the condition each measurement corresponds to and optional additional annotations

about the measurements and channels. To use cross-validated distance estimates (see

section 2.3), multiple independent estimates for the activity pattern for each condi-

tion are necessary. To enable this approach, the Dataset class can contain multiple

measurements for the same condition. While Dataset objects can be created simply

from a NumPy array and lists of annotations, we provide some modality-specific func-

tions that assist in importing data and processing it in a manner optimized for RSA

for ease of use.

Additional to the response strengths, some analyses require an estimate of the

signal covariance across measurement channels, i.e. of ‘noise correlations‘. There are

two main reasons to take this covariance into account: First, it aligns the distance

estimates better with statistical discriminability (as discussed more below). Second, it

can improve the reliability of distance estimates because channels with high variance

or strong correlations with other channels are given lower weights for the computation

of distances [65].

Given that different measurement modalities require different steps for estimating

activity patterns and their noise covariance, we briefly provide separate recommen-

dations for neural spiking data, fast averaged data like EEG, MEG or local field

potentials, fMRI data, and behavioral data.

Neural recordings/spiking data.

For neural data, we aim to extract a spike rate for each neuron and each condition.

The simplest method to do so is to count spikes in a fixed time window after stimu-

lus presentation. It is possible to add further preprocessing like temporal smoothing,

artifact removal or similar adjustments as they are deemed necessary for the specific

brain area and recording technique. We generally advise against subtracting baselines,

because they regularly result in negative spike rates which breaks a central assump-

tion of many methods adapted to spike rate distributions. The main exception are
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brain areas with strong, slow drifts of the average spike rate, whose effect can be

substantially reduced by subtracting an individual baseline for each trial.

Spike rates are typically more variable if the mean response is higher, i.e. they are

not homoscedastic. The classic assumption is Poisson noise, which has variance pro-

portional to the mean response [84]. More modern takes acknowledge that the rates

can be more or less variable than expected from a Poisson distribution and follow

more complex distributions in general [85–88]. The standard Euclidean and Maha-

lanobis distances are thus a bad fit for spike rate data. We provide two approaches

to this problem: First, the spike rates can be transformed such that they are better

approximated by a homoscedastic noise model. The most common transformation is

a square root transform [89]. Second, we can use different distance measures that take

the difference in variance into account. For this purpose we provide the symmetrized

KL-divergence between Poisson distributions (see below). For this approach, the spike

rates are not transformed.

Noise correlation between neurons is weaker and less problematic than noise cor-

relation between channels in other modalities; therefore, RSA on spiking data does

not strictly require taking the noise covariance matrix into account. If this is desired

nonetheless, the estimate for the covariance is usually based on the variance of indi-

vidual responses around the mean response for each condition. This can be computed

from the Dataset object in the toolbox, such that no separate noise estimate needs to

be extracted unless you wish to use an alternative noise covariance estimate.

When the temporal evolution of processing is of interest, all processing in the

RSA toolbox can be repeated for different time points. To do so, we simply compute

datasets for each time point we want to test by adjusting the window we count spikes

over or taking a different time point from a kernel density estimate of spike rate. This

can be done at equal time steps after stimulus onset to get a curve of results over

time. To enable this the rsatoolbox provides a TemporalDataset class. Alternatively,
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the analysis can be focused on particular phases of the response, for example the

initial onset response and the sustained activity. The latter approach typically results

in much fewer, more targeted analyses.

Electroencephalography and Magnetoencephalography.

For Electroencephalography (EEG), Magnetoencephalography (MEG), or their com-

bination (M/EEG), RSA analyses are based on the average responses at the sensor or

source level to the respective conditions. Using standard toolboxes (e.g., MNE-Python,

[76]) we first preprocess data (filtering, artifact removal, etc.), optionally project it

into source space, and segment it into epochs time-locked to the stimulus onset. We

can then estimate pattern response strengths for the different conditions as averages

over epochs.

Noise covariance estimates for EEG or MEG can be critical, because both sen-

sor measurements and source estimates exhibit strong spatial correlations. Sensors

may also vary substantially in their sensitivity and response magnitudes of different

sensor types vary by orders of magnitude (i.e., gradiometers, magnetometers, EEG

channels). Estimates for the covariances between channels or source level estimates

can be obtained from resting state or baseline data or from the deviations of the raw

EEG-MEG signals around the mean response to the stimuli. For computing these

covariances, standard methods are available, for example in MNE-Python [76, 90, 91].

The noise covariance can also be estimated within the rsatoolbox using the residu-

als around the condition mean patterns obtained from the epoched data. Which of

these estimates performs best is data set dependent. The covariance of the raw signal,

especially during a baseline, can be different from the covariance of the average signal

during stimulus presentation, but we usually have more data points to estimate the

covariance of the raw signal. As for fMRI, it is almost always advisable to regularize

the covariance estimates, i.e. to use shrinkage estimates, or to use a diagonal matrix

to perform univariate normalization.
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The simplest analysis for M/EEG data performs RSA on a single time point or the

average within a single time window. For instance, this approach can be applied to

focus the analysis on classical components of event-related potentials. M/EEG data

also lends itself well to time-resolved analysis of representational geometries ("RDM

movie"). For this purpose, we compute a dataset for each time point we want to test

and repeat the analysis on each dataset using the TemporalDataset class.

Local field potentials.

(LFPs) can be handled like EEG or MEG data. After preprocessing the data, the

average response at a time point relative to stimulus onset specifies a response strength

estimate that is a good basis for an RSA analysis.

Functional magnetic resonance imaging.

fMRI experiments are usually acquired in different imaging runs, which provide a nat-

ural way of breaking up the data set into independent partitions for cross-validation

[92]. The standard approach for estimating fMRI activity patterns is a mass-univariate

general linear model (first-level GLM), which can be used both for event-related and

blocked designs [93]. In a GLM, the response to each condition is usually modeled with

a single regressor per imaging run. Recently, there are also methods to estimate beta

coefficients for each stimulus presentation instead [94, 95]. Such single trial estimates

can be more accurate, but are correlated within a run such that we usually recom-

mend to average them within a run before entering them into the RSA analysis. The

resultant regression coefficients (beta-weights) constitute the activity patterns elicited

by the condition.

fMRI voxels differ substantially in their signal-to-noise ratio and can be strongly

correlated over space. Thus, we recommend to pre-whiten the noise of the activity

estimates before RSA [65]. The easiest way to do this is to divide the beta-weights of

10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2025. ; https://doi.org/10.1101/2025.05.22.655542doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.22.655542
http://creativecommons.org/licenses/by/4.0/


each voxel by the estimate of the noise standard deviation from the GLM (univari-

ate prewhitening). A more advanced approach is to also take into account the noise

covariance between voxels (multivariate prewhitening). For computational efficiency

reasons, we implement prewhitening as part of the distance calculation as a Maha-

lanobis distance, i.e. we pass the original beta weights and the covariance matrix to

the distance calculation instead of prewhitening the estimates.

To estimate the noise covariance among voxels efficiently, we require access to the

full residual time-series from the first-level GLM, which are not saved by default in

different neuroimaging packages. Our toolbox therefore contains a series of functions

(rsa.io) to efficiently import and prewhiten the beta-weights from different neu-

roimaging packages. These functions account for package-specific GLM-related data

structures. Currently, our code supports the import of GLMs performed in Statistical

Parametric Mapping [SPM, 96] or in nilearn using the standard naming conventions

of BIDS [Brain Imaging Data Structure, 97].

Behavioral data.

Many behavioral paradigms are suitable for RSA if they can be applied to a varied set

of stimuli. Direct similarity judgments are experiments where the participant makes an

explicit judgment about the perceived similarity of stimuli. This includes paradigms

where a discrete choice is made, such as the same-different task [98], match-to-sample

[99], or the odd-one-out task [100]. To convert such data into an RDM, there are two

broad approaches: The simpler one is to count the number of choices that speak in

favor of a pair of objects being dissimilar from each other. This approach works for

judgments about a single dissimilarity and also for triplet tasks were we count how

often a pair of stimuli was chosen to be more dissimilar than another one. Typically,

this will not result in a valid distance matrix initially, but can be projected onto the

cone of valid distance matrices. Another drawback of the simple approach is that it

requires (many) judgments for each individual dissimilarity in the matrix. Collecting
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this amount of data becomes infeasible quickly with growing number of conditions.

This motivates the more complex approach of training an embedding model that

predicts the behavioural choices [100, 101] These models place each condition on a

number of "embedding" dimensions and predict the behavioural choices based on the

distances in this embedding space. This approach allows us to fill in distances for

which we have no data and additionally yields scores on the embedding dimensions

that can be made interpretable.

Other tasks ask observers to judge similarities on continuous scales. The simplest

such task is the drag-and-rate task, where observers are asked to place stimulus pairs

on a continuous dissimilarity scale [102, 103]. For an overview of direct similarity

judgment methods, see [104]. For larger datasets the number of combinations may

rule out pair-wise trials; the inverse MDS task or "multiple arrangement" provides an

alternative where a larger subset of stimuli are arranged with respect to each other

in a single space [105]. Data from many arrangements is pooled by iteratively scaling

the partially filled RDMs with respect to the dissimilarity of pairs of items they have

in common, and then averaging them. This paradigm has been applied to a number

of RSA studies, including those with objects [106], scenes [1], faces [34] and videos

[107, 108]. Similarity judgments collected using any of these tasks can be imported

directly using the library’s tools for reading table data.

Another approach is to obtain indirect measures of perceptual similarity; where

one or several independent variables are measured when the participant perceives

the stimuli. One example would be the reaction time in an RSVP task such as the

Attentional Blink [109]. In another example, participants wrote sentence captions

for displayed images; the corresponding high-dimensional embeddings of which were

then used as patterns to calculate a semantic RDM [110]. Others have used mouse

tracking patterns [111]. Such indirect data can be imported as Dataset for subsequent

calculation of the dissimilarity measure.
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Fig. 2 Preprocessing workflow. RSA can be applied to data from a wide variety of sources.
Neural data recorded from any species, in any modality such as single-cell recordings, calcium imag-
ing, magnetoencephalography (MEG), electroencephalography (EEG), local field potentials (LFP),
and functional magnetic resonance imaging (fMRI). RSAtoolbox integrates with a range of popular
analysis tools to help prepare and import data patterns as well as residuals. This is in the form of
i/o functions to read various data formats as well as utilities to make it easier to navigate a dataset.
For examples applied to fMRI data, see the SPM demo, the nilearn demo, or a bare-bones NumPy
patterns demo.

Step 2: Estimating representational geometries

The activity patterns for the experimental conditions form the basis for estimating the

representational geometries. The geometry is defined by a distance matrix: a square

matrix, containing the distance for each pair of activity patterns. However, different

distance measures can be used which vary in the ways they handle (1) the varia-

tion of the activity patterns along the population-mean dimension, (2) the correlated

noise in the multivariate activity space, and (3) the positive bias associated with

naive measurements of distances caused by measurement noise. These three compli-

cations are addressed in turn in the next three sub-sections. Our new toolbox offers

a wide variety of representational dissimilarity estimators. Table 1 gives an overview

of some important representational dissimilarity estimators. An RDM is computed
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by calling calc_rdm on the Dataset object, with the chosen dissimilarity estimator

specified in the string argument method (e.g. method=‘euclidean’, ‘correlation’,

‘mahalanobis’, ‘poisson’, ‘crossnobis’).

2.0.1 Euclidean distances

The simplest distance to use is the Euclidean distance in the multivariate response

space and this is an entirely valid choice. One can also use the squared Euclidean

distance, which has the advantage that distances add over orthogonal dimensions. This

additivity makes it particularly simple to model distances that arise from multiple

underlying dimensions or parts of a model.

Correlation and mean-removed distances: normalizing

population-mean activity and pattern variance

The population-mean dimension is the axis in the multivariate response space defined

by the all-1 vector. Passing through the origin, this axis is at equal angles to all the

axes corresponding to the measurement channels (e.g. neurons, voxels, electrophys-

iological sources). We refer to this axis as the population-mean dimension because

computing the regional-mean by averaging activity across channels amounts to pro-

jection onto this axis (up to a scaling factor related to the number of responses).

Regional-mean activation is usually studied using univariate analyses, for example in

fMRI studies. To make the multivariate pattern analyses orthogonal and complemen-

tary to univariate regional-mean analyses, we may choose to remove the mean from

each pattern estimate. In fMRI, an additional motivation for removing the regional

mean is that each voxel averages many neurons’ response, and so the neural popula-

tion mean dimension is overrepresented in the fMRI activity pattern estimates [66].

Instead of computing Euclidean distances on the activity patterns, we may therefore

compute Euclidean distances after removing the mean from each pattern. Of course
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we may be losing distinctions between experimental conditions if we remove the mean

and this needs to be kept in mind when interpreting the results.

A popular way to measure representational distance is the Pearson correlation

distance (method=‘correlation’), which is defined as 1− r, where r is the Pearson

correlation between the two pattern estimates across the measurement channels. The

Pearson correlation distance equals half the squared Euclidean distance measured

after normalizing each activity pattern. The normalization of each pattern involves

removal of the mean and scaling to unit variance. While removing the mean may be

well motivated (as explained in the previous paragraph), scaling the pattern to unit

variance can cause confusion. Two patterns of small activity values, which are close in

terms of Euclidean distance, can appear quite distinct [65]. For example, patterns that

contain only noise because they are elicited by stimuli that do not drive any significant

response will have r ≈ 0, and so the correlation distance will be large: 1− r ≈ 1. The

patterns, thus, have a high correlation distance, although the corresponding conditions

cannot be decoded from them. This caveat needs to be kept in mind when using the

correlation distance.

Mahalanobis and symmetrized-KL Poisson distance: measuring

distances relative to the noise

If we are interested in the discriminability of the representational patterns to down-

stream decoders, then we should measure the distance relative to the noise in the

activity patterns. Figure 3a shows a case in which two measurement channels are neg-

atively correlated. If two conditions (blue and green) differ along this direction, then

the distance should be smaller, to reflect the fact that a downstream decoder will have

lower accuracy.

If the noise distribution is multivariate normal, we can use an inverse square-root

of the noise covariance matrix to transform the patterns into a whitened space, in
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which the noise is isotropic across measurement channels (Figure 3a). The distances

in this new space are the Mahalanobis distances (method=‘mahalanobis’) between

the original patterns. This procedure is especially adequate for fMRI data, for which

the measurement noise is well approximated by a multivariate normal distribution,

and for which there is often considerable correlation between measurement channels

(voxels). For such data, multivariate pre-whitening has been shown to increase the

reliability of the distance estimators [65].

For other measurement modalities, the noise may be non-normal and/or het-

eroscedastic. In this case, a variance-stabilizing transform can be used before

measuring distances [15, 59]. For example, if we have neural data and assume Poisson

noise, we can use a square-root transform on the spike rates to stabilize the variance.

An important general approach to measuring the distance in terms of condition

discriminability is the symmetrized Kullback-Leibler (KL) divergence. Each condi-

tion is represented by the distribution of patterns (reflecting the structured noise) in

the multivariate activity space. The symmetrized KL divergence reflects the degree

to which a response pattern drawn from either condition is decodable (in terms of

expected log odds). The RSA3 Toolbox implements the symmetrized-KL dissimilar-

ity estimator for Poisson noise (method=‘poisson’), which is applicable to patterns

of neural firing rates. This is a close analogue of using the squared Mahalanobis dis-

tance for fMRI data, which is the symmetrized KL divergence between two Gaussian

distributions with equal covariance matrix.

Removing the positive bias of distance estimates

When applied to noisy activity estimates, all distance estimators considered so far

are positively biased in the sense that they tend to overestimate distances between

the true noise-free activity patterns. Measurement noise perturbs response patterns in

random directions. In high-dimensional space most of the noise is orthogonal to the line

connecting the two patterns and thus tends to increases the distance between them.
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Fig. 3 Impact of correlated noise across channels (a) and measurements (b,c) on dis-
tance estimation. A. Mean activity patterns for 3 conditions (red, green blue) plotted in the
space of 2 measurement channels. In the raw data space (left), the two channels are negatively cor-
related across individual measurements (dots). After spatial pre-whitening (arrow), the correlation
is removed. The distances in prewhitened space now reflect discriminability of the different condi-
tions across measurements. B. Normal (red) and cross-validated (blue) estimation of four squared
Euclidean distances (x-axis). When the noise is independently and identically distributed (iid) across
measurements, the bias is constant for all squared distances and the rank-ordering of the distances is
preserved. C Same as B, but the pair of condition with distance 2 has correlated (r = 0.5) measure-
ment noise. This induces a negative bias in the distance estimate, also changing the rank-ordering of
the distances. Cross-validated distances (blue) remove this bias.

If the measurement noise is independent and identical across conditions, the bias for

squared distances is the same for all pairs of conditions (Figure 3b). However, if the

noise variance varies across conditions, or if measurements for different conditions are

correlated, the bias can be uneven across distances, such that even the rank ordering

of the distances is affected (Figure 3c).
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The bias can be removed by using crossvalidated distance estimates if repeated

independent measurements of each pattern are available [65, 112–114]. These dis-

tance estimators multiply differences from different independent partitions of the data,

which cancels the positive bias on average. This statement implies that if the true

distance is zero, the mean cross-validated estimate is also zero (Figure 4b).

To achieve unbiasedness, the cross-validated estimator must sometimes result in

negative values to average out positive estimation errors. Because distances are by

definition non-negative, we use the term representational dissimilarity instead as a

more general concept encompassing all the estimators we might want to use to charac-

terize the representational geometry. Importantly, negative dissimilarities should not

be excluded or replaced by zeros, but rather included in the subsequent analyses to

ensure unbiased inference (see below). The only exception to this rule are analyses

that require a valid distance matrix to function, such as visualization using metric

multidimensional scaling.

The RSA3 Toolbox implements crossvalidated estimators for a variety of distance

measures, including the squared Eucidean and squared Mahalanobis (crossnobis) dis-

tance and the symmetrized KL-divergence for poisson distributions. The crossnobis

estimator (method=‘crossnobis’) is closely related to linear decoding analyses using

the Fisher linear discriminant. In essence, it measures the distance after projection of

test data points onto the Fisher linear discriminant dimension estimated with a set of

training data points. Similarly, the symmetrized KL-divergence can be crossvalidated

by using a different part of the data to estimate the probabilities used for weighting

than for estimating the log-likelihood ratio (method=‘poisson_cv’).

Transformations on RDMs

Some research suggests that applying a non-linear transform to the distances can

be advantageous. This enables the use of unsquared euclidean distances, which have

stronger relationships to statistical measures of independence like the Hilbert-Schmidt
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Name Method string Formula Citation

correlation distance ‘correlation’ 1− r̄T
1
r̄2

‖r̄1‖2‖r̄2‖2
[17]

Euclidean distance ‘euclidean’ *
√

(r1 − r2)T (r1 − r2) [17]
squared Euclidean distance ‘euclidean’ (r1 − r2)T (r1 − r2) [17]

Mahalanobis distance ‘mahalanobis’ (r1 − r2)TΣ−1(r1 − r2) [65]
CrossNobis distance ‘crossnobis’ 1

Nr(Nr−1)

∑
i6=j(r

i
1 − ri2)TΣ−1(rj1 − rj2) [65]

Poisson KL-divergence ‘poisson’ (r1 − r2)T (log r1 − log r2) new
Crossvalidated Poisson KL ‘poisson_cv’ 1

Nr(Nr−1)

∑
i6=j(r

i
1 − ri2)T (log rj1 − log rj2) new

Table 1 Methods for estimating RDMs. See text for details and recommendations for
choosing from this list. r1 and r2 are the two response patterns, r̄1/2 are standardized versions of
them, Σ is an estimate of the noise covariance, ri1 is the response pattern in the i-th of Nr runs, i.e.
sets of measurements that are assumed to be independent from the other Nr − 1 sets. log of a
vector here refers to the vectors of logarithms of each entry. * add a square root transform.

independence criterion [115] and distance correlations [116]. Also a geo-topological

transform can enable a stronger focus on the topological structure of the representation

rather than its geometry [69].

We implement this with a general transformation function that allows the appli-

cation of any transformation to the RDM and a specialized function for taking the

square root and applying the geo-topological transform. One should apply analogous

transformations to any pair of RDMs that one wants to compare.

Step 3: Comparing RDMs

To draw these conclusions, we first need to choose a measure for the similarity of

RDMs. Then we need to estimate how variable these similarity values are and how

well a model could perform in principle. Once we have those estimates we can perform

frequentist statistical inferences that test whether a model could be true, predicts

anything about the data RDM, and for each other model, whether it significantly

outperforms this other model.

RDM comparators

To compare RDMs to each other, in principle any measure of similarity for symmet-

ric matrices or vectors can be used. However, different RDM comparators will weigh
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different aspects of RDMs differently. Most RDM comparators also have some aspects

of RDMs that they are entirely invariant to, which is desired when those aspects are

deemed irrelevant for the research question. Beyond that, a different weighting of the

RDM dimensions will still lead to different evaluations - that is, different RDM com-

parators maybe more sensitive to measurement noise or differences between subjects.

We give an overview of the possible RDM comparators in the toolbox in Table 2.

Generally, we want to ignore the overall scale of the RDM to make our inference

independent of the overall signal strength, which often varies across subjects, sessions,

and measurement modalities. Thus, we want all our RDM comparators to be invariant

to an overall rescaling of the RDM. Formally, sim(d1,d2) = sim(ad1, bd2), for all

a, b ∈ R+.

Cosine Similarity.

The simplest measure of similarity that ignores the scale is the cosine similarity of the

vectorized RDMs. This similarity is the inner product of the vectorized RDMs after

dividing each by their norm. This normalization explicitly removes the dependence

on the scale of the RDMs. However, the cosine similarity is sensitive to the average

distance value, i.e. adding a constant to all distances changes cosine similarities. In

particular, the bias introduced by estimating distances from noisy data reduces the

cosine similarity below 1, even if the bias is constant and all representations become

more similar if a constant is added to all distances in all representations. For our

example in Fig. 3b, the cosine similarity of the expected RDM estimate is XXX. Thus,

the cosine similarity should only be used for cross-validated or noise free dissimilarity

estimates.

Pearson Correlation.

To remove the assumption that a model-predicted distance of 0 corresponds to a

measured dissimilarity of 0, we can use the Pearson correlation coefficient r between
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RDMs. Like the cosine similarity, the correlation is the inner product of the vectorized

RDMs after normalization. But the normalization includes mean subtraction as well

as division by the norm. It is thus equivalent to the cosine similarity after subtracting

the average dissimilarity.

Whitened RDM similarities.

Cosine similarity and Pearson correlation are adequate measures of similarity of two

vectors when the individual elements of the vectors are independent. The entries of

a RDM are not independent, because all dissimilarities involving the same condi-

tion are based on the same measurements of that condition. For squared Euclidean,

Mahalanobis, and Crossnobis dissimilarities, we can derive the covariance matrix V

of all the dissimilarities analytically [70]. This estimate can then be used to "whiten"

- i.e. to de-correlate - the dimensions of the RDM (see Table 2). We have shown that

model comparison using these whitened versions of the cosine similarity of Pearson

correlations outperforms model comparison using traditional methods [70].

Interestingly, the whitened cosine similarity is equivalent to the linear centered ker-

nel alignment (CKA) [63], if the measurement noise within each condition is assumed

to be iid. This equivalent formulation can be computed faster as it avoids the inversion

of V . Our implementation uses this equivalent formulation for faster computation.

Rank correlation coefficients.

We can drop the assumption of a linear relationship between RDMs by using rank

correlation coefficients like Kendall’s τ or Spearman’s ρ. For this lowest bar for a rela-

tionship, Kendall’s τa or ρa are preferred over the standard Spearman’s ρ or Kendall’s

τb and τc because the latter all favor models that predict RDMs with tied ranks.

The recommended option is ρa, which is as computationally efficient as Spearman’s

ρ and like Kendall’s τa correctly handles models that predict tied dissimilarities. The
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rank correlation coefficient ρa is the expectation of Spearman’s ρ under random tie

breaking (using a closed-form solution).

Rank correlations are helpful if our models only predict the order of distances not

a particular distance. For example, just that distances within a category should be

smaller than the ones between categories.

Bures similarity and distance.

Two alternative comparators for positive definite matrices are the Bures similarity and

distance [117]. These metrics are equivalent to generalized shape metrics [62], which

allow an orthogonal rotation to align the shapes with each other before measuring

their distance. As these measures are based on the centered kernel matrices instead

of distance matrices, we need to convert the distance matrices to kernel matrices

first. Fortunately, distance matrices and centered kernel matrices contain equivalent

information and the transformation between them is a simple linear map, such that

this is not an issue.

Riemannian manifold similarity.

Yet another measure of similarity for positive definite matrices is known as the

Riemannian manifold distance [67]. This distance ensures that applying the same

invertible linear map to the two activity matrices does not change their distance.

Additionally, the original publication showed promisingly high reliability of this mea-

sure. Main drawbacks are slight stability issues for close to singular distance matrices

and a relatively long computation time.

Toolbox implementation.

All comparison methods are implemented in rsatoolbox.rdm. They can each be

accessed by passing a method argument to rsatoolbox.rdm.compare or by using
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name function formula citation

cosine similarity ’cosine’ d>
1
d

2√
d>

1
d

1
·d>

2
d

2

1

Pearson correlation ’corr’ d̄>
1
d̄

2√
d̄>

1
d̄

1
·d̄>

2
d̄

2

2

whitened cosine similarity ’cosine_cov’ d>
1
V−1d

2√
d>

1
V−1d

1
·d>

2
V−1d

2

3

whitened Pearson correlation ’corr_cov’ d̄>
1
V−1d̄

2√
d̄>

1
V−1d̄

1
·d̄>

2
V−1d̄

2

3

random-among-equals rank corr. ρa ’rho_a’ 12d̃>
1
d̃

2

n3−n −
3(n+1)

n−1
4

Spearman’s rank corr. ρ ’spearman’ 4d̃>
1
d̃

2
−(n+1)2

4σd̃1
σd̃2

2

Kendall’s rank corr. τb ’kendall’ 1
nb

∑
i

∑
j sgn(d1,i − d1,j) sgn(d2,i, d2,j) 5

Kendall’s rank corr. τa ’tau_a’ 1
n(n−1)

∑
i

∑
j sgn(d1,i − d1,j) sgn(d2,i, d2,j) 5

negative Riemannian distance ’neg_riem_dist’ −
√∑

i log2(λi), for λi eigenvalues of D−1
1 D2 6

Normalized Bures similarity (NBS) ’bures’
Tr

[
(K

1/2
1 K2K

1/2
1 )1/2

]
√

Tr(K1) Tr(K2)
7

squared Bures’ metric ’bures_metric’ Tr(K1) + Tr(K2)− 2 Tr
[
(K

1/2
1 K2K

1/2
1 )1/2

]
7

Table 2 Methods for comparing two RDMs to evaluate predictions of representational
geometries. The column labeled “function” specifies the name to be passed to the compare
function to compute the similarity. In the formulae, dk for k = 1, 2 are the two vectorized RDMs,
dk,i is the i-th scalar dissimilarity of dk,d̄k is the centered version of dk (with the mean subtracted
from each dissimilarity), d̃k is the rank transformed version of dk and Dk are their transforms into
positive definite matrices as described in the text. n is the number of dissimilarities, nb =

√
nb1nb2

is the normalization for τb where nb1 and nb2 are the numbers of ordered pairs in the two
compared distance vectors. V is the n× n covariance matrix of the dissimilarity estimate errors.
Citations: 1. [114] 2. [17] 3. [70] 4. [71] 5. [113] 6. [67] 7. [117] .

a specific function rsatoolbox.rdm.compare_[comparison]. The comparison func-

tions each take two RDMs objects as input and return a matrix of all pairwise

comparisons.
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[change 
experimental

design]

Y → ratio-scale comparator
N → rank comparator

Do models make ratio-scale
dissimilarity predictions?

Are the errors of the 
pattern estimates for 

different conditions
i.i.d. in each partition?

Y → biased distance estimator
gets ranks right

N → must use unbiased distance 
estimator to get ranks right

Are there multiple 
independent pattern 
estimates from 
repetitions of each 
condition?
Y → can use unbiased distance
        estimator
N → must use biased distance
        estimator

RDM estimator: italics
RDM comparator: bold

Fig. 4 Choosing an appropriate dissimilarity estimator and RDM comparator. This Euler
diagram shows which combination of RDM estimator and RDM comparator promises the most pow-
erful model-comparative inferential analyses in different scenarios, and when a different experimental
design is needed. To find the right combination of RDM estimator (italics) and RDM comparator
(bold), answer the three questions (black, blue, red). For each question, a yes (Y) indicates that the
answer is inside the set, and a no (N) indicates that the answer is outside the set. See text for details.
The diagram is the minimum-contour-length iso-Euler diagram.

Choosing an appropriate combination of RDM estimator and

RDM comparator

We should choose the combination of RDM estimator and RDM comparator that

promises the greatest power for inferential model comparisons. The best choice

depends on the answers to three questions (Fig. 4):

(1) Do the models make ratio-scale dissimilarity predictions? If yes (black

set), we can gain power by using a ratio-scale RDM comparator. Such a comparator

measures to what extent the measured dissimilarities are proportional to the model-

predicted dissimilarities, taking 0 dissimilarity predictions to mean that the measured

dissimilarity should also be 0. If the answer no (the model does not make ratio-scale

predictions; outside the black set), we can evaluate the model on the basis of the ranks

of its dissimilarity predictions, using a rank correlation coefficient. The ρa coefficient

is an appropriate and computationally efficient choice.
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(2) Are the errors of the pattern estimates for different conditions inde-

pendent and identically distributed (i.i.d.) within each partition? If yes (blue

set), then a biased distance estimator (without crossvalidation) will get the ranks

right, as the noise-induced bias will be constant across squared distances (Fig 3b). If

no (outside blue set), different levels of error variance between conditions and depen-

dency in the error variance between conditions can compromise the dissimilarity ranks

when using a biased RDM estimator (Fig 3c), so an unbiased (crossvalidated) RDM

estimator is needed.

(3) Are there multiple independent pattern estimates from repetitions

of each condition? If yes (red set), it is possible to use a crossvalidated RDM

estimator and thus obtain unbiased distance estimates. If no (outside red set), we do

not have the repeated measurements needed for crossvalidation and can only obtain

biased distance estimates.

In case the answers to questions (2) and (3) are both no (outside both red and blue

sets), there is no way to correctly estimate even the ranks of the dissimilarities, so it

is best to use a different experimental design. In the central intersection of all three

conditions, both approaches work with different advantages: The combination of the

crossnobis estimator and the whitened unbiased cosine similarity comparator promises

an interpretable 0 point and no bias, whereas the combination of the Mahalanobis

distance and whitened Pearson correlation comparator promises slightly lower variance

[70]. Which of these two choices affords more power in model adjudication depends

on the model predicted RDMs (if the placement of the 0 point on the distance scale

differs between models this fact favors the crossnobis estimator) and the proportion

of data that must be held out in crossvalidation for the crossnobis estimator (more

favors the biased estimators).
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Fig. 5 Visualization of model-comparative inference results. Results of inferential analy-
sis of simulated data. Ground-truth model is convolutional layer 2 (conv2) of AlexNet. All layers of
AlexNet (blue to red) serve as candidate models. (a) Bar plot of RDM prediction accuracies.
Model comparisons two-tailed, false-discovery rate controlled at q < 0.01 (36 model-pair comparisons).
Inference by bootstrap resampling (1,000 samples) of subjects. Error bars are 95% confidence inter-
vals. One-sided comparisons of each model performance against 0 (white “dew drops" at the bottom
indicate significant difference from 0) and against the lower-bound estimate of the noise ceiling (gray
bar, gray dew drops indicate significant difference from the noise ceiling) are Bonferroni-corrected
for 9 models. “Model-dominance wings" (top) indicate, for each model (dot in model color), which
other models it significantly dominates (downward tick marks). (b) Model map. Same results as
(a), but deviations of model predictions from the data are used to map the models around the data
RDM with a modified multidimensional scaling (MDS). Inter-RDM distances measured by the Pear-
son correlation distance. MDS constrained to represent the deviations from the data RDM exactly
(same information as in a) and the deviations among model RDMs (not shown in a) approximately.

Step 4: Inferential model comparisons

Our inference about our models usually aims for two things: First, we want to compare

each model to the data and judge how well the model captures the representational

geometry we observe in the data. In particular, does it capture any aspect of the

representational structure at all? How good is the fit given the level of measurement

noise? Second, we want to compare models, i.e., draw conclusions about whether the

difference between two models could have happened due to chance even if the two

models were in truth equally good.
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Model specification: Selecting a model type and defining the RDM

model

To evaluate hypotheses we need to capture those hypotheses into models. In the

rsatoolbox we conceptualize models as objects with two main functions: First, they

can predict an RDM for the set of conditions we want to analyze, potentially based

on parameters. Second, they provide a fitter method to find the best parameters for

a given dataset. This setup is very broad, encompassing all parametric models of

representational similarity.

The prediction function is implemented as functions of the model object in two

flavors, predict_rdm returns the RDM object including descriptors. predict directly

returns a ’naked’ RDM vector, which allows for slightly faster evaluations, if the

descriptor annotations are not needed.

There are different methods for defining a model depending on what kind of flex-

ibility is needed for the model. The first choice is whether any flexibility is required.

If the hypotheses can be captured by fixed models, i.e. with models that have no free

parameters and predict a single fixed RDM, this simplifies the inference substantially

as cross-validation is not needed then.

However, there are situations that require flexible models. In particular, many

models contain some flexibility as to how their activity patterns are distorted by the

measurement process, i.e. a flexible measurement model. A common example of this is

the size of voxel averaging regions, which is typically unknown and distorts the RDM

[41]. In such cases, we require a proper flexible model whose parameters are fit to the

data, because model performance may otherwise depend primarily on luck with the

parameter assignment [41].

To enable this kind of fitting, the rsatoolbox provides two broad approaches:

First, selection and interpolation models can be used for arbitrary relationships

between parameters and RDMs, as long as the range of RDMs can be represented
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by a small selection of RDMs or by a one dimensional manifold of RDMs. These

models work well for these cases and fitting is extremely stable. Thus, these models

are recommended for situations similar to the fitting of voxel sizes.

The other approach is a weighted model, which aims to capture the weighting

of feature dimensions or model components. The central idea here is that squared

euclidean distances are additive for orthogonal axes, i.e. two conditions with squared

distance d21 along a first dimension and d22 along a second dimension will have total

squared distance d21 + d22. This connection allows us to combine the distances from

different parts of a model into an overall distance. When we do not know how the two

distances are weighted relative to each other, we can add a weight to each distance.

The overall squared distance RDM is then simply the weighted sum of the component

RDMs.

Fixed models.

are models that predict a single RDM without any parameter. These models are the

simplest and most frequently used type in RSA. To formally fit the model object

architecture, these models have a dummy_fitter function that are always None and

ignore any optional parameter to their prediction functions. To homogenize the anal-

ysis we generally expect these fixed model objects, not RDM objects as input to the

inference methods described below.

Selection models.

are models that are given a set of RDMs and predict that the true RDM is one of

these RDMs. These models give a coarse simple method to implement an arbitrarily

complex set of potential RDMs. Their prediction takes the index of the selected RDM

as an input and they allow only one particular fitting function, which evaluates each

RDM from the set on the training data and simply returns the index of the best

performing RDM.

28

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2025. ; https://doi.org/10.1101/2025.05.22.655542doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.22.655542
http://creativecommons.org/licenses/by/4.0/


Interpolation models.

interpret a given set of RDMs as the interpolation points for a piece-wise linear man-

ifold of RDMs. This allows an approximate model for any one dimensional manifold

of RDMs, i.e. any set of RDMs that is created by changing a single parameter. These

models can be fit efficiently with another specialized fitting function, that first finds

the best performing RDM in the set and then uses a bisection method for one dimen-

sional optimization to find the best RDMs in the linear segments next to the start

RDM. Bisection for one dimensional optimization converges quickly even without any

gradient information.

Linear weighted models.

predict the RDM as a weighted sum of a set of basis RDMs. This type of combina-

tion primarily appears for feature reweighting models, which assume that there are

underlying (groups of) features, whose relative contributions to the representational

dissimilarities are unknown to the experimenter. If features are independently scaled

by wi the resulting euclidean RDM is the sum of feature RDMs weighted by w2
i . Based

on this observation, we usually want to impose a positivity constraint on the weights

as there is no possible feature weighting that would push conditions together that are

separated along a particular feature. Linear models require a separate real parameter

for each basis RDM. Thus, they often require regularization to be applied successfully.

To accommodate these different fitting and regularization methods we provide differ-

ent fitting functions. In particular we provide linear algebra based methods that fit

the RDM based on euclidean, cosine or correlation similarities (described below) and

optimization based methods to include the positivity constraint and L1 and elastic

net regularization.
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Arbitrary custom fitted models.

These model types capture only a small selection of possible RDM models although

they already expand the model zoo substantially beyond what earlier toolboxes pro-

vided. If users are keen to implement other model types our toolbox can be expanded

easily. As long as the new model object implements the prediction and fitting methods,

it can be used in all inference methods we provide in the toolbox.

Model identification and evaluation

All flexible model types (i.e. all but the fixed model type) have parameters that need

to be fitted to data. Fitting a model’s parameters to the data is known as model

identification because it identifies the particular instance of the model (i.e. the settings

of the parameters) that fit best. Because a fitted model is always somewhat overfitted

to the fitting data, the goodness of fit on the data used for fitting is not an unbiased

measure of model performance. Model evaluation therefore requires a test of the fitted

model on data not used in model fitting. To make good use of limited data, we perform

model fitting and performance evaluation in crossvalidation. This approach yields

good estimates of the performance each fitted model achieves on new data, i.e. of the

model’s generalization performance. The resulting performance estimates can also be

compared between models that have different degrees of flexibility (e.g. a fixed model,

a low-parametric model, and a high-parametric model).

We need to decide what type of generalization performance to require. If all our

models are fixed, there is no fitting, and thus no overfitting to account for and cross-

validation is not needed at all. In a case study of the tactile representations of the

five digits of the right hand in the brain of a patient, we might fit and evaluate the

models on separate brain-activity data sets in which each of the five fingers has been

stimulated (same subject, same conditions). In a group study of sensory representa-

tions of digits, we might want our models to generalize to new subjects. We would
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then evaluate each model on data from different subjects acquired during stimulation

of the same five fingers (different subjects, same conditions). In a case study of visual

representations of face images in a single prosopagnosia patient, we might want our

models to generalize to new face images (just like computer vision models must work

on new stimuli) to test to what extent they can account for the representations under-

lying face perception in the patient (same subject, different conditions). Finally, in

a group study of 24 people’s visual representations of object images, we might want

our models to generalize to new subjects and new images simultaneously (different

subjects, different conditions). The RSA3 toolbox supports model evaluation for all

these types of generalization. The type of generalization should always be reported

and carefully considered in interpreting the results.

Cross-validation.

Once we use flexible models, we need to worry about overfitting, as more flexible

models will fit data used for fitting their parameters better, even if that flexibility

does not correspond to any real effect. This is a well known problem for statistical

model comparisons of any kind and many correction methods for this problem exist.

For RSA, the most common technique to solve this problem is cross-validation, where

we split the data into groups, which are in turn used for evaluation, while all other

data are used as a training set to fit the model parameters. This yields an estimate of

model performance that does not overly favor flexible models anymore.

For RSA the overfitting argument applies to both subjects and stimuli. For cross-

validation the question is how far the model should generalize. For example, if we use

some stimuli for fitting and others for evaluation, good model performance requires the

model to generalize to new stimuli. This is a separate question from the generalization

we aim for with our bootstrapping procedures. By bootstrapping we aimed for our

inference to generalize to new subjects or stimuli. In some situations our models

may require subject or stimulus specific parameters, but we can consistently find
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parameters for each separate subject or stimulus set that work. If we ask our models

to generalize to new subjects or stimuli, we do most likely want our inferences to

generalize to new samples along that factor, too though.

In our toolbox we implement cross-validation in two steps: We first split the dataset

into the cross-validation folds (see inference.sets_*) and then apply the cross-

validation function (inference.crossval). Furthermore, the bootstrapping functions

do contain additional parameters to implement cross-validation within the bootstrap

(inference.eval_bootstrap_*).

Model-comparative inference

To compare different models to each other, we need to estimate how uncertain our

experimental results are. For our purposes, this uncertainty is quantified by a covari-

ance matrix of the model evaluations over repetitions of the experiment. A key

question for computing this covariance is how far we want our results to generalize,

i.e. which aspects we assume to vary over the repetitions of the experiment. This gen-

eralization of our inference is different from the generalization we ask our models to

perform and test with crossvalidation.

Inter-subject variability.

The simplest type of generalization for RSA is to generalize to new subjects performing

the same task with the same stimuli, because all evaluations we use are averages across

subjects. The covariance of this average model performance then simply is 1
N times

the covariance of model evaluations over subjects for which we can use the standard

sample estimates. In this situation, simple t-tests and rank-sum tests provide adequate

tests to test whether two models perform significantly differently well. These tests are

by far the most common type of inference used for RSA.
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Two-factor bootstrap.

In most cases we also want to generalize to new stimuli used for evaluation [71, 118].

As our model evaluations are not means across stimuli, we cannot easily compute the

covariance of the model performances if we sampled new stimuli. Instead, we can resort

to bootstrapping methods. If we want to generalize only to new stimuli, standard

bootstrapping across conditions produces accurate estimates of the variance due to a

random choice of conditions. Technically, bootstrapping subjects also reproduces the

covariance due to the random sampling of subjects. There is no advantage of using the

bootstrap over the direct formula for this variability though such that bootstrapping

is not used for the variability due to subject choice in practice.

Once we want to generalize across both subjects and conditions, a naive bootstrap

approach yields substantially too large variance estimates [71] due to roughly triple

counting measurement noise and any other variance that is not due to the subject

or stimulus choices. To counteract this effect, we can use a correction formula that

results in fairly good variance estimates for this two factor bootstrap.

In the toolbox the bootstrap methods are available in the inference submodule as

eval_bootstrap_* functions.

The bootstrap is compatible with crossvalidation to correct for overfitting of

flexible models [71]. We refer to the combination as bootstrap wrapped crossvalida-

tion. Due to the bootstrap resampling we usually cannot keep the crossvalidation

folds constant across bootstrap samples, which requires another correction [71]. This

functionality is available through the eval_dual_bootstrap function in the toolbox.

Statistical tests.

Once we have estimated the model performances and our uncertainty about them,

we can use this information for frequentist statistical tests that test whether two

models perform differently well, whether a model performs above chance and whether

a model performs worse than the noise ceiling. In our toolbox, we mostly recommend
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using t-tests based on the means and the covariance of model performances, which

can be estimated for different generalizations as discussed above. In the toolbox, this

functionality is implemented as functions that apply to the results objects that all

evaluation functions yield as outputs as these tests do not require much computation.

The toolbox also supports classic rank based tests. One should note that these tests

are based exclusively on the variance due to subjects and cannot be used to take the

variance due to condition choice into account.

Visualizing model comparisons

Visualization has an important role because it is needed to help researchers

make sense of a complex set of results. Theoretical progress depends on compar-

ing many models. The toolbox offers the functions plot_model_comparison and

map_model_comparison, which visualize the quantitative and inferential results,

revealing: (1) how well each model performs, (2) which other models each model sig-

nificantly dominates, (3) which models explain significant variance, (4) which models

leave significant explainable variance unexplained (do not approach the noise ceiling),

(5) how similar the predictions made by the models are to each other, and (6) how

similar activity patterns are to each other across multiple brain regions.

Fig. 5 shows simulation results visualized with the two visualization functions. All

statistical tests are adjusted for multiple testing, controlling either the false-discovery

rate or the familywise error rate. The bar plot (plot_model_comparison, Fig. 5a)

integrates points (1) to (4). This provides an essential basic visualization integrat-

ing quantitative and inferential results. Key elements include the noise ceiling (gray

bar), the "dew drops" (white and gray half circles indicating significant differences

of model performance from 0 and from the lower bound of the noise ceiling, respec-

tively), and the "model-dominance wings", which show which other models each model

dominates. The toolbox gives different options for visualizing the pairwise inferen-

tial comparisons. One option is "non-significance cliques", which communicates all
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pairwise comparisons in terms of a minimal set of model cliques within which no dif-

ferences are significant. Another option is "double arrows", which communicates all

pairwise comparisons by a minimal set of double arrows. Each of a set of horizontal

double arrows indicates that all models to the left of it are significantly different from

all models on the right of it. This approach is visually efficient (few elements) when the

researcher chooses to plot the bars in ascending or descending order of model perfor-

mance. These practical advances become important when a larger number of models

is compared. For example, for just 40 models, there are 780 pairwise comparisons.

The model map (function map_model_comparison, Fig. 5b contains all the infor-

mation in the bar plot, points (1)-(4) above, but also shows approximately how similar

the predictions of different models are to each other (5). Distances in this map reflect

deviations among the RDMs. The central black dot is the data RDM. The noise ceil-

ing becomes a "noise halo". The best model (conv2 here) is, by definition, shown

straight above the data RDM. The analysis correctly identified the true model (conv2)

in this simulated data set. Gray arcs connect models that are not significantly dif-

ferent. Conv2 is not statistically distinct from the noise halo (vertical gray arc). The

arrangement is computed with multidimensional scaling (MDS) using the metric stress

criterion. However, the deviations of the model RDMs from the data RDM (radii) are

constrained to be exactly represented. The scale bar shows the length corresponding

to 0.2 Pearson correlation distance units, and its error bar shows the full range of

%-errors incurred by mapping into 2D. We will refine this visualization by adding a

radial scale (to replace the scale bar) and different options for the cost function that

the mapping minimizes.

Step 5: Multiple testing across space and time

In some scenarios we do not have a specific hypothesis about where in the brain

or when in time experimental effects may occur. This requires a more exploratory
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approach: instead of applying the above analysis steps to data from a particular brain

region or time window of interest, we may opt to systematically scan brain space or

time in search for effects. This exploratory approach involves repeated inference across

spatial locations or time points. Below, we describe how the toolbox facilitates such

analyses.

Searchlight inferential mapping.

In the spatial domain, a popular approach uses a "searchlight" to scan the brain for

experimental effects [119, 120]. A searchlight is a small analysis volume that covers

a local neighborhood in brain space. The searchlight is systematically moved across

the brain, centering it on each location in turn. This process repeats the analysis at

each location and yields an inferential map showing where in the brain representa-

tional effects occur. This method promotes the discovery of brain regions that encode

information about the experimental conditions (e.g., [112]) or whose representational

content can be explained by a conceptual or computational model (e.g., [121, 122]).

Searchlight inferential mapping can also be applied on the cortical surface for bet-

ter spatial selectivity and increased sensitivity to local information content [123]. The

toolbox supports both volume and surface-based searchlight mapping.

Representational dynamics.

In the temporal domain, it is common to use a sliding window approach to examine

representational dynamics [38, 42, 124–126]. In this approach, the researcher defines

a temporal search window and slides the window along the time axis of the data. For

each time window, spatial response patterns are extracted from sensor or source space.

This process repeats the analysis at each time point and yields an inferential time

course showing when in time representational effects occur. This method, sometimes

referred to as a (spatio)temporal searchlight or sliding window analysis, is useful for
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investigating dynamic changes in representational content, such as when representa-

tional distinctions emerge [38, 124, 127] or when a model best aligns with neural data

[25, 55, 125, 128].

The rsatoolbox does not contain internal methods to handle correct inference with

many correlated results over space or time. There are well established methods for this

kind of multiple comparisons problem (MCP) as implemented for example in Nipype

[75] or MNEpython [76]. For analyses of representational geometries over time, we

recommend applying such external MCP correction tools on the uncorrected similarity

results obtained from our toolbox.

3 Discussion

This paper presents a new toolbox that implements RSA in Python, along with a

third wave of methodological progress [70, 71]. The toolbox consolidates previous

developments and brings the following advances:

1. Whitened RDM comparators. Whitened RDM comparators (whitened ver-

sions of the cosine and Pearson RDM correlation for biased and unbiased

dissimilarity estimators) generalize the linear centered kernel alignment [63] to

unbiased distance estimators, approximate a likelihood-based criterion for model

selection, and provide near-optimal sensitivity to subtle differences between models

[70].

2. Model-comparative inference generalizing to the populations of subjects

and conditions. Fixed or parameterized models can now be compared with an

inference procedure that generalizes to populations of subjects and/or conditions

[71, 129]. The key innovation is a new 2-factor bootstrap procedure for inference

on parameterized models [71]. Models are fitted and evaluated in crossvalidation

avoiding bias caused by overfitting to either subjects or conditions, while the infer-

ence can treat subject, condition, or both as random effects. The new procedure is
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substantially more powerful than the earlier double bootstrap [113, 129] and has

been validated with simulated and real data (Calcium imaging and fMRI) [71]. The

new inference framework supports the novel whitened RDM comparators as well as

a range of other RDM comparators, including rank-correlation coefficients, which

are less sensitive, but have the advantage that they require weaker assumptions for

valid inference.

3. Dissimilarity estimators for neural data. We introduce several dissimilarity

estimators specifically designed for neural data (based on the Poisson distribution).

In particular, the Poisson symmetrized-KL-divergence estimator and its crossval-

idated variant provide improved RDM estimates on the basis of neural recording

data.

4. Efficient rank-based model evaluation. We introduce Kendall’s ρa [130], a

rarely used Spearman-type alternative to Kendall’s τa, which like the latter cor-

rectly treats models that predict ties [113], but is much faster to compute. The

efficiency of ρa is essential when we are comparing many models or mapping

inferential results across the brain with searchlight RSA.

5. Model refutation by comparison to the lower bound of the noise ceiling.

Inferential model comparisons to the lower bound of the noise ceiling are now

available

6. Better visualization of model comparisons. To more concisely present infer-

ential results of all pairwise model comparisons, novel alternatives to “Nili bars”

[113] include “Golan wings” and “double arrows” (Fig. 5) or “cliques” of models

whose performance does not differ significantly. Furthermore comparisons to the

noise ceiling and to 0 or chance-level performance are visualized using “dew drops”

or “icicles”. The new options can more efficiently summarize all model-comparative

inferential results, which becomes essential as the number of models grows.
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7. Model map of performance, inferential comparisons, and model relation-

ships. A novel “model map” (Fig. 5) visualizes the descriptive and inferential model

comparisons in a 2D diagram, with the data RDM at the center within a noise

halo (in place of the noise ceiling). Radial distance of each model exactly represents

model prediction error, and the polar angles of the models approximately reflect

the similarities among the models’ predicted RDMs. Connections between points

link models whose performance does not differ significantly, defining all pairwise

model-comparative inferential results.

3.1 Future plans

We will continue to maintain and further develop the rsatoolbox and invite others to

include any coming developments into the toolbox.

There are a number of features that could be added to further improve conve-

nience of use. In line with other analysis tools in the neuroscience ecosystem, we plan

to encapsulate the toolbox into a RSAtoolbox BIDS app, and to provide a fully func-

tional container image with a simple interface that can be slotted into existing data

processing pipelines. In order to further support the reproducibility of projects based

on rsatoolbox, such containers or apps will annotate the steps taken in a standard

format [131, 132]. Encapsulation will also require support for a larger variety of data

formats for import.

Additionally, better visualizations will always remain a welcome addition. We will

extend the model map into a 3D interactive visualization. We will develop a visual-

ization that summarizes the relationships among multiple data RDMs estimates from

neural populations in different brain regions and multiple model RDMs in a 2D or 3D

map. Such a visualization will be extremely useful for giving the researcher a sense

of the transformations of representational geometries across stages of representation
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Fig. 6 Library overview Structure of the library with key elements listed. The columns display
the sub packages of rsatoolbox; corresponding from left-to-right with the typical order in which they
come into play during an analysis. Light gray grouping boxes represent modules annotated with the
respective module name. White boxes are key functions (lowercase) and classes (capitalized nouns).

in brains and models and about the global relationships between model and brain

representations.

Finally, we expect that new additions and variations to RSA will still be developed.

Whenever that happens, we aim to extend the toolbox to include such new additions.

Such new developments could include: New methods for constructing RDMs, new

methods for comparing RDMs, new methods to perform statistical inference, new

APIs to handle different data inputs or outputs, and many more.

3.2 Software development philosophy

To enable future additions and extensions to the toolbox and integrate it well

with other tools in neuroscience, we converged on a number of principles for the

development of the rsatoolbox:

We build our toolbox to include all commonly needed functionalities for RSA anal-

yses, going from the preprocessed data to the final inference. To enable extensions,

we aim to make the code as modular and reusable as possible. This will allow users to
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easily replace elements of their pipeline, and contribute new developments to the tool-

box. As a standard for inclusion, we require all core statistical methods implemented

in releases of the toolbox to be described and evaluated in peer-reviewed publications.

More experimental approaches can be implemented in non-main branches, such that

this criterion does not impede the speed of development, while providing a clear and

transparent quality standard for the main release.

To enable community-driven development, we follow best practices in version

control (Github), code review, continuous Integration [133], packaging (PyPi), and

documentation (readthedocs). Users can submit queries, feature requests and bug

reports by raising Issues on Github, which are closely tracked. These measures ensure

accurate and reproducible analysis and enables discussions to reach a consensus about

the best implementation for a given feature. Additionally, we document the current

best practices in our documentation: Auto-generated API documentation is generated

from in-code docstrings and key functionality is accompanied by narrative documen-

tation as well as full demos in Jupyter Notebooks. The full documentation is then

build and hosted at readthedocs (https://rsatoolbox.readthedocs.io/). Such complete,

accessible documentation is key to the ease of use of software.

The library is shared under the MIT License (https://opensource.org/licenses/

MIT), because of its simplicity, permissiveness and compatibility with other open-

source software licenses.

There have been some earlier attempts at software that enables RSA methods:

There is an initial RSA library for MATLAB [113]. In addition, some steps of RSA

analysis like pattern extraction and the calculation of simple RDMs are part of many

neuroscience packages, like: pyMVPA [134], CosmoMVPA [135], MVPA-light [136])

and NeuroRA [137]. Furthermore, a Bayes approach to RSA is available in BrainIAK

[138]. However, a comprehensive library that incorporates new developments was

missing.
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3.3 Other approaches to comparing representations

There are three commonly used alternative methods for comparing representations,

which have some underlying relationships with RSA, but are usually viewed as distinct

approaches [61]:

Encoding models are explicit models to predict one representation from another

[139, 140]. The advantage of this approach is that it yields explicit predictions for the

responses to new conditions, which can be evaluated just as any other prediction of

data would be. The first drawback of this approach is the complexity of the encoding

model. Even linear models become so flexible in high dimensions that even our largest

datasets are insufficient to strongly constrain the parameters of the encoding model.

Thus, regularization, dimensionality reduction and similar techniques are necessary to

make good predictions [141, e.g.] and these seemingly minor choices can substantially

change the results. Furthermore, fitting the encoding models can become computa-

tionally expensive and there is some debate about the adequate level of flexibility

encoding models should have [15]. The second main drawback of encoding models is

that they yield asymmetric results, i.e. prediction of a first model from a second model

may work well while prediction from the first one to the second works barely above

chance. This can be acceptable behavior when we predict neural data from a model,

but for comparisons between models or between data sets this is a clear disadvan-

tage [62]. Nonetheless, encoding models remain a popular and sensible option for the

evaluation of models that predict brain data.

In Pattern Component Modelling [PCM, 64] the feature weights are instead treated

as random variables. PCM evaluates the likelihood of the RM given the distribution

of activity profiles; the response of a measurement channel to each of the conditions.

In effect the RM is described by the second moment of these activity profiles. PCM

excels at model selection, but requires strong assumptions on the generative model.

It arguably also lacks an intuitively understandable component statistic.
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In machine learning, comparisons are more usually made based on the kernel matri-

ces of representations [63, centered kernel alignment]. Due to the strong connection

between kernel and distances matrices [70], these methods can be seen as part of the

same family of methods. Indeed, we implement centered kernel alignment (CKA, the

main measure of this class) in our toolbox.

Beyond these main approaches there a few additional ones that do not fall into

one of these categories. Two methods that differ from methods that are invariance to

rotation of the neural space are the Soft Matching Distance [142] a metric sensitive

to the tuning of individual neurons, and tuning reorientation [143], a measure of

alignment complexity.

Which metrics are best used under what circumstances is still debated [144, 145]

and researchers are actively testing and comparing methods against each other. Thus,

we follow an inclusive strategy for our toolbox and will in the future keep integrating

new promising metrics.

3.4 Conclusion

Our new rsatoolbox implements all state-of-the-art methods of representational sim-

ilarity analysis and constitutes the open-source development project where this

methodology will be further developed. It has data reading functions to import behav-

ioral, EEG/MEG and fMRI data into structured objects. RDMs can then be computed

from these and subsequently manipulated along various keys and dimensions. These

RDMs can then be compared and used to evaluate models with proper statistics.

Visualization functions make it easy to plot the RDMs and results. Thus, rsatoolbox

gives researchers access to some of the latest methods in RSA, without a steep learn-

ing curve, while potentially making their analyses faster. By building a community

project we aim for RSAtoolbox to be the standard starting point of any RSA analysis.
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Symbol Meaning
n Number of conditions
d Vectorized RDM
D Distance Matrix
r Response Pattern
K Kernel Matrix
V Covariance matrix of distances
Σ Covariance matrix of measurements
ρ Spearman’s Rho

ρa/b/c Spearman’s Rho-a/b/c
τ Kendall’s Tau

τa/b/c Kendall’s Tau-a/b/c
Tr Trace

Table 3 Symbols used
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