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Abstract

A major goal of neuroscience is to understand brain computations during visual pro-
cessing in naturalistic settings. A dominant approach is to use image-computable
deep neural networks trained with different task objectives as a basis for linear
encoding models. However, in addition to requiring tuning a large number of
parameters, the linear encoding approach ignores the structure of the feature maps
both in the brain and the models. Recently proposed alternatives have focused
on decomposing the linear mapping to spatial and feature components but focus
on finding static receptive fields for units that are applicable only in early visual
areas. In this work, we employ the attention mechanism used in the transformer
architecture to study how retinotopic visual features can be dynamically routed to
category-selective areas in high-level visual processing. We show that this compu-
tational motif is significantly more powerful than alternative methods in predicting
brain activity during natural scene viewing, across different feature basis models
and modalities. We also show that this approach is inherently more interpretable,
without the need to create importance maps, by interpreting the attention routing
signal for different high-level categorical areas. Our approach proposes a mecha-
nistic model of how visual information from retinotopic maps can be routed based
on the relevance of the input content to different category-selective regions. Code
available at github.com/hosseinadeli/transformer brain encoder.

1 Introduction

An influential approach to study plausible neural computations in the brain is to train Deep Neural
Network (DNN) models on different tasks [34, 21] and compare their learned representation to brain
activity [42, 17]. There has been a great deal of discussion and research on best ways to compare the
learned representations to the ones recorded from the brain (across models and across models and
brains). One main approach is to build encoding models— learn a mapping function from one feature
domain to another and measure the accuracy of the prediction in held-out sets [10, 28]. An alternative
approach is to characterize the geometry or topology of the representation in each model or in the
brain and then compare them (e.g. RSA; [22]). In this work, we focus on the learned encoding
functions, as we believe that it can give us further insight into the computations in the brain.

The visual system uses structured retinotopic maps as it processes visual information in the cortex.
Not surprisingly, models, such as Convolutional and transformer neural networks, that also maintain
retinotopic maps of the space perform best on different visual tasks (e.g. recognition and segmentation)
and consistently outperform other models in different brain activation prediction benchmarks [36, 13].
However the retinotopic feature maps from deep networks presents typically have a very large number
of units posing us with a challenge when mapped unto the responses in the brain. Linear encoding
models, although theoretically the simplest choice, can become very high-dimensional in that case
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(the number of parameters equals the product of the number of model units and the number of
units/voxels to be predicted) and require strong regularization (L2 penalty) given the size of typical
fMRI datasets [28]. To address these limitations, approaches have been proposed that learn spatial
receptive fields (RF) for different units or voxels in the brain data, using which the representation
is first aggregated across space and then the lower dimensional representation is linearly mapped
to the brain responses [19, 39, 27]. These models have been shown to perform on par with linear
regression models despite having a fraction of the number of parameters and are also more plausible
mechanisms of how information can route to different units. However, they can only capture fixed
routing where input to a unit comes from a specific area in space regardless of the input content.

Transformer architectures has been extremely successful in many domains, including vision [9]
and language [41]. Their success can be attributed to a general and simple (therefore scalable)
computational motif where information is routed based on the content. In these models, each token
(be a representation of a word in a sentence or a patch in an image) queries other tokens to find how
relevant they are to updating its representation. The selective nature of this mixing has motivated
naming this process "attention" in Transformers [41]. Then the new representation of this token
becomes the average of the representation of all tokens, weighted by their degree of relevance (i.e.
attention scores). We hypothesize that the optimal way for the routing of information from the
retinotopic visual maps to category selective areas is to use the same computational motif where brain
areas only attend to parts of the visual maps with the content relevant to what the area is selective for
(Fig. 1). For example if there is face in the image, it could appear anywhere, but the FFA (fuisform
face area) can learn to route only the information from the patches where the face-like stimuli are
and then expand this lower dimensional representation in the area. Note that this approach is in a
way a generalization of the aforementioned RF based methods going from fixed receptive fields to a
dynamic content-based receptive fields.

2 Related works

Brain encoding models: Predicting brain activity is an important objective, both as an engineering
challenge and also as a means of studying brain computations, reflected in the number of community
benchmarks such as Algonauts [13], Brain-score [36], and Sensorium [40]. The availability of
large-scale neural datasets has necessitated innovation in new encoding models [16]. Spatial-feature
decomposition models have shown that considering the retinotopic maps and the receptive field orga-
nization can lead to more efficient encoding models [19, 39, 27, 35]. Generalizing these approaches
to high-level visual areas would require considering more dynamic routing motifs.

Self-supervised Vision Transformers: Transformers have been shown to outperform convolutional
and recurrent neural networks (CNNs) on a variety of visual tasks including object recognition [9].
More recent studies have explored training these models on self-supervised objectives, yielding
some intriguing object-centric properties [1] that are not as prominent in the models trained for
classification. When trained with self-distillation loss (DINO, [4] and DINOv2 [30]), the attention
values contain explicit information about the semantic segmentation of the foreground objects and
their parts, reflecting that these models can capture object-centric representations without labels.
These findings show that features from these models can be a good basis for predicting neural activity
in the brain. Recent work has also shown that networks trained using self-supervised contrastive
losses (such as SimCLR; [7]) match the predictive power of supervised models for high-level ventral-
stream visual representations in the brain [20, 6]. These works argue for self-supervised learning
methods as a more plausible objective function for learning brain like visual representations.

Encoder-decoder Vision Transformers: Transformer-based encoder-decoder models provide a
general framework that has achieved great performance in many domains [41] including domains
where one modality (e.g. image) is mapped onto another one (e.g. language) [32]. A related
pioneering work to our approach is the DETR model [3] applied to the problem of object detection
and grouping in images. The encoder in this model converts the image to rich object-centric features.
The decoder uses learnable embeddings, called queries, corresponding to different potential objects,
that gather information from the encoder features using cross-attention over several layers. After the
decoding process, each object query can then be linearly mapped into to the category and bounding
box for an object. The model is trained end-to-end and can detect many objects in one feedforward
pass. We also employ this general framework here.
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Figure 1: A. Brain encoder architecture. The input patches are first encoded using a frozen backbone
model. The features are then mapped using a transformer decoder to brain responses. B. The cross
attention mechanism showing how learned queries for each ROI can route only the relevant tokens to
predict the vertices in the corresponding ROI.

3 Methods

3.1 Dataset

We run our experiments on the Natural Scene Dataset (NSD; [2]) where the fMRI responses were
collected from 8 subjects, each seeing up to 10,000 images. The reported results are from subjects
1, 2, 5, and 7 who completed all recording sessions. The surface-based fMRI responses across the
three repetitions of each image were averaged for model training and testing. We use the train/test
split that was introduced in the Algonauts benchmark [13] where the last three sessions for each
subject were held out to ensure that no test data were accessed during the model development and
to make the prediction task as natural as possible (predicting the future responses). Our analyzes
also focused on the most visually responsive part of the brain, approximately 15k vertices for each
left and right hemispheres (LH and RH) in the visual cortex, shown in Figure 2A on a surface map.
ROI level labels were provided for all the selected vertices based on visual and categorical properties
(using auxiliary experiment; refer to [2] for details). The labels are for early visual areas (’V1v’,
’V1d’, ’V2v’, ’V2d’, ’V3v’, ’V3d’, and ’hV4’), body selective areas (’EBA’, ’FBA-1’, ’FBA-2’, and
’mTL-bodies’), face selective areas (’OFA’, ’FFA-1’, ’FFA-2’, ’mTL-faces’, and ’aTL-faces’), place
selective areas (’OPA’, ’PPA’, ’RSC’), and word selective areas (’OWFA’, ’VWFA-1’, ’VWFA-2’,
’mfs-words’, and’mTL-words’).

3.2 Transformer brain encoder

We apply the the general transformer encoder-decoder framework to map images to fMRI responses.
Figure 1A shows the architecture of our model. The input image is first divided into patches (31× 31
in our dataset) of size 14× 14 pixels. These image patches are input to the backbone model which is
a 12-layer vision transformer and frozen to be used as a feature backbone.

The decoder uses input queries corresponding to different brain ROIs in different hemispheres to
gather relevant information from the backbone outputs for predicting neural activity in each ROI. Note
that these queries are learnable embeddings for each ROI trained as part of the model training. We
use a single-layer transformer for the decoder with one cross-attention and a feedforward projection.
Figure 1B shows the cross-attention process. The positional encoding is added to the image token
representation to create the keys. This allows the ROI query to attend either to the location or the
content of the input tokens through scaled dot-product attention. The attention scores are then used to
aggregate all the image tokens that are relevant to predict the brain activity in that ROI. The output
decoder tokens are then mapped using a single linear layer to fMRI responses of the corresponding
ROI. In our implementation, decoder output for each ROI is linearly mapped to a vector with the size
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Figure 2: A. The general region of interest for highly visually responsive vertices in the back of
the brain shown on different surface maps. B. Encoding accuracy (fraction of explained variance)
shown for Subject 1 for all the vertices for the transformer model using ROIs for decoder queries.
C. Encoding accuracy for individual ROIs and for ROI clusters based on category selectivity for the
two hemispheres. D. The differences in encoding accuracy between the transformer and the ridge
regression models showing that improvement in the former is driven by better prediction of higher
visual areas.

equal to the number of vertices in that hemisphere. The response is then multiplied by a mask that is
zero everywhere except for the vertices belonging to that ROI. This masking operation ensures that
the gradient signal feeding back from the loss will only train linear mappings to the vertices of the
queried ROI. The responses from different ROI readouts will then be combined using the same masks
to generate the prediction for each hemisphere. The ROI queries, transformer decoder layer and the
linear mappings are trained with the Adam optimizer [18] using mean-squared-error loss between the
prediction and the ground truth fMRI activity for each image. We train and test the models separately
for each subject.

4 Experiments

We did 10-fold cross validation using the training set for each subject and chose the model with the
best validation performance in each fold and then averaged their predictions on the test split. The
model predictions were evaluated first using Pearson correlation between the predictions and the
ground truth data. The squared correlation coefficient were then divided by the noise ceiling (see [2]
Methods, Noise ceiling estimation) to calculate the encoding accuracy as the fraction of the explained
variance.

We present results using multiple different feature backbones namely, DINOv2 base model [30],
ResNet50 [15], and CLIP large model [32]. For the DINOv2 backbone, inspired by prior work on
human attention prediction [1], we did some preliminary analyses and found the patch level query
representations (instead of values) to have slightly more predictive power and chose to use them in
all our experiment. For ResNet50, the feature maps from the last layer were extracted and reshaped
to create the visual tokens comparable to transformers. For CLIP, we chose the large model to have
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the same image patch size (14) and transformer token dimension (768) to the DINOv2 base model.
Unless otherwise stated, the features from the last layer of the backbone models are used as the input
representation to the decoder.

We consider multiple different mapping functions to compare to our proposed method. The Ridge
regression model flattens the feature representation across space and feature dimensions and learns
one linear mapping to the fMRI responses. We used a grid search to select the best ridge penalty to
maximize performance on the validation data. For the spatial-feature factorized method, the model
learns a (H * W) spatial map and applies that to the input feature similar to the attention map in
Figure 1B. The scores however are only learned for a given ROI or a vertex and are not dependent on
the content of the image. The spatial map then aggregates the features to be linearly mapped to the
brain responses. For the transformer brain encoder, we used 24 queries per hemisphere corresponding
to the 24 ROIs. Note that not all ROIs were present in all the subjects, therefore we present results
and figures for subjects individually. If an ROI is not mapped in a subject the decoder output is not
mapped to any vertices. The figures in the main text are generated using the results from subject 1,
but the figures for the remaining three subjects are presented in the supplementary section A.1.

Table 1: Encoding accuracy using DINOv2 backbone

Encoder Subjects Model size (M)

S1 S2 S5 S7

Ridge regression 0.56 0.52 0.50 0.37 ∼1200
Spatial-feature factorized (rois) 0.49 0.46 0.48 0.37 ∼31
Transformer (rois) 0.60 0.56 0.56 0.42 ∼37

Table 1 shows the encoding accuracy of the three encoding models using the DINOv2 backbone.
Ridge regression requires tuning a larger number of parameters compared to the other two approaches
(all model sizes reported as multiples of millions of parameters). Our model consistently outperforms
the spatial-feature factorized model and the ridge regression model across all subjects.

Figure 2B shows the encoding accuracy of our model for subject 1 for the areas of interests projected
onto the cortical surface using Pycortex [11]. Figure 2C shows the encoding accuracy divided over
all the individual ROIs and also clusters of ROIs. When we compare the transformer encoder to the
ridge regression model (Fig. 2D), we see that our model achieves higher encoding accuracies through
better performance for categorical areas. This suggests that content based routing can be part of the
brain computation for higher level visual areas.

To examine whether our results depend on the specific choice of the transformer backbone architecture,
we tested all the encoding models on the ResNet50 backbone features (a fully convolutional network).
Table 2 shows that we replicate the exact same pattern of accuracy as the DINOv2 backbone, where
the transformer encoder outperforms the other two alternatives across all subjects. This shows that
the transformer encoder can map differently learned features (transformer vs convolution) well to the
brain data.

Table 2: Encoding accuracy using ResNet50 backbone

Encoder Subjects Model size (M)

S1 S2 S5 S7

Ridge regression 0.49 0.48 0.47 0.37 ∼1200
Spatial-feature factorized (rois) 0.42 0.42 0.43 0.33 ∼80
Transformer (rois) 0.52 0.50 0.50 0.38 ∼37

4.1 Vertex-based routing

So far the presented transformer encoding models used ROIs as units of routing. But the routing
could be made more granular by learning a decoder query for each vertex where the gathered features
from the decoder would be mapped linearly to the corresponding vertex value. This approach can
also be applied in the spatial-feature encoding models where a spatial map is learned per vertex.
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Figure 3: A. The encoding accuracy for subject 1 shown on the brain surface for the transformer
model with vertices as decoder queries. B. The difference in encoding accuracies going from ROIs to
vertices as the decoder queries shows the improvement is almost entirely from the early visual areas.
C. The vertex-based transformer model outperforms the ridge regression model for almost all the
ROIs.

Table 3 shows model accuracies for these two approaches using the vertex-based routing, indicating
improvements for both models across all the subjects. Examining the encoding accuracy for individual
ROIs (Fig. 3), we can see that the performance boost came almost entirely from early visuals areas
for the transformer based model. The fact that shifting from ROI-based to vertex-bases routing does
not improve encoding accuracy for higher visual ares indicates that ROIs may be the right level of
routing for those regions, however the early visual areas requires more granular routing because the
receptive fields of the vertices are smaller and less content dependent. Comparing the vertex-based
transformer model to the ridge regression model (Fig. 3B) shows that the former now outperforms
the latter in almost all the ROIs, as a result of more granular routing in early visual areas.

Table 3: Encoding accuracy for different decoder queries

Encoder Subjects Model size (M)

S1 S2 S5 S7

Spatial-feature factorized (rois) 0.49 0.46 0.48 0.37 ∼31
Spatial-feature factorized (vertices) 0.52 0.48 0.48 0.37 ∼68
Transformer (rois) 0.60 0.56 0.56 0.42 ∼37
Transformer (vertices) 0.63 0.59 0.57 0.44 ∼67

Transformer (vertices) backbone layers ensemble 0.65 0.62 0.59 0.45 ∼400

Motivated by previous encoding models of the brain having used CLIP embeddings [32] to represent
images [24], we tested the different mapping functions using this feature backbone. Table 4 shows
while the performance is generally not as good as the DINOv2 backbone, it yields the same exact
pattern of results. The Transformer-based models outperform other alternatives with the vertex-based
routing reaching higher performance overall. Taken together with also the lower performance we saw
with ResNet50 backbone, the DINOv2 features, a self-supervised trained vision transformer, deserve
consideration as models of human visual brain representations.

4.2 Ensemble

A concern with using complex encoding models for neural system identification is that the non-
linear mapping may obscure the differences in the underlying representations [16]. However, our
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Table 4: Encoding accuracy using CLIP vision backbone

Encoder Subjects Model size (M)

S1 S2 S5 S7

Ridge regression 0.51 0.48 0.47 0.38 ∼650
Spatial-feature factorized (rois) 0.38 0.35 0.40 0.31 ∼30
Spatial-feature factorized (vertices) 0.44 0.40 0.42 0.32 ∼40
Transformer (rois) 0.53 0.49 0.50 0.38 ∼37
Transformer (vertices) 0.55 0.52 0.52 0.40 ∼67

Figure 4: A. Encoding accuracy of the transformer encoding model with vertex-based queries
ensembled across backbone layers. B. Showing the backbone layer from which each vertex was best
predicted. C. The improved performance of ensembling is almost entirely from better prediction of
early visual areas.

results with different feature backbones show that the ones that perform better using the linear
model consistently perform better using our transformer encoding model as well, just with the latter
achieving higher accuracies.

To address this concern further, we consider a robust phenomenon shown consistently using linear
encoding with convolutional neural network backbones, where the earlier layers of the network
are better features for predicting the earlier visual areas [42, 14, 29, 17, 43]. We trained different
transformer decoders with image tokens coming from different layers of the DINOv2 backbone. We
then use a softmax operation across the ensemble of models to get the final prediction for each voxel.
The softmax weights are based on goodness of the prediction for each model for that vertex in the
validation set. Figure. 4A shows the accuracy of the overall model on the brain surface for subject 1.
The layers that had the highest weights in the ensemble for predicting for each given voxel is shown
in 4B; higher visual areas were better predicted by later encoder layers, indicating that encoder layers
capture similar feature abstractions as the brain.

Comparing the ensemble model to the model trained using only the final backbone layer features
(Fig. 4C), we can see that the performance increase is entirely driven by better prediction of earlier
visual areas. These results show that our encoding model does not obscure the differences in the
underlying representation pointing further to its plausibility.

4.3 Attention maps

Different methods have been developed to interpret linear encoding models to make claims about the
the selectivity learned for each ROI. Some methods tend to retrieve or generate images that highly
activate the ROI vertices [25, 26, 5], and others focus on creating importance maps to show which
parts of the input images are important for predicting the activity of an ROI [33].

The difference in our approach is that the cross-attention scores (Fig. 1B) can be examined to reveal
the selectivity for each ROI making our model inherently more interpretable. We visualize the
attention maps for 3 different ROIs in Figure 5 for the transformer encoder trained with ROI decoder
queries with DINOv2 backbone. First is an early visual area, V2d (dorsal) in the left hemisphere.
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Figure 5: Attention maps. Transformer decoder cross attention scores for three ROIs overlaid on
the images. The selected ROIs show different ways in which the learned ROI queries can route
information— based on location (V2d), content (FBA), or a combination of the two (OFA) depending
on the location of the ROI in the brain processing hierarchy.

Since the visual field is flipped around both horizontal and vertical meridians in the cortex (starting
from the retina), we expect the brain activity in this area to represent visual information from the
bottom-right of the input (given that the subjects were instructed to hold fixation at the center of the
screen for the presentation duration). We see this exact pattern emerge in the attention maps. Recall
that the decoder queries can learn to attend to both patch locations or their content (since the key
value is the sum of backbone image patches and positional encoding). In this case, the attention
seems to completely be driven by the location, similarly for all the images, ignoring the content. This
is exactly what we would expect from an early visual area. The fact that all the vertices in this ROI
have to share the same attention map hurts accuracy as we saw in Figure 2D since the vertices do
have smaller RFs in this area than a quadrant, however this can be addressed by vertex level routing.

The second ROI is OFA in the right hemisphere, a mid-level face selective area [12]. The attention
maps is this ares consistently focus on faces. Since this area is in the right hemisphere it also has a
preference for visual input in the left visual field. We can see this for cases with multiple faces where
the second face in the right visual field in not strongly attended. The decoder query therefore makes
use of both the positional encoding and he content component of the key to attend to the most relevant
part of the image to predict vertices in this ROI. The attention could also be spread across multiple
faces in different locations. This is the important dynamic aspect of the receptive field in higher visual
areas that can be captured using the transformer attention mechanism. The third area is FBA in the
right hemisphere, a high level body selective area [31]. The attention maps are more spread across
bodies for this ROI and not just faces. In the Supplementary section A.2, we provide an analyses of
the similarity between the learned queries for different ROIs (capturing visual and semantic similarity
between them) and also show how our model can be used in an interpretability pipeline using diffusion
models [24] to generate stimuli that maximally activate different ROIs (section A.3).

Table 5: Encoding accuracy using BERT backbone

Encoder Subjects Model size (M)

S1 S2 S5 S7

Ridge regression 0.19 0.21 0.25 0.19 ∼1200
Transformer (rois) 0.27 0.27 0.33 0.27 ∼37

4.4 Text modality

We have tested the transformer encoding model on a few vision backbones but it remains to test
whether this approach is generalizable to other modalities. TO test this, we first used the BLIP
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Figure 6: A. Transformer encoder accuracy using image caption as input B. Only high-level visual
areas are predicted by semantic information in a caption.

model [23] to generate short captions for all the images in the dataset. Using BERT [8] as the feature
backbone, the decoder work exactly as before, using ROI queries to map backbone features to fMRI
responses. Table 5 shows how the transformer model outperforms the regression model across all
subjects (with a fraction of the parameters). Given only semantic information available in the captions,
the model can only predict the high level visual areas as shown in Figures 6A and 6B.

5 Discussion

Linear encoding models have been the dominant method used for learning the mapping from model
features to brain activity [10]. The reasons for this (see [16] for a review of these points) include
theoretical simplicity, allowing comparison among backbone features, biological plausibility, and the
ability to interpret the learned weights. However, this approach is parameters inefficient for a typical
number of voxels and image features, ignores the organization of the features, and does not capture
nonlinear computations between brain areas such as ubiquitous normalizations [38]. Our proposed
routing based method not only reaches state of the art accuracy, it also achieves the aforementioned
desiderata for encoding models, as we have shown in our results.

Foundation models (e.g. DONOv2 or CLIP for vision) trained with self-supervised objectives can
serve as general visual representation backbones. However these task agnostic models do not capture
all the computations in the brain and between brain areas, which needs be addressed by learning
better encoding models. Our work suggests a mechanism for how different brain areas dynamically
gate their input based on the input content and the area selectivity. Our results showing that the
encoding accuracy for high-level areas cannot be improved beyond ROI-based routing also agrees
with prior work on between area interactions using communication subspaces [37]. The routed
information that is relevant to an area can then get expanded more in-depth. This process allows for
cutting down on wiring cost in the brain by not connecting all the units in one area to another area
but rather only a subset of relevant information getting routed with more local connections expanding
the representation.

Limitations: We performed our experiments on NSD [2], the largest image viewing fMRI dataset
to date. It will be important to test the generality of our approach on other datasets using different
recording techniques (Neurophysiology, EEG, etc) and on different input modalities (such as video
and audio). We used vertex-wise routing to capture the responses in early visual areas but while
the computations for smaller receptive fields can be learned by this approach, the way the RFs are
implemented in the brain are through different anatomical and wiring constraints. Also we chose
for the model to read out the brain responses from a backbone for both early and high-level visual
areas. Future work will seek to explore the connectivity between early and high-level visual areas in
a more integrated system and test whether making the model further aligned with known anatomy of
the visual cortex will improve performance.
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A Supplementary Material

A.1 Encoding accuracies for Subjects 2, 3 and 7

Transformer (rois) 

Subject 2

Subject 7

Subject 5

Figure S1: Encoding accuracy (fraction of explained variance) shown for Subjects 2, 5, and 7 for
individual ROIs and for ROI clusters for the two hemispheres. The transformer model uses ROIs for
decoder queries and features from the last layer of the DINOv2 backbone.
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Transformer (rois) - Ridge Regression  

Subject 5

Subject 7

Subject 2

Figure S2: The differences in encoding accuracy between the transformer and the ridge regression
models showing that any improvement in the former is driven by better prediction of higher visual
areas.
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Transformer (vertices) 

Subject 2

Subject 7

Subject 5

Figure S3: Encoding accuracy (fraction of explained variance) shown for Subjects 2, 5, and 7 for
individual ROIs and for ROI clusters for the two hemispheres. The transformer model uses vertices
for decoder queries and features from the last layer of the DINOv2 backbone.
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Transformer (vertices) - Transformer (rois)  

Subject 2

Subject 5

Subject 7

Figure S4: The differences in encoding accuracy between the transformer model using vertices and
the model using ROIs as decoder queries. The figure shows that any potential improvement in the
former is driven by better prediction of early visual areas.
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A.2 Analyzing learned ROI queries

We analyzed the representational similarity of learned ROI queries, and report the average cosine similarity
between each pair of ROIs across 20 models trained using five different random seeds and four different DINOV2
backbone layers in Figures S5, S6, S7, S8. These figures show the visual and semantic similarity between the
ROIs as reflected in the learned queries for the subjects. We observed that ROIs with shared category selectivity
form clusters (faces, places, bodies, or words) in the similarity matrix, exhibiting greater representational
similarity within each category type.

We also see a clear divide between categorical and non-categorical areas. Additionally, ROIs within the ventral
early visual areas (V1v, V2v, V3v) are more similar to one another than to their dorsal counterparts (V1d, V2d,
V3d), and vice versa (the checkerboard patterns), reflecting the anatomical and functional organization of the
visual cortex, and that the attention will be mostly driven by spatial information.
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Figure S5: Cosine similarity between learned ROI queries for subject 1. Each entry in the matrix
represents the average cosine similarity between the query for the ROI indicated by the row label
and that indicated by the column label. ROIs from the left hemisphere are labeled with ‘lh’, and
those from the right hemisphere with ‘rh’. Results are averaged across 20 models, trained using five
random seeds and four different backbone layers.
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Figure S6: Cosine similarity between learned ROI queries for subject 2.
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Figure S7: Cosine similarity between learned ROI queries for subject 5.
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Figure S8: Cosine similarity between learned ROI queries for subject 7.

A.3 Generating maximally activating images for ROIs

BrainDiVE [24] is a generative framework for synthesizing images predicted to activate specific regions of the
human visual cortex. It guides the denoising steps of a diffusion model using gradients derived from a brain
encoding model. Given the strong performance of our encoding model in predicting brain activity, we tested
whether it could also effectively guide image generation within the BrainDiVE framework. We generated 200
images optimized to maximally activate the average predicted response of a specific ROI cluster, and display
the top five in Figure S9, S10. The categories of the generated images are consistent with the reported category
selectivity of each ROI cluster in the literature.
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subject 1: Body selective areas (EBA, FBA-1, FBA-2)

subject 1: Face selective areas (OFA, FFA-1, FFA-2)

subject 1: Place selective areas (OPA, PPA, RSC)

subject 1: Word selective areas (OWFA, VWFA-1, VWFA-2)

subject 2: Body selective areas (EBA, FBA-1, FBA-2)

subject 2: Face selective areas (OFA, FFA-1, FFA-2)

subject 2: Place selective areas (OPA, PPA, RSC)

subject 2: Word selective areas (OWFA, VWFA-1, VWFA-2)

Figure S9: Images generated to maximally activate different ROI clusters for subjects 1 and 2.
Using our encoding model within the BrainDiVE framework, we generated 200 images predicted to
maximally activate a specific ROI cluster for a given subject (indicated by the row titles). For each
cluster, we display the top five images with the highest predicted activation, as determined by our
encoding model.

21



subject 5: Body selective areas (EBA, FBA-1, FBA-2)

subject 5: Word selective areas (OWFA, VWFA-1, VWFA-2)

subject 7: Body selective areas (EBA, FBA-1, FBA-2)

subject 7: Face selective areas (OFA, FFA-1, FFA-2)

subject 7: Place selective areas (OPA, PPA, RSC)

subject 7: Word selective areas (OWFA, VWFA-1, VWFA-2)

subject 5: Place selective areas (OPA, PPA, RSC)

subject 5: Face selective areas (OFA, FFA-1, FFA-2)

Figure S10: Images generated to maximally activate different ROI clusters for subjects 5 and 7
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