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Kamila M. Jozwika,1,2 , Jonathan O’Keeffeb,1, Katherine R. Storrsc,d,1 , Wenxuan Guoe,f , Tal Golane , and Nikolaus Kriegeskortee,f,g,h

Edited by Doris Tsao, University of California, Berkeley, CA; received August 16, 2021; accepted March 30, 2022

Human vision is attuned to the subtle differences between individual faces. Yet we
lack a quantitative way of predicting how similar two face images look and whether
they appear to show the same person. Principal component–based three-dimensional
(3D) morphable models are widely used to generate stimuli in face perception research.
These models capture the distribution of real human faces in terms of dimensions of
physical shape and texture. How well does a “face space” based on these dimensions
capture the similarity relationships humans perceive among faces? To answer this, we
designed a behavioral task to collect dissimilarity and same/different identity judgments
for 232 pairs of realistic faces. Stimuli sampled geometric relationships in a face
space derived from principal components of 3D shape and texture (Basel face model
[BFM]). We then compared a wide range of models in their ability to predict the data,
including the BFM from which faces were generated, an active appearance model derived
from face photographs, and image-computable models of visual perception. Euclidean
distance in the BFM explained both dissimilarity and identity judgments surprisingly
well. In a comparison against 16 diverse models, BFM distance was competitive with
representational distances in state-of-the-art deep neural networks (DNNs), including
novel DNNs trained on BFM synthetic identities or BFM latents. Models capturing
the distribution of face shape and texture across individuals are not only useful tools
for stimulus generation. They also capture important information about how faces
are perceived, suggesting that human face representations are tuned to the statistical
distribution of faces.

face perception | face similarity | face identification | Basel face model | deep neural networks

Recognizing people by their faces is a perceptual ability that is central to human
social behavior (1). Despite much work on the neural and behavioral signatures of face
perception (e.g., refs. 2–5), there is currently no quantitative model to predict how
alike two faces will look to human observers. Advances in deep learning have yielded
powerful artificial systems for face and object recognition (6–8), and three-dimensional
(3D) modeling and rendering techniques make it possible to systematically explore the
space of possible faces (9–11). Here we asked subjects to judge the dissimilarity of realistic
face pairs generated with a morphable human-face graphics model (10). We investigate
how well the statistically derived latent space of this face-generative model predicts the
perceived dissimilarity among faces, compared to a wide range of alternative models.

Since faces of different people are structurally highly similar and vary along continuous
dimensions (nose length, jaw width, etc.), it is helpful to think of faces as forming a
continuous “face space” (12–14). A face space is an abstract space in which each face
occupies a unique position, and the dimensions span the ways in which physiognomic
features can vary between faces. The origin of the multidimensional space is often defined
as the average face: the central tendency of the population of all faces or, for an individual
observer, the sample of faces encountered so far. There is perceptual and neural evidence
that our brain’s face encoding adapts to better distinguish among the faces we encounter
more frequently, both over our lifetime and within our recent experience (3, 15–17). There
are many ways a computational model might represent the space of possible faces. For
example, deep neural networks (DNNs) trained on face recognition represent individual
faces in terms of combinations of complex nonlinear image features (e.g., refs. 18–20). By
contrast, 3D morphable models represent faces in terms of a geometric mesh defining the
face’s shape and a texture map defining the coloration at each point on the face (9–11, 21).
Three-dimensional morphable models are useful tools in face perception research because
they can be used to generate novel realistic faces for which ground-truth properties are
known, which can be rendered under arbitrary viewing conditions (10, 11, 16, 22, 23).

We used the Basel face model (BFM) (9, 10), a widely used 3D morphable model in
both computer graphics and face perception research (e.g., refs. 24, 25). The BFM is a
3D generative graphics model that produces nearly photorealistic face images from latent
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Fig. 1. Selecting pairs of faces from the BFM, and measuring perceived face dissimilarity and identity. (A) Illustration of the generative BFM, in which faces are
described by separate components specifying their 3D shape (Left) and texture (Right). Both shape and texture components have a mean shape or texture, and
faces with diverse shape and texture appearances can be created by manipulating each set of principal components. The first three PCs within each subspace
are shown here. The values of σ (±5σ) indicate moving a number of SDs away from the mean face in the direction of a given PC. Reproduced with permission
from ref. 10. (B) Stimulus selection. We defined stimuli as pairs of vectors in the BFM with radial lengths r1 and r2 and angle between them (θ). We sampled all
unique combinations from eight θ values and eight radius values to obtain 232 face pairs. See Materials and Methods for details. (C) Behavioral experiment task.
Participants positioned the face pairs along the vertical axis of the screen according to their relative dissimilarity. Faces were arranged in random subsets of eight
pairs, as in the example shown. The vertical position of the line linking face pairs determined their precise location. As points of reference for participants, two
example face pairs depicting “maximum difference” (Top) and two example face pairs depicting “identical” (Bottom) were shown. For each subset, participants
also placed a “same identity” line indicating the point below which pairs of images appear to depict the same identity. (D) Relationships between pairs of faces in
a face space like the BFM can be thought of in terms of the Euclidean distance between them (Left) or their geometric relationships relative to the center of the
face space (Right). If perceived dissimilarity can be predicted from the Euclidean distance alone, then face pair AB should look exactly as similar to one another
as face pair BC. However, if observers take the angular and radial geometry of face space into account, they may have substantially different similarities.

vectors describing shape and texture of the surfaces of natural
faces (Fig. 1A). The model is based on principal component
analysis (PCA) of 3D scans (acquired using a coded light system)
of 200 adult faces (10). We used the BFM both as a stimulus
generator and as a candidate model of face representation to
explain human face dissimilarity judgments. One appealing aspect
of 3D morphable models like the BFM is that they provide a
reference face space, enabling researchers to systematically vary
the similarity of experimental faces. However, distances within the
BFM are defined in units of SD within the sample of scanned
faces that the model is based on. Distances, thus, are measured
relative to the variance of facial features across real individuals.
It is an empirical question with no obvious answer whether
distances within such a statistical face space predict perceived
dissimilarities.

The goal of our study was to better understand the human
perceptual face space by comparing it to diverse candidate model
face spaces. We are particularly interested in how perceived sim-
ilarity relates to the statistically defined face space of the BFM
model. Is perception sensitive to the statistical distribution of
face variation captured in this model, or is perceived similarity
dominated by simpler considerations like how similar two faces are
as 3D geometries or two-dimensional (2D) images? The idea that
face perception is “statistically tuned” has long been suggested,
in the neurophysiological (16) and psychological literature (12).
Our paper reports a comprehensive test of a statistical face-
space model of human face similarity percepts, by measuring
how well distances in face space predict a rich dataset of human
dissimilarity and identity judgments. We compare the statistical

face-space model to a large set of alternative metrics and models,
which enables us to evaluate a wider range of hypotheses. Only
4 of the 16 models (pixel, VGG-Object, VGG-Face, and active
appearance model) were considered in previous works (22, 23,
26). The 16 models comprise low- and midlevel image descriptors
(pixel, GIST), a 2D Eigenface model, a 2D-morphable active
appearance model (27, 28), a 3D-mesh model capturing the
shape of a face, three facial configural models, the angle about
the average face in BFM face space, the full BFM model cap-
turing shape and texture, and six deep neural network models
with different architectures (VGG, Alexnet, HMAX) and training
objectives (face-identity recognition, face-latent prediction, object
classification).

To efficiently acquire high-fidelity dissimilarity and identity
judgments, we developed a face-pair arrangement task, in which
subjects dragged and dropped face pairs on a large touchscreen in
the laboratory (29). We generated face pairs to systematically sam-
ple geometric relations in statistical face space, exhaustively sam-
pling all combinations of facial vector lengths and angles (Figs. 1B
and 2A and Materials and Methods). This experimental design
enabled us to test how well distances and angles in the BFM’s
statistical space predict human dissimilarity judgments. The BFM
graphics model enables us to investigate the perceptual metric of
face similarity more systematically than face photographs would.
We trade photorealism and real-world variability for a densely,
systematically sampled face space where distances correspond to
statistical variations in facial shape and texture. The 3D face
mesh coordinates of BFM also enable us to test derived model
representations, including the 3D-mesh shape model, the three
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Fig. 2. Face dissimilarity judgments as a function of distances in the BFM. (A) Euclidean distances within the BFM for each face pair in the stimulus sets.
Sets A and B had identical BFM geometries, but used different specific face exemplars. Each plot shows pairs of face vectors separated by a specific angle (θ)
and arranged by the lengths of each of the two vectors (r1 and r2). Radii were sampled in eight evenly spaced steps, from a length of zero (black) to a length
of 40 units in the BFM (white). Normalized Euclidean distance between faces in each pair is indicated by the height of each bar, from zero (identical) to one
(maximum distance within the stimulus set). (B) Human face dissimilarity judgments for each face pair, for the stimulus sets A (Top) and B (Bottom). Plotting
conventions are as in A, except that bar height indicates human-rated dissimilarity, from zero (identical faces) to one (maximally dissimilar faces), averaged
over participants and trials. (C) Face dissimilarity judgments (y axis) as a function of Euclidean distance in the BFM (x axis) for the stimulus sets A (Top) and B
(Bottom). Each dot represents the mean dissimilarity rating for one pair of faces, averaged across participants and trials. The light gray line represents the fit of
a linear function and the dark gray line represents the fit of a sigmoidal function to the data. (D) Replicability of face dissimilarity judgments between sessions
1 and 2 (using stimulus set A and the same participants) and session 3 (using stimulus set B and a subset of the participant group). All r̄ values are averages of
between-session Pearson correlation coefficients across the subset of 15 participants that participated in all three sessions. Gray arrows with asterisks indicate
significantly different correlations (one-tailed paired t test across the 15 participants, P = 0.00000004; one-tailed paired Wilcoxon signed-rank test, P = 0.00003).
The correlation of face dissimilarity judgments between the two sessions using stimulus set A (sessions 1 and 2) is higher than the correlation of judgments
between stimulus sets (sessions 1 and 3 or sessions 2 and 3) for each of the 15 participants.

configural models, and the BFM angle model. Finally, we are able
to assess the isotropy and uniformity of perceptual dissimilarities
relative to the BFM reference face space.

During the task, participants arranged pairs of face images on
a large (96.9 × 56 cm) touchscreen according to how similar they
appeared, relative to anchoring face pairs at the top (maximally
different, diametrically opposed poles in BFM space) and bottom
(identical) of the screen and relative to other adjusted pairs
(Fig. 1C ). This task has two advantages over standard pairwise
dissimilarity ratings: 1) It provides a more fine-grained continuous
measure of face dissimilarity within each pair (the vertical position
at which the pair was placed on the screen). 2) The judgments
are anchored not just to the extreme anchor pairs provided above
and below the sorting arena, but also to the other adjustable pairs
within each trial. Previous studies focused either on facial similar-
ity or on facial identity; by measuring both of them in the same
task we are able to evaluate categorical same/different identity
judgments in the context of continuous dissimilarity judgments.
We also tested whether the relative geometry within BFM was per-
ceptually isotropic. Therefore, the stimulus set A and stimulus set
B experiments had the same relative geometries but different face
exemplars (Fig. 1D). We investigated both the continuous aspect
of human face perception (graded dissimilarity) and its categorical
aspect (same/different identity) by having participants place an
identity threshold line in each trial’s arrangement (Fig. 1C ). Each
subject arranged the total of 232 face pairs, across 29 trials, each
of which contained a random partition of 8 face pairs from the
total set of pairs.

Results

Participants (n = 26) were highly reliable in their dissimilarity
judgments using the arrangement task (mean correlation between
participants = 0.80, mean correlation for the same participant
between sessions = 0.85, the stimulus set A experiment). This
provided a high-quality dataset with which to adjudicate among
candidate models. We repeated the same experiment with a subset
of the same participants (n = 15) 6 mo later, with a new indepen-
dently sampled face set fulfilling the same geometric relations as
the original stimulus set (stimulus set B experiment; Materials and
Methods). Participants in the stimulus set B experiment were also
highly reliable in their dissimilarity judgments (mean correlation
between participants = 0.79). This level of replicability allowed
us to evaluate to what extent dissimilarity judgments depend on
idiosyncrasies of individual faces and to what extent they can be
predicted from geometric relations within a statistical face space.

Face Dissimilarity Judgments Are Well Predicted by Distance in
BFM Face Space. We first asked how well human face dissimilar-
ity judgments could be predicted by distances within the BFM, the
principal component–based face space from which our stimuli had
been generated. Since we had selected face pairs to exhaustively
sample different geometric relationships within the BFM, defined
in terms of the angle between faces and the radial distance of
each face from the origin, we were able to visualize human
dissimilarity ratings in terms of these geometric features (Fig. 2B).
The patterns of human dissimilarity ratings closely resembled the
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patterns of Euclidean distances among our stimuli in the BFM
space (Fig. 2A). Given this, we plotted dissimilarity judgments
for each face pair as a function of the Euclidean distance in the
BFM (Fig. 2C ). To quantify how well the BFM approximates face
dissimilarity judgments, we tested which functions best capture
the relationship between behavioral dissimilarity judgments and
BFM distances. We plotted the predictions of each fitted function
over the data and compared their goodness of fit. If the BFM is
a perfect approximator of face dissimilarity judgments, a linear
function would best describe the relationship between face dissim-
ilarity judgments and the Euclidean distances in the BFM. We do
not find this assumption to be completely true as the sigmoidal
function better describes the relationship between face dissimilar-
ity judgments and the Euclidean distances in the BFM (Fig. 2C ;
the goodness of fit of linear function = 0.82, the goodness of fit of
sigmoidal function = 0.86, one-sided Wilcoxon signed-rank test,
P < 0.05). The sigmoidal relationship between the BFM and per-
ceived distances suggests that observers have maximal sensitivity
to differences between faces occupying moderately distant points
in the statistical face space, at the expense of failing to differentiate
between different levels of dissimilarity among very nearby or very
far apart faces. This latter result may be related to the fact that
faces with very large Euclidean distances in the BFM look slightly
caricatured to humans (SI Appendix, Figs. S1–S3). We observed
similar results in the stimulus set B experiment (face dissimilarity
judgments using different face pairs with the same geometrical
properties as in the stimulus set A experiment; see Materials and
Methods for details and Fig. 2C ). This result suggests that the
sigmoidal relationship between the BFM and perceived distances
is observed regardless of the face pairs sampled. Overall, the BFM
is a good, but not perfect, approximator of face dissimilarity
judgments.

Face Identity Judgments Are Well Predicted by Distance in BFM
Face Space. We also asked humans to judge whether each pair of
faces depicted the same or different identity and examined human
identity thresholds in relation to the Euclidean distance between
faces in the BFM. We found that moderately dissimilar faces in
terms of the BFM Euclidean distance are often still perceived as
having the same identity (Fig. 3A). We observed similar results
in the stimulus set B experiment (Fig. 3A). This result may be

related to humans having a high tolerance to changes in personal
appearance due to age, weight fluctuations, or skin complexion
depending on the season.

Face pairs in the BFM can be analyzed in terms of their
geometric characteristics relative to the center of the face space
or as the Euclidean distance between them. Therefore, we tested
alternative predictors of face identity judgments: geometry in the
BFM (θ, absolute difference between r1 and r2) and the Euclidean
distance. We could predict whether two faces will be classified
as the same individual by each of the predictors (Fig. 3 B–D).
The Euclidean distance in the BFM predicted identity judgments
marginally better than the angular and radial geometry of face
space (Fig. 3E).

Dissimilarity Judgments Are Approximately Isotropic in BFM
Face Space. A representational space is perceptually isotropic if
perceived dissimilarity remains constant as the direction of the
pair of face vectors is rotated in any direction around the origin
(while preserving their lengths and angle; Fig. 1D). We cannot
test for isotropy in the stimulus set A experiment, because for each
geometric relationship [(θ), r1, r2] we have only one sample of face
pairs. To address this limitation, we compared the responses to the
stimulus set A with either a repeated measurement of the responses
to the same stimulus set or the responses to stimulus set B, which
had the same relative geometries but different face exemplars (i.e.,
each face pair had a different direction in BFM space). Participants
completed two sessions out of the stimulus set A experiment and
a subset of participants (15 of 26) completed the third session of
the stimulus set B experiment. If the relative geometry within the
BFM is isotropic, then the correlation between stimulus set A and
B experiments should be the same as the correlation between two
sessions of the stimulus set A experiment. The correlation between
two sessions of the stimulus set A experiment for the subset of 15
participants is 0.85, the correlation between the stimulus set A
session 1 and stimulus set B session 3 experiment is 0.76, and
the correlation between the stimulus set A session 2 and stimulus
set B session 3 experiment is 0.77 (Fig. 2D). Replicability of face
dissimilarity judgments between sessions 1 and 2 (using stimulus
set A and the subset of 15 participants) and session 3 (using
stimulus set B and a subset of the participant group) is significantly
higher when the same stimulus set was used (one-tailed paired

A B C D E

Fig. 3. Identity judgments as a function of geometry within the BFM. (A) Threshold for judging faces as belonging to the same/different identity, visualized
relative to similarity judgments. The curved line shows the sigmoidal fit to face dissimilarity judgments (from Fig. 2C) in the stimulus sets A (Top) and B (Bottom).
The thick horizontal line shows the mean placement of the “different identity” threshold line, across participants and trials; thinner lines above and below
indicate the SEM over participants. (B) Histogram of how frequently face pairs were judged as having the same identity (dark gray) or different identity (light
gray), as a function of their Euclidean distance in the BFM. (C) Histogram of same and different identity judgments as a function of angle (θ) between faces
in the BFM. (D) Histogram of same and different identity judgments as a function of the absolute difference between vector lengths in the BFM (r1 and r2).
(E) Summary of how well each of the three BFM metrics in B–D discriminates face pairs judged as having the same vs. different identity. Bars show the area
under the ROC curve calculated based on identity judgments using Euclidean distance, θ, and the absolute difference between r1 and r2.
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t test across the 15 participants, P = 0.00000004; one-tailed
paired Wilcoxon signed-rank test, P = 0.00003). The correlation
of face dissimilarity judgments between the two sessions using
stimulus set A (sessions 1 and 2) is higher than the correlation
of judgments between stimulus sets (sessions 1 and 3 or sessions
2 and 3) for each of the 15 participants. These results suggest
that the relative geometry within the BFM is approximately, but
not exactly, perceptually isotropic. However, since the stimulus
set B experiment was performed 6 mo after the stimulus set A
experiment, the decreased correlation with stimulus set B could be
attributed to the longer time between sessions with different face
exemplars. Hence, we do not interpret the correlation difference
as strong evidence against isotropy.

A related concept to isotropy is face space uniformity. The
space is perceptually uniform if perceived dissimilarity remains
constant as the pair of face points is translated anywhere in
the space. This is a looser requirement than isotropy because all
it preserves is the Euclidean distance between face points, not
their geometry relative to the origin. For example, if the space
is uniform, then it should not matter whether one face is at the
origin and the other is 10 units away or both faces are 5 units away

from the origin in opposite directions. We searched for evidence
of perceptual uniformity in the stimulus set A experiment, by
binning face pairs into groups with similar Euclidean distance
and then evaluating whether the angle between the faces explains
variance in perceived dissimilarity. If the space is nonuniform,
we might expect faces with larger angular differences to appear
more different, even if they have identical Euclidean distance. We
find only weak evidence for any nonuniformity in the face space
(SI Appendix, Fig. S4).

Deep Neural Networks Trained on Diverse Tasks Predict
Perceived Face Dissimilarity Well. We tested a wide range of
models. All models tested are schematically presented in Fig. 4A.
We considered Euclidean or cosine distances within the full
BFM space. Simple alternative models consisted of a 3D mesh
model, RGB pixels, GIST, Eigenfaces, and face configurations:
“zeroth-order” configuration (location of 30 key points such
as eyes, nose, mouth), “first-order” configuration (distances
between key points), and “second-order” configuration (ratios
of distances between key points). We also considered an active
appearance model (27), trained to summarize facial shape and

A B C

Fig. 4. Comparing diverse models in their ability to predict face dissimilarity judgments. (A) Schematic illustration of models compared (see Table 1 for full
details). Two models were based on the 3D morphable model from which faces were generated: 1) Euclidean distance in the 3D morphable model and 2) cosine
distance within the full BFM coordinate space. Other models included 3) AAM and 4) Eigenfaces. DNN models consisted of a 16-layer VGG architecture trained
on 5), 6) BFM faces, 7) face photographs, or 8) objects and 9) an 8-layer Alexnet architecture trained on objects. Alternative models were 10) a shallower HMAX
neural network; 11) GIST image descriptors; 12) raw pixel values; 13) raw 3D face mesh; and configural models 14) “0th order” configuration (location of 30 key
points such as eyes, nose, mouth), 15) “1st order” configuration (distances between key points), and 16) “2nd order” configuration (ratios of distances between
key points). (B) Ability of each model to predict face dissimilarity judgments in the stimulus sets A (Top) and B (Bottom). Bars show a Pearson correlation between
human-judged face dissimilarity and face-pair distance within each model. The dark lower region of each bar shows performance for raw model distances, while
the lighter upper region shows additional performance gained if model distances are transformed by a compressive nonlinearity (a sigmoidal function fitted to
data from training participants and face-pair stimuli). All models were significantly correlated with human data (P < 0.05 corrected). The gray bar represents the
noise ceiling, which indicates the expected performance of the true model given the noise in the data. The final bar shows the performance of a linear weighted
combination of all models, fitted using nonnegative least squares. Fitting of sigmoidal transforms and linear reweighting was performed within the same
cross-validation procedure, fitting and evaluating on separate pools of both participants and stimuli. Error bars show the SEM (95% confidence interval over
2,000 bootstrap samples). Horizontal lines show pairwise differences in model performance (P < 0.05, Bonferroni corrected across all comparisons). Models
connected by triangular arrow markers indicate a significant difference, following the convention in ref. 60, with the direction of the arrow marker showing
which model is superior. All statistical tests shown were performed on the untransformed version of each model. For statistical comparisons among models
with sigmoidal transform, see SI Appendix, Fig. S9. (C) Unique variance in face dissimilarity judgments computed using a hierarchical GLM for the stimulus sets
A (Top) and B (Bottom). For each model, unique variance is computed by subtracting the total variance explained by the reduced GLM (excluding the model
of interest) from the total variance explained by the full GLM, using nonnegative least squares to find optimal weights. Models that explain significant unique
variance are indicated by an asterisk (one-sided Wilcoxon signed-rank test, P < 0.05 corrected). Error bars show the SEM based on single-participant unique
variance.
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texture of natural faces (28). Finally, the last class of models
consisted of DNNs of either a 16-layer VGG (30) or an
8-layer Alexnet architecture (31). VGG was trained either to
recognize objects, identify faces from real-world photographs,
and recognize synthetic identities generated from the BFM
(SI Appendix, Fig. S14) or to estimate the underlying BFM latent
representation of such synthetic images (SI Appendix, Fig. S15).
All DNNs were trained on recognition tasks or latent prediction
rather than to report dissimilarity directly. Predicted dissimilarities
of each face pair for each model are shown in SI Appendix, Fig. S5.

We inferentially compared each model’s ability to predict face
dissimilarity judgments, in both their raw state and after fitting
a sigmoidal transform to model-predicted dissimilarities, using
a procedure cross-validated over both participants and stimuli
(Materials and Methods). The highest-performing model was the
VGG deep neural network trained on face identification (VGG-
Face) (18) (Fig. 4B, Top). We included in the comparison the
highest-performing layer of each deep neural network (for the
comparison of all VGG layers, see SI Appendix, Fig. S6).To com-
plement the neural networks trained on naturalistic images, we
trained (Materials and Methods) the same VGG-16 architecture to
classify identities (SI Appendix, Fig. S14) sampled from the Basel
face model 2018 (32) or to estimate the underlying BFM latents
of such synthetic images (SI Appendix, Fig. S15), an objective
inspired by Yildirim et al. (23). Both of these models remove the
mismatch between the training (real naturalistic faces) and test
distributions (BFM) of faces. The best layer of a VGG trained
on BFM identities or on BFM latents does not perform better
than the best layer of a VGG trained on natural faces and does
not capture any unique variance (Fig. 4C, Top). In all four VGG
training scenarios (objects, natural faces, BFM faces, and BFM
latents), match to human judgments peaked in late convolutional
layers, before declining again in fully connected layers (for the
comparison of all VGG–BFM-identity layers and VGG–BFM-
latents layers, see SI Appendix, Figs. S7 and S8). Human face
perception is captured by a DNN that has experience with real
naturalistic faces; and there is no evidence that the performance
of a DNN trained on real faces is diminished by testing it on
generated faces. Several other models performed well, and the ac-
tive appearance model (AAM) was not statistically different from
VGG-Face. Euclidean distance within BFM was outperformed
by VGG-Face and AAM, but not by any of the other models
(Fig. 4 B, Top). Performing the same analysis on the independent
stimulus set B experiment revealed good reproducibility of the
model rankings, even though the stimulus faces are different (Fig.
4 B, Bottom). VGG-Face again achieved the highest performance,
but in this dataset was not significantly superior to several
other models: VGG–BFM-identity, VGG-Object, Alexnet, active
appearance model, and GIST. Again, the BFM model was
competitive with image-computable models, being outperformed
only by VGG-Face and VGG–BFM-latents. Most models reached
the noise ceiling in this second dataset, but this is likely because
there was greater overall measurement noise, due to a smaller
sample size and one rather than two experimental sessions.

Like the BFM-based models, we additionally evaluated all
other models after sigmoidally transforming their raw predictions
(cross-validated, fitting and testing on separate participants and
stimuli). Light shaded upper portions of bars in Fig. 4B indicate
the performance of sigmoidally fitted versions of each model, and
SI Appendix, Fig. S9 shows the result of statistical comparisons
between them. All models better predicted human responses
after fitting a sigmoidal function to their raw predicted distances
and produced a greater relative improvement for more poorly
performing models, but did not substantially affect model rank-

ings (Fig. 4B). VGG-Face predicts human judgments best, and
BFM distance is competitive, being outperformed only by VGG-
Face in the stimulus set A and the stimulus set B experiments
(SI Appendix, Fig. S9). Taking raw and sigmoidally transformed
performance across the two datasets into account, we found no
single best model, but a set of consistently very highly performing
ones. The four DNN models, the 3D morphable BFM, the
AAM, and the image-statistic summary GIST model all excel-
lently predicted face dissimilarity judgments. We observed that
the average correlation between the models is 0.81 (with the
highest correlation being 0.99 and the lowest correlation being
0.41; SI Appendix, Fig. S12). These results mean that there is a
different degree of similarity of model predictions between models
tested.

In SI Appendix analyses, we evaluate a number of additional
models beyond the 16 shown in Fig. 4. These BFM-based ad-
ditional models are Euclidean and cosine distances within three
linear subspaces of BFM face space: 1) the BFM shape dimen-
sions only, 2) the BFM texture dimensions only, and 3) a four-
dimensional subspace consisting of the dimensions capturing
most variance in the “person attributes” height, weight, age, and
gender (SI Appendix, Fig. S10). We also assessed models based on
Euclidean distance within different numbers of principal com-
ponents of the full BFM space (SI Appendix, Fig. S11). The per-
formances are very similar for calculations performed on the
full BFM space or on either the shape or the texture subspaces
using Euclidean distance or angle metrics (SI Appendix, Fig. S10).
The model with loadings on perceptually relevant dimensions of
age, gender, weight, and height explained less variance than the
full model (SI Appendix, Fig. S10). Increasing the number of the
principal components in the full model leads to a rapid increase
in performance as the first 1 to 10 components are included
(SI Appendix, Fig. S11). The BFM model with 50 principal com-
ponents (as used in ref. 33) is close to the performance of the
full model. It seems that much smaller subspaces than the full
199-dimensional space may be sufficient to explain the variance
in facial dissimilarity judgments. However, the effects of later
principal components on facial appearance are likely to be less
visible at a given image resolution than those of early components.

There are substantial computational differences between the
several models that all predict human perceived face dissimilarity
well. Do they explain shared or unique variance in human judg-
ments? To address this question we performed a unique variance
analysis on all models. Several models explained a significant
amount of unique variance, especially VGG-Face, BFM angle,
and AAM models in both stimulus set A and stimulus set B
experiments (Fig. 4C ). It is important to note, however, that the
amount of unique variance explained by these models was very
small.

If some models explain unique variance, perhaps combining
them would explain more overall variance in face dissimilarity
judgments? To address this question, we combined all models
into one model via linear weighting and asked whether this
combined model explains more variance than each of the models
alone. Model weights were assigned within the same procedure
that individual models were evaluated, cross-validating over both
participants and stimuli. We found that in both datasets, the
combined weighted model reached high performance, but did not
exceed the performance of the best individual model (Fig. 4B).

Models based on BFM or DNN feature spaces outperformed
most others, including models based on the face perception
literature (angle in the BFM face space and simple configurations
of facial features) and two baseline models (based on pixels or 3D
face meshes). Poor performance of configural models is at odds
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with the previously proposed importance of interfeature distances
and ratios for face recognition (34–36). It seems that the richer
combination of detailed facial landmarks along with their visual
appearance as captured by the active appearance model (28) is
needed to well predict facial dissimilarity judgments. Such models
are also well suited to describing variations across facial expressions
(37). The success of the Gabor-based GIST model is broadly
consistent with previous work finding that Gabor-based models
explain significant variance in face-matching experiments (38,
39) when stimuli are tightly controlled. The GIST model here,
however, has high shared variance with more complex models for
the image set used, and it is questionable how it would perform
under more natural variation of pose and lighting, which we
cannot address with the present dataset.

A previous systematic attempt to predict face dissimilarity judg-
ments from image-computable features found that dissimilarity
was best predicted by weighted combinations of features that
approximated natural high-level dimensions of personal charac-
teristics such as age and weight (40). Here we tested a BFM-
based person-attributes model that consisted of the four dimen-
sions of BFM face space that capture the highest variance in
height, weight, age, and gender (among the 3D-scanned indi-
viduals that BFM space is based on). This model performed
significantly and substantially worse than the leading models
(SI Appendix, Fig. S10).

Discussion

BFM Latent Space Predicts Perceived Face Similarity. We found
that Euclidean distance in the principal component latent space
of the 3D morphable face-graphics Basel face model is a good
approximator of human face dissimilarity judgments. BFM face
space supports quantitative predictions of perceived face dissimi-
larity. This is broadly consistent with a recent report (26) showing
that a different shape- and texture-based face-space model is
predictive of facial dissimilarity judgments. The model in that
study was an active appearance model (27), which like BFM
decomposes faces into shape and texture features, but defines
shape by landmark locations on 2D face images, not in 3D. The
AAM also showed excellent performance in the present study. The
Basel 3D morphable model is derived from separate PCAs of 3D
face shape and of facial texture and coloration. It is, therefore,
a more sophisticated statistical model than the 2D-shape active
appearance model and earlier PCA-based face-space models de-
rived from 2D images, which are only moderately predictive of
perceived face dissimilarity (41).

Like visual recognition in general, face recognition must be
robust to nuisance variation, including variation of view and light-
ing, but it also has the domain-specific challenge of representing
the subtle structural differences between individual faces. It makes
sense that our perception of these differences is attuned to the
ways in which faces vary in the natural population. Our focus
here was on the perceptual representation of the natural statistical
variations among faces, rather than on the more general problem
of how visual recognition achieves robustness to variation in view,
lighting, and other nuisance variables. This is why we sampled a
rich set of identities, while keeping view and lighting constant.
Using only frontal faces in a single view and lighting condition
does make it harder to reject image-computable models, and this
has to be taken into account in the interpretation. However, the
BFM model, which is central to this study, by definition has
perfect invariance to view and lighting and so would have a trivial
advantage over the image-computable models if view and lighting
were varied. Our approach here gave image-based dissimilarity

metrics their best chance to capture the subtle identity-related
variations among faces. Future studies varying view and lighting
(and perhaps other nuisance variables) along with identity may
reveal failures of some of the image-computable models to capture
face-identity variation invariantly. It will then be interesting to
see whether those failures match or diverge from human face
perception.

The success of BFM here is broadly consistent with psycho-
logical face-space accounts. However, some previous studies have
assigned particular importance to the geometric relationships of
faces relative to a meaningful origin of the space (3, 12, 13,
42, 43). Our finding that BFM Euclidean distance uniformly
accounts for perceived dissimilarity contrasts with an early report
that there are larger perceptual differences between faces that
span the average face than between equally BFM-distant faces
that fall on one side of the average (44). Extensive behavioral
and neurophysiology work has sought to relate the computational
mechanisms underlying face perception to geometric relationships
in neural or psychological face space. Face-selective neurons may
explicitly encode faces in terms of vectors of deviation from an
average face. This idea is supported by evidence from monkey
electrophysiology (16, 33) and human psychophysical adaptation
(3, 17, 45), although alternative interpretations of the latter have
been proposed (46, 47). Our comprehensive sampling of face
pairs with the full range of possible geometric relationships was
tailored to reveal the precise manner in which distances from
the origin, and angular distances between faces, affect perceived
dissimilarity. Yet both dissimilarity and identity data were best
explained by the Euclidean distance. Our results do not contradict
previous studies, but suggest that effects of relative geometry may
be more subtle than previously thought. We must be mindful
also of the fact that the present study sampled faces that vary
along diverse dimensions, rather than stimulus sets constructed
to densely sample single or few dimensions (e.g., refs. 43, 44).
Finally, distances within the BFM appear approximately but not
exactly perceptually isotropic.

Distance within the BFM cannot be a perfect predictor of
perceived face dissimilarity. First, as mentioned above, BFM la-
tents are perfectly invariant to nuisance variation resulting, for
example, from changes in view and lighting, which are known to
affect human face perception (48–50). Second, like all morphable
models, the BFM cannot account for familiarity with particular
individuals, which is known to be a substantial factor in human
face perception (42). Third, BFM is based on the head scans
of only 200 individuals, and this sample is biased in several
ways, for example toward white, relatively young faces. Consistent
with these imperfections of BFM distance as a model of human
perceptual face space, BFM falls slightly short of reaching the noise
ceiling, indicating that it leaves unexplained some of the variance
that is reliable across individual observers. It will be interesting to
test in the future whether newer 3D morphable face-space models
capture more of the remaining variance in human dissimilarity
judgments (11) and whether image-computable models can cap-
ture human perceptual idiosyncrasies reflecting familiarity with
particular individuals as well as human failures of invariance to
variation of view and lighting.

BFM Helps Characterize the Tolerance of Identity Judgments.
For any reference face, BFM face space enables us to approximately
define the set of similar faces that people will perceive as the
same person. The BFM was previously shown to capture face
impressions (51) and personality traits (52), and different kinds
of face-space model captured same–different face judgments (23)
and the similarity of randomly generated faces to four familiar
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identities (22). We found that humans often classify pairs of
images as depicting the same identity even with relatively large
distances in the BFM. Two faces may be perceptibly different from
one another, while nevertheless appearing to be “the same person.”
The ability of the visual system to generalize identity across some
degree of structural difference may be analogous to invariance to
position, size, and pose in object recognition (53). Face images
generated from a single identity form a complex manifold as they
may vary in age, weight, expression, makeup, facial hair, skin
tone, and other dimensions (11). Given that we need to robustly
recognize identity despite such variation, it may not be surprising
that there is a high tolerance for facial feature variation in face
recognition. Our stimulus set contained very dissimilar faces,
which provided an anchor for people’s definition of “different” and
may influence moderately dissimilar faces to look quite alike, in
comparison. Participants seemed to interpret person identity quite
generously, possibly imagining whether this face could be the same
person if the person aged, got tanned, or lost weight. “The same
person” may be a not precisely defined concept; however, people
seem to agree what that concept means as they were consistent in
judging the same/different identity boundary. Interestingly, the
“different identity” threshold was not far from the saturation
point of face dissimilarity psychometric function (Fig. 3A).
This result could be related to people dismissing all “different
individuals” as completely different and focusing their sensitivity
within the range of faces that could depict the same identity.
The design of our current experiment required participants to
locate a threshold of dissimilarity, above which they considered
faces to be different identities. This means that identity and face
dissimilarity judgments are constrained to be consistent. Future
experiments could be designed to enable subjects to judge one
pair as dissimilar, yet same identity, and another as more similar,
yet different in identity.

Multiple Models Predict Human Judgments Similarly Well. Our
data show clearly that some models of face dissimilarity are worse
than others. Simply taking the angle between faces in the BFM
is a poor predictor, as is a set of higher-order ratios between
facial features. Perhaps surprisingly, the model consisting only of
the four dimensions that capture the highest variance in height,
weight, age, and gender performed poorly. It is possible that this
model did not perform optimally because the face pair images in
the face dissimilarity judgments did not have enough variability
across these dimensions. Age and gender were shown to explain
variance in face magnetoencephalography (MEG) representations
(54) and we show that they do explain variance in the face
dissimilarity judgments task, however, to a lesser extent than other
models. It seems that people use other or more than socially
relevant dimensions when judging face dissimilarity.

Among highly performing models, we found that several ex-
plain face dissimilarity judgments similarly well. One of the mod-
els that explains a surprisingly large amount of variance is GIST. It
has been previously shown that Gabor-based models explain face
representations well (24, 38). The models compared contain quite
different feature spaces. For example, object-trained and face-
trained VGG models learn distinctly different feature detectors
(7), yet explain a similar amount of variance in human face dissim-
ilarity judgments. Object-trained and face-trained VGG models
have previously been found to explain a similar amount of variance
in human inferior temporal cortex (55) and in face-selective visual
cortex (56), and object-trained VGG captured variance in early
MEG responses (57). The face space within a face-trained DNN
organizes faces differently than they are arranged in the BFM’s
principal components, for example, clustering low-quality images

at the “origin” of the space, eliciting lower activity from all learned
features (42).

One of the reasons for similarly high performance among
disparate models is that, for our stimulus set, several models made
highly correlated predictions (SI Appendix, Fig. S12), making it
difficult to discriminate between them based on the current data.
Model discrimination was also difficult in a previous study of
face representations in the human fusiform face area, where a
model based on Gabor filters performed similarly to one based on
sigmoidal ramp tuning in face space (24). It is important to bear in
mind that stimulus sampling strategies can affect the relative per-
formances of different models. If stimuli vary only along a subset
of the perceptual dimensions, then the experiment cannot reveal
to what extent each model explains the other dimensions. Here
we specifically sampled face pairs in BFM, which suggests that our
experiment should powerfully reveal the strengths and weaknesses
of BFM, while possibly missing other models’ strengths and/or
weaknesses along dimensions not varied in our stimulus set. Our
stimulus set, thus, is biased in that it samples BFM latent space.
However, it is unclear how an unbiased stimulus set should be
defined and whether our stimulus set here helps or hurts BFM’s
performance relative to other models. In fact, we observed that
several models including AAM and DNNs performed very well
in explaining face similarity data despite being derived by training
on very different face information and sampling strategies. Future
studies could use stimulus optimization methods to identify sets
of stimuli for which candidate models make divergent predictions
(58–60).

The models we considered here are distributed over a vast space,
and it is not possible in a single study to probe all models’ rep-
resentational spaces adequately. The BFM and image-computable
models have different advantages and disadvantages for predicting
human dissimilarity judgments. The BFM model has privileged
access to distances in a shape and texture space normalized to
represent the distribution of natural faces. However, the image-
computable models have privileged access to image features of
the kind known to be represented throughout the ventral visual
stream. Similarly, the 3D mesh model has privileged access to
the shape of the face surfaces. Comparing many models provides
constraints for computational theory, but it will take many studies
to drive the field toward a definitive computational model of
face perception. We conclude that in addition to being a useful
tool for generating faces in face perception research, statistical
generative models of face shape and texture align surprisingly well
with human face perception.

Materials and Methods

Stimuli. Each face generated by the BFM corresponds to a unique point in
the model’s 398-dimensional space (199 shape dimensions and 199 texture
dimensions), centered on the average face. The relative locations of any pair of
faces can therefore be summarized by three values: the length of the vector from
the origin to the first face r1, the length of the vector from the origin to the
second face r2, and the angle between the two face vectors θ (Fig. 1B). To create
a set of face pairs spanning a wide range of relative geometries in face space,
we systematically sampled all pairs of eight possible radius values combined
with eight possible angular values. Possible angular values were eight uniform
steps between 0 and 180◦, and possible vector lengths were eight uniform steps
between 0 and 40 units in the BFM. The measure of 40 units corresponds to 40
SDs. For reference, the distance from a randomly sampled point to the origin of
the space, when drawing randomly from a 398-dimensional space where each
dimension is independently normally distributed with unit variance, is 19.95
SDs (i.e., the square root of 398) (14). Our goal was to extensively sample face
space, including faces that lie near the expected distance from the origin, as well

8 of 11 https://doi.org/10.1073/pnas.2115047119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 7
4.

64
.1

02
.1

69
 o

n 
Ju

ly
 5

, 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
74

.6
4.

10
2.

16
9.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115047119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115047119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115047119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115047119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115047119/-/DCSupplemental
https://doi.org/10.1073/pnas.2115047119


as faces closer to or farther from the origin than would be expected by chance.
This sampling procedure led some faces far away from the origin to look slightly
caricatured. However, caricatured faces are in the minority, and we find they
are fairly evenly distributed among pairs, appearing in pairs rated as looking
both very dissimilar and very similar (both full stimulus sets are provided in
SI Appendix, Figs. S2 and S3). For all eight angles and eight eccentricities, there
were 232 unique face relationships when considering 1) that exchanging the
two radii yields the same relationship for a given angle and 2) that the angle is
irrelevant when one of the radii is 0. When both radii are>0, there are (7[nonzero
radii] × 7[nonzero radii] + 7)/2 = 28 pairs of nonzero radius combinations
(including identical radii), and so there are 28 × 8[angles] = 224 relationships
between faces. When one of the radii is 0, then the angle is irrelevant, and
there are an additional eight radius combinations (the other radius can take each
of the eight values). For each relative geometry, we then sampled two random
points in the full 398-dimensional BFM space that satisfied the given geometric
constraints. We generated two separate sets of face pairs with the same relative
geometries but different face exemplars, by sampling two independent sets
of points satisfying the same geometric constraints. The two sets (stimulus set
A and stimulus set B) were used as stimuli in separate experimental sessions
(Psychophysical Face-Pair Arrangement Task).

Participants. Human behavioral testing took place over three sessions. Twenty-
six participants (13 females) took part in sessions 1 and 2, and a subset of
15 (6 females) took part in session 3. All testing was approved by the Medical
Research Council (MRC) Cognition and Brain Sciences Ethics Committee and
was conducted in accordance with the Declaration of Helsinki. Volunteers gave
informed consent and were reimbursed for their time. All participants had a
normal or corrected-to-normal vision.

Psychophysical Face-Pair Arrangement Task. The procedure in all sessions
was identical, the only difference being that the same set of face-pair stimuli was
used in sessions 1 and 2, while session 3 used a second sampled set with identical
geometric properties. Comparing the consistency between sessions 1, 2, and 3
allowed us to gauge how strongly human judgments were determined by geo-
metric relationships in face space, irrespective of the individual face exemplars.

During an experimental session, participants were seated at a comfortable
distance in front of a large touchscreen computer display (43-in. Panasonic TH-
43LFE8-IR, resolution 1,920 × 1,080 pixels, touchscreen size 96.9 × 56 cm)
placed horizontally on a desk (participants looked at faces from above). On each
trial, the participant saw a large white “arena,” with a randomly arranged pile of
eight face pairs in a gray region to the right-hand side (Fig. 1C). The two faces
within each pair were joined together by a thin line placed behind the faces, and
each pair could be dragged around the touchscreen display by touching. Each
face image was rendered in color with a transparent background and a height of
144 pixels (∼7.1 cm on screen).

The bottom edge of the white arena was labeled “identical” and the top edge
was labeled “maximum difference.” Two example face pairs were placed to the
left and to the right of the identical and maximum difference labels to give
participants reference points on what identical and maximally different faces look
like. The maximally different example faces had the largest geometric distance
possible within the experimentally sampled geometric relationships (i.e., the
Euclidean distance in the BFM = 80) in contrast to identical faces (i.e., the
Euclidean distance in the BFM = 0). The same example pairs were used for all
trials and participants.

Participants were instructed to arrange the eight face pairs on each trial
vertically, according to the dissimilarity of the two faces within the pair. For
example, two identical faces should be placed at the very bottom of the screen.
Two faces that look as different as faces can look from one another should be
placed at the very top of the screen. Participants were instructed that only the
vertical positioning of faces would be taken into account (horizontal space was
provided so that face pairs could be more easily viewed and so that face pairs
perceived as being equally similar could be placed at the same vertical location).
On each trial, once the participant had finished vertically arranging face pairs by
dissimilarity, they were asked to drag an “identity line” (Fig. 1C) on the screen
to indicate the point below which they considered image pairs to depict the
same person. Once eight face pairs and the identity line were placed, participants
pressed the “done” button to move to the next trial. Each session consisted of 29
trials.

Representational Similarity Analysis. We used representational similarity
analysis (RSA) to evaluate how well each of a set of candidate models predicted
human facial (dis)similarity judgments (61). For every model, a model-predicted
dissimilarity was obtained by computing the distance between the two faces in
each stimulus pair, within the model’s feature space, using the model’s distance
metric (Candidate Models of Face Dissimilarity). Model performance was defined
as the Pearson correlation between human dissimilarity judgments and the
dissimilarities predicted by the model. We evaluated the ability to predict human
data both for each individual model and for a linearly weighted combination of
all models (62, 63). See SI Appendix for details.

Area under the Receiver Operating Characteristic Curve Calculation.
We calculated the receiver operating characteristic (ROC) curve such that for each
Euclidean distance, θ or absolute difference between radii we first run a logistic
regression (classifier) to predict identity (based on position relative to identity
line). Second, we computed the ROC curve on the classifier output. Specifically,
for a range of discriminatory thresholds (0 to 1), we computed the true positive
rate and false positive rate. The ROC curve is the plot of true positive rate vs. false
positive rate. The area under the curve (AUC) represents how well the classifier
performs at various threshold settings. The threshold is the value at which the
classifier will assign a label to a given input, by comparing the probability of that
input vs. the threshold.

Unique Variance Analysis. We used a general linear model (GLM) to evaluate
unique variance explained by the models (64). For each model, unique variance
was computed by subtracting the total variance explained by the reduced GLM
(excluding the model of interest) from the total variance explained by the full
GLM. For model m, we fit GLM on X= “all models but m” and Y= data, and then
we subtract the resulting R2 from the total R2 (fit GLM on X = “all models” and Y
= data). We performed this procedure for each participant and used nonnegative
least squares to find optimal weights. A constant term was included in the GLM.
We performed a one-sided Wilcoxon signed-rank test to evaluate the significance
of unique variance contributed by each model across participants.

Candidate Models of Face Dissimilarity. We considered a total of 16 models
of face dissimilarity in the main analyses (Fig. 4) and an additional 3 models in
SI Appendix, Fig. S10. Each model consists of a set of features derived from a face
image, BFM coordinates, or 3D mesh, combined with a distance metric (Table 1).
Basel face model. We considered two variant models based on the principal
component space provided by the BFM: 1) “BFM Euclidean,” which took the
Euclidean distances between faces in the full 398-dimensional BFM space, and
2) “BFM angle,” which took the cosine distance between face vectors in the full
398-dimensional space. See SI Appendix for details.
Active appearance model. Active appearance models (27) are 2D morphable
models, generally trained on hand-annotated face images to identify a number of
key facial landmarks from 2D photographs and describe visual structure around
these landmarks. We applied a pretrained AAM provided in the Menpofit Python
package (https://www.menpo.org/menpofit/) (28) as menpofit.aam.pretrained.
The model is a patch-based AAM that has been trained on 3,283 face
photographs hand labeled with the locations of 68 landmark features
(https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/). The model de-
scribes the shape of a face via 20 shape parameters that summarize the locations
of landmark features and the texture of a face via 150 appearance parameters that
summarize pixel values in the form of dense scale-invariant feature transform
features. We used a Lucas–Kanade AAM fitter provided in the Menpofit package
to fit the parameters of the pretrained model to each of our stimulus faces
independently. We provided an initial guess via a 72 × 72-pixel bounding
box at the center of each face image and then ran the fitting procedure for
100 iterations. An example fitting result is shown in SI Appendix, Fig. S13A.
After fitting the AAM to each stimulus face we appended the final shape and
appearance parameters to create a 170-dimensional vector describing the face,
analogously to how shape and texture PCs were appended to create the full Basel
face model descriptor. We then took the Euclidean distance between vectors as
the predicted dissimilarity between faces in each stimulus pair.
Models based on 3D face structure. Face perception is widely thought to de-
pend on spatial relationships among facial features (5, 34, 35, 65). We calculated
the Euclidean distance between the 3D meshes that were used to render each face
(“mesh” model). We also used the geometric information within each face’s mesh
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Table 1. Candidate models of face dissimilarity
Model name Description Source Distance metric Computed from
1) BFM 3D morphable face model combining PCA

subspaces of structural and textural
components from 200 3D face scans.

(10) Euclidean BFM PCA coordinates

2) BFM angle PCA subspace of only the structural
components from 200 3D face scans.

(10) Cosine BFM PCA coordinates

3) BFM shape
(SI Appendix, Fig. S10)

PCA subspace of only the structural
components from 200 3D face scans.

(10) Euclidean or cosine BFM PCA coordinates

4) BFM texture
(SI Appendix, Fig. S10)

PCA subspace of only the textural
components from 200 3D face scans.

(10) Euclidean or cosine BFM PCA coordinates

5) BFM person
attributes
(SI Appendix, Fig. S10)

Loading of PCA coordinates onto height,
weight, age, and gender vectors.

(10) Euclidean or cosine BFM PCA coordinates

6) VGG-Face best Highest-performing layer of 16-layer
deep neural network trained on face
identification.

(30) Euclidean RGB image

7) VGG-Object best Highest-performing layer of 16-layer
deep neural network trained on object
recognition.

(18) Euclidean RGB image

8) VGG–BFM-identity
best

Highest-performing layer of 16-layer
deep neural network trained on BFM
synthetic identity recognition.

Custom trained Euclidean RGB image

9) VGG–BFM-latents
best

Highest-performing layer of 16-layer
deep neural network trained on BFM
images to infer BFM latent parameters.

Custom trained Euclidean RGB image

10) AlexNet best Highest-performing layer of 8-layer deep
neural network trained on object
recognition.

(31) Euclidean RGB image

11) Active appearance
model

Shape and appearance description in
active appearance model.

(28) Euclidean RGB image

12) Eigenfaces Face space comprising all eigenvectors
results from a PCA on 5,000 face
photographs.

(66, 67) Euclidean RGB image

13) HMAX best Highest-performing layer in a 4-layer
cortically inspired neural network.

(68) Euclidean RGB image

14) GIST Gabor-based summary of contrast energy
at different orientations and scales.

(69) Euclidean RGB image

15) Pixel Raw image data. n/a Euclidean RGB image
16) Mesh Raw 3D mesh data. n/a Euclidean 3D mesh
17) Configural 0th Locations of key facial features (0th-order

configural information).
(35) Euclidean 3D mesh

18) Configural 1st Distances between key facial features
(first-order configural information).

(35) Euclidean 3D mesh

19) Configural 2nd Ratios of distances between key facial
features (second-order configural
information).

(35) Euclidean 3D mesh

n/a, not applicable.

description to calculate a first-, a second-, and a third-order configural model of
facial feature arrangements, following suggestions by ref. 35 and others (e.g., ref.
34) that face perception depends more strongly on distances or ratios of distances
between facial features than raw feature locations. See SI Appendix for details.
Deep neural networks. We used a pretrained state-of-the-art 16-layer convo-
lutional neural network (VGG-16), trained on millions of images to recognize
either object classes (30) or facial identities (18). Further details can be found
in refs. 18 and 30. The dissimilarity predicted by DNN models was defined as the
Euclidean distance between activation patterns elicited by each image in a face
pair in a single layer. To input to DNN models, faces were rendered at the VGG
network input size of 224×224 pixels, on a white background, and preprocessed
to subtract the average pixel value of the network’s training image set. See
SI Appendix for details about the VGG–BFM-identity classification network and
the VGG–BFM-latents regression network.
Low-level image-computable models. As control models, we also con-
sidered the dissimilarity of two faces in terms of several low-level image
descriptors: 1) Euclidean distance in raw RGB pixel space; 2) Euclidean
distance within a “GIST” descriptor, image structure at four spatial scales and

eight orientations (https://people.csail.mit.edu/torralba/code/spatialenvelope/);
3) Euclidean distance within the best-performing layer (C2) of HMAX, a simple
four-layer neural network (cbcl.mit.edu/jmutch/hmin/); and 4) Euclidean
distance within an “Eigenface” space (66) consisting of the 4,999 dimensions
obtained by running a PCA on a “training dataset” comprising the first
5,000 faces in the CelebA cropped and aligned dataset of celebrity faces
(mmlab.ie.cuhk.edu.hk/projects/CelebA.html) (67). To create the PCA space,
photographs were resized to a height of 144 pixels and then cropped to the center
144 × 144 pixels. To derive predicted dissimilarities for experimental stimuli,
we first subtracted the mean image from the PCA training dataset from each
stimulus face and then projected the stimulus face into the 4,999-dimensional
PCA space to obtain a description of each face in terms of a 4,999-dimensional
weight vector. We took the Euclidean distance between projected PCA weight
vectors as the predicted dissimilarity between face images. Experimental stimuli
could be well reconstructed from weighted combinations of Eigenfaces, as shown
in SI Appendix, Fig. S13A. For comparability with the images seen by participants,
all low-level image-computable models operated on faces rendered on a white
background at 144 × 144-pixel resolution.
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Data Availability. Anonymized human behavioral judgment data have been
deposited in The Open Science Framework (https://osf.io/7bh6s/). The code to
analyze the raw behavioral data and replicate the figures in the paper can be
found at GitHub, https://github.com/kamilajozwik/face similarity paper 2022.
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Supplementary Materials

Supplementary Methods

Representational similarity analysis. To provide an estimate
of the upper bound of explainable variance in the dataset, we
calculated how well human data could be predicted by data
from other participants, providing a "noise ceiling". Noise ceil-
ings, raw model performance, sigmoidally-transformed model
performance, and reweighted combined model performance
were all calculated within a single procedure, cross-validating
over both participants and stimuli. On each of 30 cross-
validation folds, 5 participants and 46 face pairs were ran-
domly assigned as test data, and the remaining stimuli and
participants were used as training data. On each fold, a
sigmoidally-transformed version of each model was created,
by fitting a logistic function to best predict dissimilarities
for training stimuli, averaged over training participants, from
raw model distances. Also on each fold, a reweighted com-
bined model was created using non-negative least-squares to
assign one positive weight to each of the individual models,
to best predict the dissimilarity ratings for training stimuli,
averaged over training participants. We then calculated, for
each raw model, each sigmoidally transformed model, and
for the combined reweighted model, the Pearson correlation
with the model’s predictions for test stimuli for each individ-
ual test participant’s ratings. The average correlation over
test participants constituted that model’s performance on this
cross-validation fold. The upper bound of the noise ceiling
was calculated within the same fold by correlating each test
participant’s test-stimulus data with the average test-stimulus
data of all test participants (including their own). The lower
bound was calculated by correlating each test participant’s
test-stimulus data with the average for all training partic-
ipant’s test-stimulus data. Means and confidence intervals
were obtained by bootstrapping the entire cross-validation
procedure 2,000 times over both participants and stimuli.

We first determined whether each model was significantly
different from the lower bound of the noise ceiling, by as-
sessing whether the 95% confidence interval of the bootstrap
distribution of differences between model and noise ceiling
contained zero, Bonferroni corrected for the number of mod-
els. Models that are not significantly different from the lower
bound of the noise ceiling can be considered as explaining all
explainable variance, given the noise and individual differences
in the data. We subsequently tested for differences between
the performance of different models. We defined a significant
pairwise model comparison likewise as one in which the 95%
confidence interval of the bootstrapped difference distribution
did not contain zero, Bonferroni corrected for the number of
pairwise comparisons.

Basel Face Model. For face pairs where cosine distance was
undefined, because one face lay at the origin of BFM space,
the angle between the two faces was defined as zero for the
purposes of model evaluation. To more fully explore the re-
lationship between apparent dissimilarity and placements of
faces in the full BFM space, we also considered linear and
sigmoidal functions as candidates for predicting the relation-
ship between the Euclidean distance in the BFM and face

dissimilarity judgements. We estimated each model’s pre-
dictive performance as the Pearson correlation between the
fitted model’s predicted dissimilarities and the dissimilarities
reported by each participant. We tested for significant dif-
ferences between linear and sigmoidal function fits using a
two-sided Wilcoxon signed-rank test. For each participant, we
fitted the model to half of the data (session 1) and measured
the predictive accuracy of the model in the second half of
the data (session 2). The predictive accuracies were averaged
across participants.

Finally, the BFM provides the axes onto which the height,
weight, age, and gender of the 3D scanned participants most
strongly loads. By projecting new face points onto these
axes, we can approximately measure the height, weight, age
and gender of each generated face. The "Person attributes"
model consisted of the Euclidean distance between faces, after
projecting faces onto these four dimensions.

Models based on 3D face structure. We selected 30 vertices
on each face corresponding to key locations such as the centre
and edges of each eye, the edges of the mouth, nose, jaw, chin,
and hairline, using data provided in the BFM. The positions
of these 30 vertices on each 3D face mesh formed the features
for the "0th order" configural model. We then calculated 19
distances between horizontal and vertically aligned features
(e.g. width of nose, length of nose, separation of eyes), which
formed the "1st order" configural model. Finally, we calculated
19 ratios among these distances (e.g. the ratio of eye separation
to eye height; the ratio of nose width to nose length), which
formed the "2nd order" configural model. For all configural
models, the predicted dissimilarity between two faces was the
Euclidean distance between their respective feature vectors.

Deep neural networks. We formed the VGG-BFM-identity
classification network by training the VGG-16 architecture (1,
TorchVision’s implementation) to classify Basel Face Model
(2) face images of 8,631 synthetic identities (Supplementary
Figure 14). All of the images pertaining to one identity shared
shape and texture latents (both randomly sampled from the
Basel Face Model, once per identity), but had different expres-
sion latents, poses, lighting direction, and lighting intensity.
We generated 363 images of each identity to roughly match the
total number of training images in the VGGFace2 dataset (3).
The rendered images were randomly cropped during training
or centre-cropped during validation, in both cases yielding
an input image of 224 x 224 pixels. To further increase the
images’ variability, we augmented the training examples using
Albumentations (4). We only included naturalistic transforma-
tions such as grayscale transformation, brightness and contrast
manipulations, noise addition, drop-out, grid distortion, and
blurring. See Supplementary Figure 16a for training-set image
examples. The input images were normalized by the channel-
specific mean and standard deviation, computed from a subset
of training images. The model was trained for 30 epochs on

1



minimizing the cross-entropy loss, using four GPUs. We used
stochastic gradient descent with a weight decay of 0.0001,
momentum of 0.9, and a minibatch size of 512. The learning
rate was initialised to 0.01 and reduced by a factor of 10 every
10 epochs. The model reached a 0.0 validation loss.

We formed the VGG-BFM-latents regression network by
mapping the penultimate layer of a VGG-16 architecture to
a 508-dimensional vector as the last fully connected layer
and training the network to recover the underlying latents
of synthetic face images sampled from the Basel Face Model
(2, Supplementary Figure 15). 199 of the 508 output units
were assigned as predicted shape coefficients, 199 as predicted
texture coefficients, 100 as predicted expression coefficients, 4
as predicted face pose (parameterized as a quaternion), 3 as
lighting color, and 3 as lighting direction. The network was
trained on minimizing the sum of six normalized mean squared
error (NMSE) terms (i.e., shape, texture, expression, face pose,
ambient lighting, and lighting direction). The synthetic dataset
included 3,300,0000 unique faces generated similarly to the
dataset used to train the VGG-BFM-identity model, except
that each face was independently sampled from the BFM (i.e.,
without using synthetic identities) and we did not use dataset
augmentations other than random cropping. The model was
trained for 120 epochs using four GPUs. We used ADAM (5)
with β0 = 0.9, β1 = 0.999, ε = 10−8, no weight decay, and
a minibatch size of 512. The learning rate was initialised to
0.0001 and was reduced by a factor of 10 every 40 epochs. See
Supplementary Figure 16b,c for quantitative and qualitative
evaluation of the trained model’s performance.

We used PyTorch (6) for implementing the VGG-BFM-
identity and VGG-BFM-latents models and PyTorch Lightning
(www.pytorchlightning.ai) for model training.
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Supplementary Figure 1. Facial similarity rankings in humans in the stimulus set  A 
and the stimulus set  B experiments: example face paris.

dissimilarity judgements dissimilarity judgements

stimulus set Bstimulus set A

same

maximally 
different

Supplementary Fig. 1. Face dissimilarity rankings by humans.
Columns display face pairs according to their average rated dissimilarity by humans from most dissimilar (top) to most similar (bottom), visualising every 20th face pair in each
ranked set within stimulus sets A (left) and B (right).
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dissimilarity judgements

stimulus set A

same
same

maximally different

from most dissimilar to least dissimilar

Supplementary Fig. 2. Face dissimilarity rankings by humans for all face pairs within stimulus set A.
Columns display face pairs ordered according to their average rated dissimilarity by humans from most dissimilar (top left) to most similar (bottom right).
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dissimilarity judgements

stimulus set B

same
same

maximally different

from most dissimilar to least dissimilar

Supplementary Fig. 3. Face dissimilarity rankings by humans for all face pairs within stimulus set B.
Columns display face pairs ordered according to their average rated dissimilarity by humans from most dissimilar (top left) to most similar (bottom right).
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Supplementary Fig. 4. Uniformity test.
a) Schematic of the distinction between perceptual isotropy and perceptual uniformity. If a space is perceptually isotropic (left), the pairs of faces (A,B) and (A’,B’) should appear
equally dissimilar, because they correspond to vectors that have been rotated around the origin while preserving their geometric relationship to one another (the vectors span
the same angle θ and have the same norms r1 and r2). If a space is perceptually uniform (right), the pairs of faces A-B and A’-B’ should appear equally dissimilar, because
they correspond to vectors that have been linearly translated in the space, preserving their Euclidean distance to one another (while disrupting their geometric relationship).
b) Analysis evaluating evidence of perceptual uniformity in the stimulus set A experiment. Face pairs were binned into groups with similar Euclidean distances. We then
evaluated whether the angle between the faces explains variance in perceived dissimilarity within each bin. If the space is non-uniform, we might expect faces with larger
angular differences to appear more different, even if they have identical Euclidean distance. We find only weak evidence for any non-uniformity in the face space. Bins with
significant correlation are indicated by an asterisk (one-sided Wilcoxon signed-rank test, P < 0.05 corrected). Error bars show the standard error of the mean based on
single-participant correlations.
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b

Supplementary Fig. 5. Dissimilarity predictions for each face pair in the stimulus set A as a function of angular and radial geometry in BFM, according to each model.
a) Models based on BFM information, facial geometry, landmarks or configurations, and simple 2D image properties.
b) Models based on deep neural network representations or shallower computer vision features. Conventions are as in Figure 2a of the main manuscript. Each plot shows a
"slice" through the BFM face space, comprising stimuli separated by the same BFM angle. The x and y axes indicate the length of the longer and shorter radius in the face pair,
and the height of the bar indicates predicted dissimilarity for the face pair according to the model, normalised to the range 0-1.
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Supplementary Figure 2. VGG-Face and VGG-Object layer comparison

stimulus set B

stimulus set A

VGG-Face VGG-Object

raw model
sigmoidal fitted model

VGG-Face VGG-Object

raw model
sigmoidal fitted model

Supplementary Fig. 6. Ability of each layer within VGG-Face and VGG-Object neural networks to predict human face dissimilarity judgements.
Correlations between human dissimilarity judgements in stimulus sets A (top) and B (bottom) and Euclidean distance within each layer of a deep neural network trained either to
recognise faces (VGG-Face) or objects (VGG-Object). All key processing steps within each network are shown, including application of a non-linearity (’relu’), convolutional
layers (’conv’), max-pooling (’pool’), and fully-connected layers (’fc’). The darker lower part of each bar shows the performance of raw predicted distances, and paler upper parts
show the same after fitting a sigmoidal transform, cross-validated over both participants and stimuli. The final bars show the performance of a linearly-weighted combination of
all layers. Conventions are as in Figure 4b.
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stimulus set A

stimulus set B

Supplementary Fig. 7. Ability of each layer within VGG-BFM-identity neural network to predict human face dissimilarity judgements.
Correlations between human dissimilarity judgements in stimulus sets A (top) and B (bottom) and Euclidean distance within each layer of the VGG-BFM-identity neural network.
Conventions are as in Supplementary Figure 6.
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stimulus set A

stimulus set B

Supplementary Fig. 8. Ability of each layer within VGG-BFM-latents neural network to predict human face dissimilarity judgements.
Correlations between human dissimilarity judgements in stimulus sets A (top) and B (bottom) and Euclidean distance within each layer of the VGG-BFM-latents neural network.
Conventions are as in Supplementary Figure 6.
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a bstimulus set A stimulus set B

Supplementary Fig. 9. Statistical comparisons between models after allowing a sigmoidal transformation to fit human dissimilarity data.
a) Model performance data shown in Figure 4b, but with models ordered and statistically compared according to their performance after fitting a sigmoidal transform (within
cross-validation folds) to raw model-predicted distances. Conventions are as in Figure 4b.
b) Corresponding data for stimulus set B.

BFM BFMshape

BFMtexture

euclidean 
or

cosine
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(height, 
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gender)

a b c stimulus set A

stimulus set B

stimulus set A

stimulus set B

θ

d

Supplementary Fig. 10. Performance of BFM models based on different subspaces and distance metrics.
a) Schematic of the six additional models presented here and their relationship to the BFM models presented in the main manuscript. Here we evaluate again the performance
of a model based on either Euclidean or Cosine distance in the full 398-dimensional BFM space, as well as ones based on Euclidean or Cosine distance in: (top) the
199-dimensional shape subspace, (middle) the 199-dimensional texture subspace, or (bottom) the 4-dimensional space comprising the dimensions that capture the most
variance in height, weight, age, and gender.
b) Average Pearson correlation of each model’s predictions with human data in the two experimental datasets. Conventions are as in Figure 4b.
c) Unique variance analysis for the same models. Conventions are as in Figure 4c.
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a bstimulus set A stimulus set B

Supplementary Fig. 11. Effect of varying number of principal components in the 3D morphable Basel Face Model.
a) Correlation with human dissimilarity ratings of the stimulus set A, for models comprising the first 1, 2, 3, 4, 5, 10, 20, 50, 100, or 199 principal components from both the
shape and texture sub-spaces. For example, the 1-PC model measures the Euclidean distance between faces in a two-dimensional space consisting of the first shape-PC and
first texture-PC. The 199-PC model is the full BFM space included in the main manuscript analyses. Including a larger number of components aids prediction, but performance
rises rapidly and saturates at a smaller dimensionality than the full BFM space.
b) Corresponding data for stimulus set B.

a b

DNN models

3D morphable

image
models

geometric
models

2D morphable

Supplementary Fig. 12. Dissimilarity (1-correlation) between model predictions for face pairs in stimulus set A.
a) Correlation distance between predictions made by models shown in the main manuscript (Figure 4), grouped by whether they derive from DNNs, from the principal
components of the BFM, from simple image-computable models, or from the 3D geometry of faces.
b) Correlation distance between predictions made by models based on the BFM (see Supplementary Figure 10 for model performances).
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Supplementary Fig. 13. Reconstruction and fitting quality of the Eigenface and Active Appearance Models.
a) To create the Eigenface model, 4,999 eigenvectors (centre, shown reshaped to 144x144 pixels) were derived by running Principal Component Analysis on a set of 5,000
cropped and aligned real-world face photographs (left). Experimental stimulus faces were then projected into this PCA space. The Euclidean distance between the projection
vectors of the two faces within each pair was taken as the model-predicted dissimilarity for that pair. The PCA space well captured the variance in stimulus images, in that
stimulus faces could be well reconstructed by elementwise-multiplying their PCA projection weight vector with the 4,999 Eigenfaces (three examples shown on the right).
b) For the Active Appearance Model, we used a pretrained patch-based AAM that had been trained on a dataset of 3,283 landmark-labelled face photographs. For each
stimulus face, we initialised the fitting process by providing a boundary box centred around the internal features (left), then used an iterative procedure to optimise the locations
of 68 facial landmarks from their initial default positions (centre) to their final fitted positions (right).

14



PC1PC2PC3 PC199

shape

PC1PC2PC3 PC199

texture

PC1PC2PC3 PC100

expression pose
(quaternions)

light
direction

light
intensity

cross-entropy loss

rendered and cropped face image

VGG-16 architecture

softmax across identities

ground-truth identity (one-hot) 

transformed face image

randomly chosen
synthetic identity

Individual #1

Individual #8631

shape texture

Individual #1 Individual #8631

Supplementary Fig. 14. The training procedure of the VGG-BFM-identity model.
Each training or test sample pertains to one of 8,631 synthetic identities. For each synthetic identity, we sampled random shape and texture latents from the Basel Face Model
distribution. The exemplars of each synthetic identity were rendered using independently sampled expression latents, pose, light direction, light intensity, and background
intensity. The 3D rendering was followed by random cropping for training images or centre cropping for test images. Additional training-sample variation was introduced by 2D
image transformations. The VGG-16 architecture was initialized with random weights and trained on identification, minimizing the cross-entropy loss between a 8,631-long
softmax output and a one-hot representation of the ground-truth identities.
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Supplementary Fig. 15. The training procedure of the VGG-BFM-latents model.
Each training or test sample was independently sampled from the Basel Face Model distribution and rendered using randomly sampled pose, light direction, light intensity, and
background colour. The 3D rendering was followed by random cropping for training images or centre cropping for test images. The VGG-16 architecture was initialized with
random weights and trained on recovering the latents underlying the input image, minimizing the sum of six Normalized Mean Squared Error (NMSE) terms, pertaining to BFM
shape, texture, expression, pose (parameterized by quaternions), light direction, and light intensity. These error terms are computed from the squared differences between the
ground-truth latents and six subsets of the 508-long output layer. Each term was normalized such that an optimal constant prediction would result in an expected NMSE of 1.0.
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Supplementary Fig. 16. Training and validation samples, and reconstruction accuracy of the VGG-BFM-latents model.
a) A sample of VGG-BFM-identity model training set images, showing two synthetic identities and various image transformations (i.e. training data augmentation).
b) A sample of VGG-BFM-latents model validation set images along with face reconstructions using model-predicted latents.
c) Mean squared error (MSE) of each principal component in BFM latents, computed using a sample of 512 validation images. Grey lines indicate the average MSE across all
principal components. The VGG-BFM-latents model successfully recovered the principal components that explain the largest variances in the BFM space, indicated by the low
MSE of the first few PCs. On average across latent elements, the model reached an NMSE of 0.679 for shape, 0.266 for texture, 0.528 for expression, 0.00284 for pose,
0.00735 for light intensity, and 0.433 for light direction.
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