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Encoding and decoding models are widely used in systems,

cognitive, and computational neuroscience to make sense of

brain-activity data. However, the interpretation of their results

requires care. Decoding models can help reveal whether

particular information is present in a brain region in a format

the decoder can exploit. Encoding models make

comprehensive predictions about representational spaces. In

the context of sensory experiments, where stimuli are

experimentally controlled, encoding models enable us to test

and compare brain-computational theories. Encoding and

decoding models typically include fitted linear-model

components. Sometimes the weights of the fitted linear

combinations are interpreted as reflecting, in an encoding

model, the contribution of different sensory features to the

representation or, in a decoding model, the contribution of

different measured brain responses to a decoded feature.

Such interpretations can be problematic when the predictor

variables or their noise components are correlated and when

priors (or penalties) are used to regularize the fit. Encoding

and decoding models are evaluated in terms of their

generalization performance.  The correct interpretation

depends on the level of generalization a model achieves

(e.g. to new response measurements for the same stimuli,

to new stimuli from the same population, or to stimuli from a

different population). Significant decoding or encoding

performance of a single model (at whatever level of generality)

does not provide strong constraints for theory. Many models

must be tested and inferentially compared for analyses to

drive theoretical progress.
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Encoding and decoding: concepts with
caveats
The notions of encoding and decoding are rooted in the

view that the brain processes information. Information

about the world enters our brains through the senses, is

processed and potentially stored, and informs our behav-

ior over a large range of time scales. To understand brain

function, then, we must understand the information

processing: what information is processed, in what format
it is coded in neural activity, and how it is re-coded across

stages of processing, so as to ultimately contribute to

behavior.

The view of the brain as an information-processing

device (or, equivalently, a computational device) is

closely linked to the concept of representation. A pattern

of neural activity represents information about the world

if it serves the function to convey this information to

downstream regions, which use it to produce successful

behavior [1].

When we talk about encoding and decoding, we focus on

a particular brain region X whose function we are trying to

understand. To simplify the problem, we divide the

process into the encoder (which produces the code in

region X from the sensory signals) and the decoder (which

uses the code in region X to enable successful behavior).

This bipartite division often provides a useful simplifica-

tion. However, we have to consider three caveats to avoid

confusion.

First, encoder and decoder do not inherently differ with

respect to the nature of the processing. Where the

encoder ends and the decoder begins depends on our

region of interest X. When we move our focus to the next

stage of representation in region Y, the processing

between X and Y, which was part of the decoder, becomes

part of the encoder. Whether a particular processing step

in the brain is to be considered encoding or decoding,

thus, is in the eye of the beholder.

Second, our region of interest X may not be part of all

causal paths from input to output. The division about

region X into encoder and decoder, then, misses a portion

of the causal graph. Brain regions do not in general form

chains of processing stages without skipping connections

or recurrent signaling. The primate visual hierarchy is a

case in point, where cortical areas interact in a network

with about a third of all possible pairwise inter-area

connections [2,3]. Encoding and decoding models are
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nevertheless useful in this context, providing a partial

view of the encoded information and its format.

Third, the terms encoding and decoding suggest that

each is the inverse of the other: The encoder maps stimuli

to brain responses; the decoder maps brain responses to

stimuli. However, if we would like to interpret our

encoding and decoding models as models of brain com-

putation, then both encoder and decoder ought to operate

in the causal direction. The decoder should not map back
to stimuli, but on to motor representations. An encoding

model might predict neural activity elicited by images

[4,5�,6]. A decoding model might attempt to predict

category labels from neural activity, thus explicating

information that might be reflected in a behavioral

response [7].

The notion that encoding is followed by its inverse begs

the question why the original input is not simply copied.

A possible motivation for a sequence of an encoder and its

inverse is to temporarily compress the information, for

example, for passage through a bottleneck such as the

optic nerve. A more general notion is that information is

re-coded through a sequence of stages, possibly compres-

sing it for more efficient representation [8], but also

discarding unneeded information and converting needed

information into a format that enables it to be exploited to

control behavior [9,10]. When decoding models are con-

ceptualized as inverse encoders (mapping back to the

stimuli, rather than on to downstream representations),

they cannot be interpreted as process models of brain
Box 1 Decoding models: benefits and limitations

Decoding provides an intuitive and compelling demonstration of the prese

benefits:

� They enable researchers to look into the regions and reveal whether pa

might be used by downstream neurons (i.e. the encoding might serve as 

focus from single-neuron activity and regional-mean activation to the in

computational function in question.

� They enable cognitive neuroscience to exploit the fine-grained multivari

decoding, dominant brain mapping techniques required smoothing of th

modelling of local patterns also brought locally multivariate noise mode

drawn from neuroimaging data.

� Decoding analyses use independent test data to assess the presence of i

data ensures that violations of model assumptions lead to conservative 

methods (such as univariate and multivariate linear regression) that use d

statistical inference.

Decoding models are limited in several ways:

� They cannot in general be interpreted as models of brain-information proc

the wrong direction, capturing the inverse of the brain’s processing of the

of information flow matches between model and brain. However, such a

decoding in the literature rely on linear decoders, which are useful to re

computations we wish to understand.

� Decoder weight maps are difficult to interpret (Figure 3) because voxels 

cancel noise and because the weights are codetermined by the data and

two essentially equally informative voxels.

� Decoding results provide only weak constraints on computational mecha

some evidence for and against alternative theories about what the regio

tation, let alone reveal the underlying computations.
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function. However, they can still be useful tools, reveal-

ing information present in a brain region and giving us

clues about the format of the code. For a careful discus-

sion of the interpretation of causal and anti-causal encod-

ing and decoding models, see Weichwald et al. [11�].

Encoding and decoding are important concepts in both

theoretical and experimental neuroscience. This paper

addresses experimentalists and focuses on the interpre-

tation of empirical results obtained by fitting encoding

and decoding models to brain-activity data.

Decoding models: revealing information and
its format
Decoding is sometimes described as ‘reading the brain’ or

‘cracking the neural code’ [12–14]. The underlying con-

cept is that of decoding as inverse encoding, where the

goal is not to model brain information processing, but to

reveal the content of the code. The sense of revealing a

mystery and gaining insight into hidden information

drives the imagination of scientists and lay people alike.

The intuition that something important has been learned

when we can decode some perceptual or higher cognitive

content from brain activity is correct. However,

‘decrypting’ the brain should not be equated with under-

standing its computational mechanism. Decoding reveals

the products, not the process of brain computation

(Box 1). However, it is a useful tool for testing whether

a brain region contains a particular kind of information in

a particular format [12–14,15�,16,17�,18–29].
nce of information in a brain region. Decoding models bring several

rticular information is encoded in the responses. Encoded information

a representation). Training and testing decoders have helped move the

formation being processed, making analyses more relevant to the

ate information present in modern imaging data. Before the advent of

e data, treating fine-grained information as noise. The multivariate

ls to the literature, which greatly enhance the information that can be

nformation. Demonstrating significant information with independent test

errors (making significant results less likely). This is an advantage over

istributional assumptions rather than independent test sets to perform

essing. In the context of sensory systems, decoding models operate in

 stimuli. If the decoded variable is a behavioral response, then direction

pplications are rare. Moreover, the most successful applications of

veal explicit information, but cannot capture the complex nonlinear

uninformative by themselves can receive large weights when they help

 the prior, and the fitting procedure might select one but not the other of

nisms. Knowing that a particular kind of information is present provides

n does. However, it does not exhaustively characterize the represen-
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A simple example of a decoding model is a linear classifier

[30] that takes a measured brain-activity pattern as input

and outputs a class label (say ‘cat’ and ‘dog’), revealing

which of two stimuli (say a particular image of a cat and a

particular image of a dog) elicited the response pattern

(Figure 1). A linear classifier may achieve this by com-

puting a weighted sum of the measured responses and

imposing a threshold to decide which label to return (see

Ref. [21] for an introduction in the context of neuroim-

aging). The weights are set to maximize the accuracy of

the decoding on a training data set. If decoding succeeds

reliably on a test data set, then the region must contain

information about the decoded variable (the binary stim-

ulus distinction here).

Decoding provides a statistically advantageous way of

testing for stimulus information

In the two-stimulus example, all the linear decoder shows

is that the two images elicit distinct response patterns.

This means that there is mutual information between

stimulus and response. To demonstrate mutual informa-

tion, we could have used an encoding model [31] or a

multivariate test of difference between the response

patterns elicited by the two stimuli (e.g. multivariate

analysis of variance), instead of a decoding model. How-

ever, a univariate encoding model would in general have

less sensitivity, because it does not account for the noise

correlations between different response channels [32]. A

multivariate analysis of variance would account for the

noise correlations, but might have less specificity. In fact,
Figure 1
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stimulus response
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(a) 

Linear encoding and decoding models.

(a) Encoding and decoding model the relationship between stimuli and resp

responses as a linear combination of stimulus properties (black circles). A d

combination of brain responses. (b) Example of a linear decoding model us

1 contains relevant information about which of two classes (green, blue) the

stimulus class. The two dimensions jointly define the linear discriminatory b

the vector w, which is orthogonal to the decision boundary. Because the no

significant negative weight to voxel 2, using this voxel (which contains only 

result, interpreting the absolute weights of linear decoders requires care an

www.sciencedirect.com 
it might fail to control false-positives at the nominal level

if its assumptions of multivariate normality did not hold

(as is often the case), making it invalid as a statistical test

[24]. Decoding provides a natural approach to modelling

the noise correlations (e.g. using a multivariate normal

model as in the Fisher linear discriminant), without

relying on the model assumptions for the validity of

the test: Violations of the decoding model assumptions

will hurt decoding performance. We, thus, err on the safe

side of concluding that there is no information about the

stimuli in the responses. In sum, it is not the direction of

the decoding model (‘brain reading’) that makes it a

compelling test for information, but the statistical nature

of the problem (noise correlations) and the fact that

decoders are tested on independent data.

Linear decodability indicates ‘explicit’ information

For decoding to succeed, the information must be present

in the brain region in a format that the decoder can

exploit. Linear decoders, the most widely used class,

require that the distributions of patterns be linearly

separable to some extent. This is a weakness in that

we might fail to detect information encoded in a more

complex format. However, it is a strength in that it

provides clues to the format of the information we do

detect. The simpler the decoder, the more focused its

sensitivity will be. From the perspective of understanding

the brain computations, it is attractive to use decoding

operations that single neurons can implement. These

include linear readout, but also simple nonlinear forms
odel

odel

voxel 1

vo
xe

l 2

w

(b)
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onses in opposite directions. An encoding model (top) predicts brain

ecoding model (bottom) predicts stimulus properties as a linear

ing a 2-dimensional feature space consisting of two voxels. Voxel

 stimulus belongs to. Voxel 2 contains no information about the

oundary. Note that the weights assigned to each voxel are defined by

ise is correlated between the voxels, a linear decoder will assign

noise) to cancel the noise in the voxel which contains signal. As a

d additional analyses.
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of readout such as radial basis function decoding [33].

Linear decodability indicates that a downstream neuron

receiving input from a sufficient portion of the pattern,

could read out the information in question [34]. Informa-

tion amenable to direct readout by downstream neurons is

sometimes referred to as ‘explicit’ in the code [24,35,36].

The level of generalization beyond the training set must

be considered when interpreting a decoding result

Fitting a model always poses the risk of overfitting, that is,

of optimizing the fit to the training data at the expense of

predictive performance on independent data. Overfitting

can lead to high decoding accuracy on the training set,

even if the response patterns contain no information

about the stimulus. Decoders, therefore, need to be

tested for generalization to independent data [37,38].

In our example, we might test the decoder on an inde-

pendent set of response measurements for the same two

particular images of a cat and a dog. If decoding accuracy

on this independent test set is significant, we can reject

the null hypothesis that the response patterns contain no

information about the stimulus [21,22].

However, detecting information about which of two

images has been presented tells us almost nothing about

the nature of the code. The two images must have distinct

response patterns in the retina and V1 (low-level repre-

sentations) as well as in the visuo-semantic regions of the

ventral stream (high-level representations). We would,

therefore, expect a linear decoder to work on new mea-

surements for the same images in any of these regions.

This reflects the fact that all the regions contain image

information. In the retina, for example, we expect the two

images to elicit distinct response patterns, while the

manifolds of response patterns corresponding to the

two categories are hopelessly entangled [34,40,41].

Given responses to just two images, we can demonstrate

the presence of information, but have no empirical basis

for characterizing the nature of the code (see Ref. [42] for

a study limited by this drawback). In order to learn

whether the region we are decoding from contains a

low-level image encoding or a high-level categorical

encoding, we can train the decoder on one set of cat

and dog images and test it on another set of images of

different cats and dogs [24,43,44].

To support the interpretation that ‘cats’ and ‘dogs’ are

linearly separable in the representation (rather than the

weaker claim that there is image information), it is not

sufficient to increase the number of particular images of

cats and dogs, while training and testing on the same

images. The linear decoder has many parameters (one for

each response channel) and is expected to overfit even to

a larger set of particular images. Even for the retinal

representation, we, therefore, expect a cat/dog decoder

to generalize to new measurements performed on the
Current Opinion in Neurobiology 2019, 55:167–179 
same images. We must test the linear decoder for gener-

alization to different cats and dogs.

Note, however, that interpreting linear decodability as linear

separability of the two classes in the neuronal representa-

tional space would further require the decoding accuracy to

be so high that errors can be attributed to the measurement

noise rather than the neural representation. In practice, we

typically face ambiguity. For example, decoding accuracy

may be significantly above chance, but far from perfect. This

indicates that the code contains some linearly decodable

information, but claims of linear separability may be difficult

to evaluate as it would require attributing the substantial

proportion of errors to limitations of the measurements

(noise and subsampling), rather than to a lack of linear

separability of the neuronal activity patterns.

If we managed to show that cats and dogs fall in linearly

separable regions in representational space, there would

still be a question about the nature of the features that

support the encoding. There may be many different visual

features that can be computed from images and that lend

themselves to separating cats from dogs (e.g. the shape of

the ears or the shape of the eyes). Revealing which partic-

ular features the encoding in a given brain region employs

would require further experiments. For example, we could

design artificial stimuli that contain subsets of the distinc-

tive features of cats and dogs. We could then test whether a

linear decoder trained on responses to natural imagesof cats

and dogs generalizes to responses to the artificial stimuli.

Successful decoding would support the hypothesis that the

brain region employs some of the features present in the

artificial images.

More generally, we can go beyond using different exem-

plars from the same categories in the test set. Testing

decoders for cross-generalization between different

domains is useful to address a host of questions about

the invariances of the encoding, for example its consis-

tency between imagery and perception [45,46] and its

stability across latencies after stimulus onset [47].

Stimulus reconstruction provides a richer view of the

information present, but complex priors complicate the

interpretation

A decoder may discriminate more than two categories. It

might decode a continuous variable (e.g. the orientation

of the stimulus; [17�]), or it might output a multidimen-

sional description of the stimulus. The most ambitious

variant of decoding is stimulus reconstruction, where the

output is a detailed estimated rendering of the stimulus. A

decoder providing a rendering of the stimulus can poten-

tially reveal more of the information present in the

neuronal encoding [48–53].

Stimulus reconstruction is a particularly impressive feat of

decoding for two related reasons. First, the space of
www.sciencedirect.com
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outputs is much richer, so the decoder reveals more of the

encoded information (discriminating among more possi-

ble stimuli). Second, a more challenging level of general-

ization is typically required for the decoder to

discriminate among this richer set of possible stimuli,

because there are usually severe limitations on the num-

ber of stimuli that the decoder can be directly trained on.

Successful generalization suggests that the structure of

the model captures something about the code that

enables generalization far beyond the training set.

To the extent that stimulus reconstruction, when applied

to novel stimuli that the model has not been trained on,

successfully specifies close matches within a rich space of

reconstruction targets (e.g. pixel images), the analysis

indicates that the code contains rich information about

the stimulus. An extreme example of this would be a

decoder that can precisely reconstruct arbitrary natural or

unnatural images from their representation in V1. This

would indicate that V1 encodes the image precisely and

that the encoding is not restricted to natural images. In

fact, this has never been shown for V1 and would be

puzzling, because we expect visual representations to

be specialized for natural stimuli.

In order to improve the appearance of reconstructions of

natural stimuli, it is attractive to use a prior over the

possible outputs of the decoder. For example, we might

constrain the model to output an image whose low-level

or high-level statistics match natural images. We may

constrain the decoder more strongly, by limiting it to

output only actual natural images. This constraint could

be implemented using a restricted set of target images

[51] or a generative model of natural images [54]. In either

case, the quality of the reconstruction will reflect a

combination of the information provided by the brain

region and the information contributed by the prior. A

complicated prior, therefore, also complicates the inter-

pretation of the reconstruction results: good looking

reconstructions no longer indicate that all the detail they

provide is encoded in the brain region. The reconstruc-

tion has to be compared to the presented stimulus, and

the complexity of the output space (which is reduced by

the prior over the outputs) needs to be considered in the

interpretation.

An important question is what we can learn from stimulus

reconstructions. The goal to learn about the content and

format of the code may not be ideally served by striving

for the most natural looking reconstruction.

Decoding models predicting behavioral responses from

brain responses can be interpreted as brain-

computational models

Decoding is usually used as a tool of analysis that reveals

aspects of the content and format of the information

encoded in a brain region. The decoding model, thus,
www.sciencedirect.com 
is not interpreted as a model of brain computation. In the

context of sensory systems, a decoder maps from brain

responses to stimuli. Since stimulus processing by the

brain operates in the opposite direction, it is difficult to

interpret a decoder as a model of brain information

processing. However, if a decoder is used to predict

behavioral responses, for example, judgments of categor-

ical or continuous stimulus variables (possibly including

errors and reaction times on individual trials), then the

decoder can be interpreted as a model (at a high level of

abstraction) of the brain computations generating the

behavioral responses from the encoding of the stimuli

in the decoded brain region [55–57].

Encoding models: testing comprehensive
representational predictions
Encoding models attempt to predict brain response pat-

terns from descriptions of the experimental conditions

(Figure 1a; [5�,20,31,58�,59�,60–62,63]. Encoding models,

thus, operate in the opposite direction as decoding

models.

If our goal is merely to demonstrate that a brain region

contains information about the experimental conditions,

then the direction the model should operate in is a

technical issue: One direction may be more convenient

for capturing the relevant statistical dependencies (e.g.

noise correlations among responses), but a model operat-

ing in either direction could support the inference that

particular information is present in the code. If our goal is

to test computational theories, however, then the direc-

tion that the model operates in matters, because it

determines whether the model can be interpreted as a

brain-computational model.

Encoding models predicting brain responses from

sensory stimuli can serve as brain-computational

models

Whereas a decoding model typically serves to test for the

presence of particular information in a brain region, an

encoding model can provide a process model, at some

level of abstraction, of the brain computations that pro-

duce the neuronal code. An encoding model makes

comprehensive predictions about the representational

space ([61,64�]; Box 2) and, ideally, should fully explain

neuronal responses in the region in question (up to the

maximum achievable given the noise in the data).

In sensory neuroscience, the experimental conditions

correspond to sensory stimuli, and so an encoding model

maps sensory stimuli to their encodings in sensory regions

of the brain [5�,58�,59�,65]. A sensory encoding model,

thus, operates in the direction of the information flow:

from stimuli to brain responses. It should take raw sensory

stimuli as input (e.g. images or sounds; [5�,31]; Khaligh-

Razavi and Kriegeskorte, 2014; [60,66]; for recent reviews

see Refs. [39�,67�]) and predict the patterns of brain
Current Opinion in Neurobiology 2019, 55:167–179
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Box 2 Encoding models: benefits and limitations

An encoding model predicts the response of each measurement channel (e.g. a neuron or fMRI voxel) on the basis of properties of the experimental

condition (e.g. sensory stimulus). Continuous brain maps can be obtained by fitting such a model to each response in turn. Responses are typically

predicted as linear combinations of the features, rendering this approach closely related to classical univariate brain mapping. However, encoding

models have several important benefits:

� More complex feature sets are used, often comprising thousands of descriptive features. Fitting the models, therefore, requires regularization.

Typically, models are fitted using a penalty on the weights.

� Encoding models can have nonlinear components, such as the location and size of a visual receptive field.

� Models are tested for generalization to different experimental conditions (e.g. a different sample of visual stimuli).

� When sensory systems are studied, encoding models operate in the direction of information flow. They can then be used as a general method for

testing brain-computational models, that is, models that process sensory stimuli. A vision model, for example, can take a novel image as input

and predict responses to that image in cortex.

Analyses using encoding models to predict each response channel separately are limited in two ways:

� The separate modeling of each response channel is inconsistent with the multivariate nature of neuronal population codes and noise, and is

statistically suboptimal. Separate modeling of each response entails low power for testing and comparing models, for two reasons: (1) Single

responses (e.g. fMRI voxels) may be noisy and the evidence is not combined across locations. (2) The analyses treat the responses as

independent, thus forgoing the benefit exploited by linear decoding approaches to model the noise multivariately. This is important in fMRI,

where nearby voxels have highly correlated noise. As spatial resolution increases, we face the combined challenge of more and noisier voxels.

This renders mapping with proper correction for multiple testing very difficult. In addition, relating results between individuals is not

straightforward.

� When model parameters are color-coded and mapped across the cortex, the resulting detailed maps are not straightforward to interpret. (1)

Weight maps of linear models are problematic to interpret in encoding models for the same reason they are problematic to interpret for decoding

models: because a predictor’s weight depends on the other predictors present in the model (unless each predictor is orthogonal to all others).

The required regularization further complicates weight interpretation. (2) Models are fit at many locations and voxels highlighted on the basis of

model fits. Post-selection inference on parameters is not usually performed. Because of these complications, results of fine-grained mapping

across voxels are difficult to substantiate by formal inference.

Influential studies have met these challenges by focusing on single-subject analyses, acquiring a large amount of data in each subject, and limiting

formal inference with correction for multiple testing to the overall explained variance of a model, with colors serving exploratory purposes.
activity the stimuli elicit. We can adjudicate among

computational theories by implementing them in encod-

ing models and testing their ability to predict brain-

activity patterns [68].

Brain-computational encoding models can be tested by

predicting raw measurements, representational

dissimilarities, or the activity-profiles distribution

A brain-computational encoding model could consist in a

set of hand-engineered features computed from the stimuli

or in a neural network model trained on some task. How can

we evaluate a high-dimensional representation in a brain-

computational encoding model with brain-activity data,

when the units of the model may not correspond one-to-

one to the measured channels of brain activity?

One approach is to predict the raw measurements

[5�,31,58�,59�,62]. To achieve this, we can fit a linear

model that maps from the outputs of the nonlinear

encoder thought to capture the brain computations

(e.g. a layer of a neural network model processing the

stimuli) to each measured response channel, for example,

each neuron or fMRI voxel in the region we would like to

understand. The linear model will capture which units of

the nonlinear encoding model best predict each response

channel. It can be interpreted as capturing the sampling

and averaging that occurs in the measurement of brain

activity. A neuronal recording array, for example, will

capture a sample of neurons, and fMRI will give us
Current Opinion in Neurobiology 2019, 55:167–179 
measurements akin to local spatiotemporal averages at

regular grid locations. For each response channel, the

linear model will have a parameter for each nonlinear

feature (e.g. each unit of the neural network layer).

Fitting these parameters requires substantial training data

and normally also a prior on the parameters (e.g. a 0-mean

Gaussian prior as is implicit to fitting with an L2 penalty).

Instead of predicting the raw measurements, we can use a

brain-computational encoding model to predict to what

extent different stimuli are dissimilar in the representa-

tion, an approach called representational similarity anal-

ysis (RSA; [69�,70]). The pairwise dissimilarities of the

multivariate response patterns representing the stimuli

can be summarized in a representational dissimilarity

matrix (RDM). For example, for each pair of stimuli,

the dissimilarity between the associated response pat-

terns could be measured using the Euclidean distance.

The RDM characterizes the geometry of the set of points

in the multivariate response space that correspond to the

stimuli. Noise correlations can be captured by estimating

the covariance matrix of the residuals of the response-

estimation model, and replacing the Euclidean distance

by the Mahalanobis distance. To remove the positive bias

associated with measuring distances between noisy data

points, we can use the crossnobis (crossvalidated Maha-

lanobis) estimator [70,71]. The resulting crossnobis RDM

provides a full characterization of the linearly decodable

information in the representational space [64�]. Compar-

ing representations in models and brains at the level of
www.sciencedirect.com
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RDMs obviates the need for fitting a linear model to

predict each measured response (thus reducing the need

for training data) and enables the analysis to naturally

handle noise correlations between responses (which are

typically ignored when encoding models separately pre-

dict each of the measured response channels).

A third approach to the evaluation of encoding models is

to predict the distribution of activity profiles. In pattern

component modelling (PCM, [72�]), this distribution is

characterized by the second moment of the activity

profiles. Like the RDM, this is a stimulus-by-stimulus

summary statistic of the stimulus-response matrix. Each

entry of the second-moment matrix corresponds to the

inner product between two response patterns.

All three approaches can be construed as testing hypoth-

eses about the representational space induced by the

activity profiles [64�]. Consider a linear encoding model

using a Gaussian prior on the weights. Such a model

predicts a Gaussian distribution of activity profiles. The

predicted distribution of activity profiles is captured by its

second moment. For representational similarity analysis,

similarly, the RDM is a function of the second moment of

the activity profiles. This core mathematical commonality

between the methods notwithstanding, each is best

suited for a particular set of questions.

Linear models predicting raw measurements lend them-

selves to univariate brain mapping, revealing which vox-

els or neurons are accounted for by a particular nonlinear

encoding model. RSA lends itself to characterizing the

geometry of the representational space, naturally handles

noise correlations among responses, and reduces the need

for training data. PCM can have greater sensitivity for

adjudicating among models than the other two methods,

at the expense of relying on stronger assumptions. The

three methods are best viewed as part of a single toolbox

of representational model analyses, whose elements can

be combined as needed to address particular questions.

The level of generalization beyond the training set must

be considered when interpreting an encoding result

Encoders, like decoders, are tested by evaluating how

well they predict independent data, whether the pre-

dicted quantities are the raw brain-activity measure-

ments, the representational dissimilarity matrix, or the

second-moment matrix of the activity profiles. For enco-

ders, as for decoders, the interpretation depends on both

the prediction accuracy and the level of generalization

beyond the training set that the model achieves.

Encoding models typically require the fitting of param-

eters, so overfitting needs to be accounted for in any

inferential procedure. In the simplest type of a univari-

ate linear encoding model, we can rely on Gaussian

assumptions and perform inference without a separate
www.sciencedirect.com 
test set (e.g. [73]). However, more interesting models

require independent test sets, for example when param-

eters are fitted using priors over the weights and when

the model is a brain-computational model to be tested

for generalization to new conditions.

A key consideration is how much flexibility to allow in fitting

each model representation to a brain representation. One

extreme is to allow no flexibility and assume that the model

representation precisely predicts the geometry of the repre-

sentational space [69�]. This case is most naturally handled

by RSA and PCM, but could also be implemented with linear

encoders by using a prior that prevents any distortion of the

representational geometry. The other extreme is to allow

arbitrary linear remixing of the units of the nonlinear encod-

ing model. This case is most naturally handled with linear

encoding models, but can also be implemented with PCM

and RSA ([72�]; Khaligh-Razavi and Kriegeskorte, 2014;

[74]). In practice, some compromise is desirable, which we

can think of as a prior on the mapping from the brain-

computational model to the measured brain responses. We

might use a 0-mean Gaussian prior on the weights (e.g. [5�]).
Alternatively, we can limit flexibility more aggressively, by

allowing each unit (or each feature map or layer) a single

weight (not a separate weight for each response). Such

weighted representational models (e.g. [63,74]) are naturally

implemented with RSA and PCM. Each brain-computa-

tional model in this case predicts a superset of the features

spanning the brain representational  space (disallowing linear

mixtures), but does not predict the prevalence of each of the

features in the neuronal population.

The lowest level of generalization beyond the training set

is generalization to new measurements for the same

experimental conditions. This is sufficient, if the experi-

mental conditions exhaustively cover the domain we

would like to draw inferences about (consider the case

of the representation of the five fingers in motor cortex:

[75]). However, in a domain such a sensory systems, the

goal is typically to evaluate to what extent a brain-

computational model can predict brain representations

of arbitrary stimuli. This requires a higher level of gen-

eralization beyond the training set. A vision model, for

example, might be trained with responses to one sample

of natural images and tested for generalization to

responses to an independent (and nonoverlapping) sam-

ple from the same distribution of natural images. Because

the set of all natural images is so rich, this is a challenging

generalization task (as illustrated by the difficulty of

computer vision). An even more stringent test of the

assumptions implicit to a model is to train the model

on a sample from one population of images and test it on a

sample from a different population of images (e.g. [76]).

The prediction accuracy can be assessed in terms of whether

it is significantly above chance level, whether it significantly

differs from that of competing encoding models, and how
Current Opinion in Neurobiology 2019, 55:167–179
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close it comes come to the noise ceiling (the highest

achievable accuracy given the noise in the data, [70]).

We can generalize claims about an encoding model to the

extent that its predictions generalize. If we want to

conclude that the model can predict responses for the

stimuli presented, we need not test the model with

different stimuli (only with different response measure-

ments elicited by the same stimuli). If we want to

conclude that the model can predict responses to arbitrary

natural stimuli, we need to test it with new arbitrary

natural stimuli. The population of conditions that the

test set is a sample of defines the scope of the claims we

can make [37,38,39�].

We focus here on encoding and decoding models that are

fitted to individual subjects’ brains, so as be able to exploit

fine-grained idiosyncratic patterns of activity that are

unique to each subject. Within-subject prediction accuracy

may support generalization to a population of stimuli, but it

doesn’t support generalization to the population of sub-

jects. In some fields, such as low-level vision, researchers

draw on prior knowledge and assume that results that hold

for a few subjects will hold for the population. If we were

instead to use our data to generalize our inferences to the

population of subjects, we would either need to predict

results for held-out subjects (which would make it impos-

sible to exploit individually unique fine-grained activity

patterns) or perform inference on the within-subject pre-

diction accuracies with subject as a random effect.

The feature fallacy: interpreting the success of a model

as confirmation of its basis set of features

Linear encoding models predict each measured activity

profile as a linear combination of a set of model fea-

tures. When a model can explain the measured activity

profiles, we might be tempted to conclude that the

model features are encoded in the measured responses.

This interpretation is problematic because the same

linear space can be spanned by many alternative basis

sets of model features.

The fact that multiple sets of basis vectors can span the

same space is widely appreciated. However, it is not

obvious whether the ambiguity is removed when a prior

over the encoding weights is used. An encoding model

with a 0-mean isotropic Gaussian prior on the weights

(equivalent to ridge regression) predicts a Gaussian dis-

tribution of activity profiles (captured by the second

moment of the activity profiles as the sufficient statistic)

and a particular representational geometry (captured by

the RDM). The use of a weight prior does reduce the

ambiguity. In the absence of a weight prior, all models

spanning the same space of activity profiles make equiv-

alent predictions. With a weight prior, different models

spanning the same space can predict distinct distributions

of activity profiles. However, substantial ambiguity
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remains (Figure 2) because there are infinitely many

alternative ways to express the same distribution of

activity profiles by different feature sets (each assuming

a 0-mean isotropic Gaussian prior over the weights).

The freedom to choose among feature sets generating the

same distribution of activity profiles is useful in that it

enables us to implement a nonisotropic Gaussian prior on

the weights of a given model (Tikhonov regularization) by

re-expressing the model such that the features induce the

same distribution of activity profiles in combination with a

0-mean isotropic Gaussian prior [77]. However, this free-

dom to express the same model by different feature sets

needs to be kept in mind when interpreting results: Many

alternative feature sets would have given the same results.

In sum, the same distribution of activity profiles can be

expressed in many ways (by different feature sets), so the

fact that a model explains brain responses does not

provide evidence in favor of the particular feature set

chosen. Diedrichsen [78] termed the interpretation in

terms of the particular features used the ‘feature fallacy’.

This fallacy is arguably somewhat persistent in the neu-

roscience literature [79].

Weights of linear models are not
straightforward to interpret in either encoding
or decoding models
Beyond interpretation of the overall success of an encoding

or decoding model, researchers often want to dig deeper and

interpret the fittedparametersof theirmodels. In thecontext

of a decoding model, the weights assigned to the voxels

wouldseemtotelluswheretheinformationthedecoderuses

is located in the brain. Similarly, in the context of an

encoding model, the weights of different model features

promise to reveal to what extent different model features are

encoded in a brain region.

Unfortunately, the interpretation of the weights of linear

models is not as straightforward as the simplicity of a

linear relationship might suggest. A weight does not

reflect the predictive power of an individual predictor

(a measured brain response in decoding, a model features

in encoding). Rather a weight reflects a predictor’s con-

tribution in the context of the rest of the model.

Uninformative predictors can receive large positive or

negative weights. For example, an fMRI voxel that does

not by itself contain any information can have a large

absolute weight in a linear decoder if it improves decod-

ing accuracy by cancelling noise that the voxel shares with

other voxels that do contain stimulus information

(Figure 1b; Figure 3; [80�]). In an encoding model,

similarly, a model feature might contain no information

about the modeled response and still receive a large

absolute weight. For example, an fMRI voxel that only

responds to faces might be explained by a set of semantic
www.sciencedirect.com
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Figure 2
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The feature fallacy.

Different linear encoding models spanning the same space of activity profiles may not be distinguishable. There are many alternative sets of

feature vectors {f1, f2, . . . } that span the same space of activity profiles. In the absence of a prior on the weights of the linear model, all these

sets can equally explain a given set of brain responses. The ambiguity is reduced, but not resolved when a prior on the weights is assumed [78]. If

we define a prior on the weights, then each model predicts a probability density over the space of activity profiles. This probabilistic prediction

may be distinct for two sets of basis features, even if they span the same space. For example, if the weight prior is a 0-mean isotropic Gaussian,

then each model assigns probabilities to different activity profiles according to a Gaussian distribution over the space of profiles. Two linear

models may span the same space, but predict distinct distributions of activity profiles. However, even with a Gaussian weight prior, there are still

(infinitely) many equivalent models that make identical probabilistic predictions. We illustrate this by example. (a) Three models (A, B, C) each

contain two feature vectors as predictors (A: {fA1, fA2}, B: {fB1, fB2}, C: {fC1, fC2}). The three models all span the same 2-dimensional space of

activity profiles. For each model, we assume a 0-mean isotropic Gaussian weight prior. (b) All three models predict the same nonisotropic

Gaussian probability density over the space of activity profiles (indicated by a single iso-probability-density contour: the ellipse). Model A (gray)

predicts the density by modeling it with two orthogonal features that capture the principal-component axes, with features having different norms

to capture the anisotropy. Model B predicts the same density by modeling with two correlated features of similar norm. Model C falls somewhere

in between, combining feature correlation and different feature norms to capture the same Gaussian density over the activity profiles. Note that

there are many other models that span the same space, but will not induce the same probability density over activity profiles when complemented

by a 0-mean isotropic Gaussian weight prior. A given linear encoding model’s success at predicting brain responses provides evidence for the

induced distribution of activity profiles, but not for the particular features chosen to express that distribution.
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Figure 3
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Weights of decoding and encoding models are difficult to interpret.

Three examples (rows) illustrate the difficulty of interpreting decoder weights for a pair of voxels. In the first example (top row), only the top voxel

contains signal (stimulus information, red) and the two voxels have independent noise. This scenario is unproblematic: both univariate mapping

(second column from the left) and decoder weight maps detect the informative voxel (red). In the second example (second row), both voxels

contain the same signal. Here, univariate mapping and weight maps often work. However, the LASSO decoder, because of its preference for a

sparse solution, may choose one of the voxels arbitrarily. In the third example (third row), only the top voxel contains signal and both voxels

contain correlated noise. Univariate mapping correctly identifies the informative voxel. Linear decoders will give negative weight (blue) to the

uninformative voxel, so as to cancel the noise.
descriptors unrelated to faces if the nonface semantic

descriptors are capable, in combination, of capturing

contextual variation that is correlated with the presence

of faces.

Conversely, informative predictors may receive weights

that are small in absolute value or zero. For example, in

fMRI, a voxel might receive zero weight when other

voxels suffice for decoding when a weight penalty (espe-

cially a sparsity encouraging weight penalty, for example

defined by the L1 norm of the weights) leads the fitting

procedure to select among equally informative voxels

(Figure 3). Weight penalties can similarly suppress model

feature weights in encoding models.

A related problem is performing statistical inference to

test hypotheses about the weights [81]. Systems and

cognitive neuroscience has yet to develop a proper set

of methods for hypothesis testing in this context.

A simple remedy to the complications associated with the

interpretation of fitted weights is to interpret only the
Current Opinion in Neurobiology 2019, 55:167–179 
accuracy of decoding and encoding models (and its signifi-

cance level) and not the parameters of the models. In the

context of decoding, this makes sense for local regions of

interest corresponding, for example, to cortical areas, which

we can test one by one for the presence of particular

information. It can be generalized to brain mapping by

applying the decoder (or more generally any multivariate

analysis) within a searchlight that scans the brain for the

effect of interest [18]. Like classical univariate brain map-

ping, this approach derives its interpretability from the fact

that each location is independently subjected to the same

analysis. However, instead of averaging local responses, the

evidence is summarized using local multivariate statistics.

In the context of encoding models, similarly, we can focus

on each model’s overall performance and on inferential

comparisons among multiple models.

The single-model-significance fallacy
When our goal is merely to detect information in a brain

region, we don’t interpret the model as a model of brain

computation. This lowers the requirements for the

model: It need not operate in the direction of information
www.sciencedirect.com
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flow and it need not be neurobiologically plausible. The

model is merely a statistical tool to sense a dependency.

The choice of model in this scenario, will affect our

sensitivity, and its structure is not entirely irrelevant to

the interpretation. For example, decodability by a linear

model tells us something about the format of the encod-

ing. However, a single model will suffice to demonstrate

the presence of information in a brain region.

When our goal is to gain insight into the computations the

brain performs, a model has a more prominent role: it is

meant to capture, at some level of abstraction, the com-

putations occurring in the brain. We then require the

model to operate in the causal direction and to be neu-

robiologically plausible (albeit abstracted). Examples of

such models include encoding models of sensory

responses and decoding models that predict behavioral

responses from brain activity. Psychophysical models,

which skip the brain entirely and predict behavioral

responses directly from stimuli, also fall into this class.

In all these cases, finding that a model explains significant

variance is a very low bar and tells us little as to whether

the model captures the computational process.

The single-model-significance fallacy is to interpret the

fact that a single model explains significant variance as

evidence in favor of the model. A simple example that is

widely understood is linear correlation. A significant

linear correlation does demonstrate a dependency

between two variables, but it does not demonstrate that

the dependency is linear. Similarly, the fact that a com-

plex encoding model explains significant variance in the

responses of a brain region to a test set of novel stimuli

does demonstrate that the brain region contains informa-

tion about the stimuli, but it does not demonstrate that

the encoding model captures the process that computes

the encoding.

Even a bad model can explain significant variance, espe-

cially if it has a large number of parameters fitted to the

data. In order to learn about the underlying brain com-

putations, we need to (a) consider multiple models, (b)

assess what proportion of the explainable (i.e. non-noise)

variance each explains at a given level of generalization,

and (c) compare the models inferentially.

Representational interpretations require
additional assumptions
Decoding and encoding models are often motivated by

the goal to understand how the brain represents the

world, as well as the animal’s decisions, goals, plans,

actions, and motor dynamics. Significant variance

explained by encoding and decoding models demon-

strates the presence of information. Interpreting this

information as a representation [82] implies the additional

claim that the brain activity serves the purpose to convey the

information to other parts of the brain [24,64�,83]. This
www.sciencedirect.com 
functional interpretation is so compelling in the context

of sensory systems that we sometimes jump too easily

from findings of information to representational interpre-

tations [84,85]. In addition to the presence of the infor-

mation, its functional role as a representation implies

that the information is read out by other regions, affecting

downstream processing and ultimately behavior.

Combining encoding and decoding models with stimu-

lus-based and response-based experimentation can help

disambiguate the causal implications [11�]. Ideally,

experimental control of neural activity should also be

used to test whether activity has particular downstream

or behavioral consequences [86,87]. To the extent that we

rely on prior assumptions to justify a representational

interpretation, it is important to reflect on these and

consider if there is evidence from previous studies to

support them.
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