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Abstract

■ Deep neural networks (DNNs) trained on object recognition
provide the best current models of high-level visual cortex. What
remains unclear is how strongly experimental choices, such as net-
work architecture, training, and fitting to brain data, contribute to
the observed similarities. Here, we compare a diverse set of nine
DNN architectures on their ability to explain the representational
geometry of 62 object images in human inferior temporal (hIT)
cortex, as measured with fMRI. We compare untrained networks
to their task-trained counterparts and assess the effect of cross-
validated fitting to hIT, by taking a weighted combination of the
principal components of features within each layer and, subse-
quently, a weighted combination of layers. For each combination
of training and fitting, we test all models for their correlation with
the hIT representational dissimilarity matrix, using independent

images and subjects. Trained models outperform untrained
models (accounting for 57% more of the explainable variance),
suggesting that structured visual features are important for
explaining hIT. Model fitting further improves the alignment of
DNN and hIT representations (by 124%), suggesting that the
relative prevalence of different features in hIT does not readily
emerge from the Imagenet object-recognition task used to train
the networks. The same models can also explain the disparate
representations in primary visual cortex (V1), where stronger
weights are given to earlier layers. In each region, all architectures
achieved equivalently high performance once trained and fitted.
The models’ shared properties—deep feedforward hierarchies of
spatially restricted nonlinear filters—seem more important than
their differences, whenmodeling human visual representations. ■

INTRODUCTION

One of the most striking achievements of the human
visual system is our ability to recognize complex objects
with extremely high accuracy. Recently, deep neural net-
works (DNNs) using feedforward hierarchies of convolu-
tional features to process images have reached and even
surpassed human category-level recognition performance
(Lindsay, 2020; Kietzmann, McClure, & Kriegeskorte,
2018; He, Zhang, Ren, & Sun, 2016; Yamins & DiCarlo,
2016; Russakovsky et al., 2015). Despite being developed
as computer vision tools, DNNs trained to recognize
objects in images are also unsurpassed at predicting
how natural images are represented in high-level ventral
visual areas of the human and nonhuman primate brain
(Lindsay, 2020; Xu & Vaziri-Pashkam, 2020; Bashivan, Kar,
& DiCarlo, 2019; Ponce et al., 2019; Devereux, Clarke, &
Tyler, 2018; Kubilius et al., 2018; Schrimpf et al., 2018;
Eickenberg, Gramfort, Varoquaux, & Thirion, 2017;
Horikawa & Kamitani, 2017; Cichy, Khosla, Pantazis,
Torralba, & Oliva, 2016; Yamins & DiCarlo, 2016; Güçlü
& van Gerven, 2015; Agrawal, Stansbury, Malik, & Gallant,

2014; Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte,
2014). There is some variability in the accuracy with
which different recent DNNs can predict high-level visual
representations (Xu & Vaziri-Pashkam, 2020; Zeman,
Ritchie, Bracci, & de Beeck, 2020; Schrimpf et al.,
2018), despite broadly high performance. It remains
unclear how strongly network design choices, such as
depth, architecture, task training, and subsequent model
fitting to neural data, may contribute to the observed var-
iations. There are several possible sources that can affect
a DNN’s high (or low) correlation with brain representa-
tions, and it is important to be able to tease these apart.

First, the architecture of a particular DNN model may
cause its representations to be similar to those in the
brain. For example, the architecture determines the
spatial scale(s) of the image properties able to be repre-
sented within each layer. We can gain insight into the im-
portance of such “baked in” knowledge by comparing the
abilities of different architectures in their random, un-
trained state (Yamins et al., 2014). In the computer vision
literature, deeper architectures have pushed the field
toward higher object recognition accuracies (He et al.,
2016; Szegedy et al., 2015; Simonyan & Zisserman,
2014), although more recently architectures have been
devised that display equal or higher performance with or-
ders of magnitude fewer parameters (Sandler, Howard,
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Zhu, Zhmoginov, & Chen, 2018; Iandola et al., 2016).
Does depth, across layers or across networks, help pre-
dict a model’s correspondence with the brain?

Second, the task training received by a model may
have led it to develop computational features that better
match those in the visual cortex. It seems intuitive that
the success of DNN models at predicting brain data is be-
cause in large part of the training the models receive on
large data sets of natural images to do behaviorally rele-
vant tasks such as object recognition (Yamins & DiCarlo,
2016). However, randomly weighted untrained DNN
models are known to explain some variance in visual rep-
resentations (Cichy et al., 2016; Güçlü & van Gerven,
2015), and at least one study reports higher performance
for untrained than trained networks (Truzzi & Cusack,
2020). We can evaluate the contribution of training by
comparing the ability of trained and untrained instances
of the same architecture to predict brain data.

Finally, two trained models that have learned an iden-
tical set of features may nevertheless differ in their appar-
ent similarity to brain representations if they contain
different proportions of those features. For example, con-
sider two hypothetical neural network models of low-
level visual representations: Both networks have learned
gabor-like oriented features, but one model contains an
approximately equal number of features sensitive to each
orientation, whereas the other has, through a quirk of its
training data or task, dedicated most of its units to a sin-
gle orientation. In this idealized example, the representa-
tions within both models span the same feature space,
but the models will make very different predictions
about, for example, how similar the evoked activity in
cortical area V1 will be for probe stimuli containing differ-
ent orientation distributions. We can evaluate to what
extent the model has “the right features in the wrong
proportions” by measuring how much its predictive
power changes after allowing a linear reweighting of its fea-
tures (Khaligh-Razavi, Henriksson, Kay, & Kriegeskorte,
2017). Many studies reporting high performance of
DNNs as models of visual cortex allow linear reweighting
of individual features (e.g., Bashivan et al., 2019; Ponce
et al., 2019; Horikawa & Kamitani, 2017; Güçlü & van
Gerven, 2015; Agrawal et al., 2014; Cadieu et al., 2014;
Yamins et al., 2014), whereas others treat the representa-
tions within a layer of a network as fixed (e.g., Truzzi &
Cusack, 2020; Zeman et al., 2020; Khaligh-Razavi &
Kriegeskorte, 2014).

Depending on the particular research question, one
may be more interested in model performance with or
without fitting to brain data. For example, if we are inter-
ested in whether the distribution of visual features in the
brain can be explained by its visual experience during
development, we may prefer to compare models trained
on different image diets in their unfitted states. On the
other hand, if we are interested in the level of complexity
encoded by neurons in a certain brain region, we may
prefer to compare different, progressively complex,

layers of a model after allowing the weighting of features
in each layer to best fit the brain data.
Here, we systematically evaluate the contributions of

task training and feature reweighting to the ability of
models to predict representations of objects in the ventral
stream, across nine state-of-the-art computer vision
DNNs. We use representational similarity analysis (RSA)
to evaluate the correspondence between fMRI brain
activity patterns elicited by viewing object images and rep-
resentations of those images in networks. We compare a
diverse set of DNNmodels, varying widely in depth (8–201
layers; 25–825 processing steps), in terms of their ability to
explain the representational geometry in human inferior
temporal (hIT) cortex. Each model is tested both in an
untrained randomly initialized state and after object-
categorization training. We use principal component re-
weighting of features within each layer, and reweighting
of layers, to best predict the hIT representation. After
principal component analysis (PCA) and hIT fitting, each
model is then tested on its ability to predict the hIT repre-
sentational dissimilarity matrix (RDM) for an independent
set of images in an independent set of subjects. This
analysis ensures that the evaluation is not biased by
overfitting to either images or subjects.

METHODS

Stimuli

Both human participants and neural networks were
shown the same set of 62 colored images depicting faces,
objects, and places, segmented and presented on a gray
background of 427 × 427 pixels (see Figure 1A). The
image set was constructed to include a balance of ani-
mate (faces and bodies) and inanimate (objects and
scenes) stimuli, with animate stimuli further divided into
human and animal faces/bodies, and inanimate stimuli
divided into man-made and natural objects/scenes. Of
the 20 human face images, 14 (seven male, seven female)
were closely matched for low-level image statistics,
depicting faces in a 30° semiprofile view with matched
lighting and matched color-histogram profiles. The re-
maining face and nonface images contained greater pose
and image variation and were a subset of those previously
used in Kriegeskorte, Mur, Ruff, et al. (2008) and Kiani,
Esteky, Mirpour, and Tanaka (2007).

Human fMRI Procedures

DNNswere tested against a preexisting human fMRI data set
(Walther, Diedrichsen,Mur, Khaligh-Razavi, &Kriegeskorte,
2016; Walther, 2015), described below.

Participants

Participants were 24 healthy adult volunteers (15 female) na-
ive to the goals of the experiment, with normal or corrected-
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to-normal vision. Participants gave informed consent, and
the study was approved by the MRC Cognition and Brain
Sciences Ethical Review Panel and conducted in accordance
with the Declaration of Helsinki.

Image Familiarization

Before the main fMRI experiment, participants were famil-
iarized with the stimuli and task outside the scanner by
completing five runs of the 1-back task (i.e., five complete
cycles through the stimulus set). Participants were also
instructed to pay attention to the 62 images shown and
try to commit them to memory. After completing the
second of two fMRI sessions, their recall of the images
was tested. One hundred twenty-eight isolated objects
on gray backgrounds were shown to participants, of which
62 were the experimental stimuli. During this recall block,
images were shown in a random order, with each image
repeated twice, and participants were asked to identify
which they had seen during the fMRI sessions. On average,
recognition performance was excellent (mean accuracy =
92%; d0 = 3.58, ±0.26 SEM), indicating that participants
had attended to the experimental stimuli.

fMRI Task

During the fMRI scans, participants engaged in a 1-back
task in which they were instructed to press a button if
the present image was a repeat of that shown on the
immediately previous trial. While performing the task, par-
ticipants were asked to keep fixation on a central fixation

cross. On each trial, one imagewas presented in the center
of a gray screen, subtending 7° of visual angle. Images were
shown for 500 msec with a trial-onset asynchrony of 3 sec.
During each run, 56 of the stimuli were each presented
once. The other six were presented twice, appearing as
repeats in the 1-back task. Stimulus order was randomized
within each run for each participant. The stimulus
sequence also included 30 baseline trials with no image
stimulus, comprising 5 blank trials at the beginning of each
run, 5 at the end, and 20 randomly interspersed within
stimulus trials.

MRI Measurements

Each participant undertook two scanning sessions on
separate days, each consisting of 12 functional runs
lasting approximately 5 min. Functional images were
acquired on a Siemens Trim-Trio 3-T MRI scanner with a
32-channel head coil. For each functional run, we recorded
135 volumes containing 35 slices, each using a 2-D EPI
sequence (repetition time=2.18 sec, echo time=30msec,
flip angle = 78°, voxel size: 2 mm isotropic, interleaved
slice acquisition, GRAPPA acceleration factor: 2). We also
acquired a high-resolution (1-mm isotropic) T1-weighted
anatomical image in each session, using a Siemens magne-
tization prepared rapid gradient echo sequence.

Data Preprocessing

Image preprocessing was performed using SPM8 (www
.fil.ion.ucl.ac.uk/spm/). For each participant, images from

Figure 1. Human fMRI data set. Sixty-two stimulus images (A) were shown to 24 human participants in a rapid event-related fMRI experiment. An
RDM was constructed for each participant from the cross-validated Mahalanobis distances between the multivoxel activation patterns elicited by each
image in inferior temporal cortex (hIT). The average of all individual RDMs is shown in B, with dissimilarity between the hIT representation of each
pair of images expressed as a percentile for visualization purposes.

Storrs et al. 3

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_01755/1929774/jocn_a_01755.pdf by guest on 22 July 2021

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/


both sessions were jointly processed, after discarding the
first two volumes of each run to prevent T1 saturation
effects in the baseline of the regression coefficients.
Preprocessing consisted of the following steps, in order:
slice-scan-time correction, 3-D head motion correction
by aligning to the first EPI of the first run of the first ses-
sion, reslicing, and coregistration of the high-resolution
anatomical images to the session mean EPI. No smooth-
ing was performed.

ROI Definition

For each participant and hemisphere, early visual regions
V1, V2, and V3 were defined using a cortical surface
template projected into each subject’s native volume
(Benson, Butt, Brainard, & Aguirre, 2014). To define hIT,
visually responsive voxels were first identified based on an
independent functional localizer scan inwhich responses to
432 images of faces, places, objects, and scrambled objects
were contrasted against baseline. An anatomical mask was
then used to select the subset of those voxels that lay
within the hIT region, using the FreeSurfer package
(surfer.nmr.mgh.harvard.edu/), and any voxels belonging
to V1, V2, or V3 were excluded.

Estimating Stimulus Response Patterns

Response patterns were calculated as in Walther, Nili,
et al. (2016), using multivariate noise normalization to
improve the reliability of dissimilarities subsequently
measured between response patterns. Beta response
weights were estimated using general linear model
(GLM) with ordinary least squares. Time course data of
each run were modeled using 62 stimulus predictors,
separately for each subject and session. Six additional
1-back predictors were included to model repeated im-
age stimuli in the 1-back task. For each run, we included
six head motion predictors (3-D translation and rotation
coordinates) and one intercept.

Before fitting, the time course data and the design
matrix were filtered to remove low-frequency trends.
Because cross-validated dissimilarity estimates, as used
here to derive RDMs (details below), require two indepen-
dent estimates of stimulus response vectors, two sets of
GLMs were fitted for each session and subject (Walther,
Nili, et al., 2016). For each of the 12 imaging runs, one
GLM was fit on the data of the individual run, whereas
another GLM was jointly fit on the data of the remaining
runs, thereby keeping the GLM estimates independent.
For the latter GLM, data from the included runs were
concatenated for each stimulus (i.e., 11 entries per predic-
tor in the design matrix), which stabilizes the regression
weights. Nuisance regressors were modeled separately
for each concatenated run. Finally, the 62 × P stimulus
response beta estimates from each GLM were normalized
for multivariate spatial noise by the P × P variance–

covariancematrix estimated from the time-course residuals,
where P is the number of voxels.

Estimating Representational Geometry

To investigate visual representations in the brain, we used
RSA (Nili et al., 2014; Kriegeskorte, Mur, & Bandettini,
2008). RSA characterizes the underlying representations
of a given system via RDMs, consisting of dissimilarity
estimates for all pairs of stimuli. The set of all pairwise
distances describes the geometry of response patterns
in high-dimensional activation space (Kriegeskorte &
Diedrichsen, 2016) and can be used to compare represen-
tations across different systems (here, hIT and DNNs).
For each subject, an hIT RDM was computed by taking

the cross-validated Mahalanobis distance (also known as
the “crossnobis distance”) between the patterns elicited
in hIT by each pair of images (Walther, Nili, et al.,
2016). We calculated leave-one-run-out cross-validated
distances using the two sets of response pattern estimates
derived from GLMs fitted to nonoverlapping imaging
runs. Separate RDMs were derived from the left and right
hemispheres and then averaged to create a single hIT
RDM for each participant, of size 62 × 62 (1891 unique
pairwise image dissimilarities). We repeated the same
procedure using the response patterns elicited in primary
visual cortex (V1) to derive V1 RDMs, which are the
subject of later analyses.

DNN Models

Network Architectures and Training

We investigated nine deep convolutional neural network ar-
chitectures representing various states of the art from the
computer vision literature over the past 8 years (see
Table 1). The architectures varied widely in the number of
unique processing steps they involved (e.g., convolution,
nonlinearity, pooling, batch normalization, concatenation),
from 25 sequential processing steps (Alexnet; Krizhevsky,
Sutskever, & Hinton, 2012) to 825 steps with branching
nodes and skipping connections (Inception-Resnet-v2;
Szegedy, Ioffe, Vanhoucke, & Alemi, 2017). Their sizes
varied from 1.24 million parameters (Squeezenet; Iandola
et al., 2016) to 138 million parameters (VGG-16; Simonyan
& Zisserman, 2014).
All models were implemented in the Deep Learning

Toolbox for MATLAB 2019b and were pretrained by their
original developers on the Imagenet Large-Scale Visual
Recognition Competition (ILSVRC; Russakovsky et al.,
2015) data set. The ILSVRC training set consists of 1.2 mil-
lion labeled images, and the networks’ task is to categorize
images as belonging to one of 1000 possible object and
animal categories. All networks had near-identical training
data and training tasks—slight differences were because of
updates to the ILSVRC training set and image categories
over the years and to differences in training strategies
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Table 1. Details of the Nine Computer Vision DNNs Evaluated

Name Reference
Imagenet
Top-5 Error

Depth
(Layers)

Number of
Parameters
(Millions) Layers Selected for Evaluation

Alexnet Krizhevsky et al. (2012) 20.9% 8 61.0 8 key layers: outputs of each convolutional or fully connected layer
(after ReLU nonlinearity)

VGG-16 Simonyan and
Zisserman (2014)

9.6% 16 138.0 16 key layers: outputs of each convolutional or fully connected layer
(after ReLU nonlinearity)

Googlenet Szegedy et al. (2015) 10.5% 22 7.0 13 key layers: outputs of first three convolutional layers, outputs of each
branching “inception” module (after concatenation), and output of
final fully connected layer

Resnet-18 He et al. (2016) 10.9% 18 11.7 10 key layers: output of first convolutional layer, outputs of each
“residual block” (after addition), and output of final fully connected layer

Resnet-50 He et al. (2016) 7.1% 50 25.6 20 key layers: output of first convolutional layer, outputs of each
“residual block” (after addition), and output of final fully connected layer

Squeezenet Iandola et al. (2016) 19.4% 18 1.24 11 key layers: output of first convolutional layer, outputs of each “fire”
module (after depth concatenation), and outputs of final convolutional
and pooling layers

Densenet-201 Huang et al. (2017) 6.4% 201 20.0 103 key layers: output of first convolutional layer, outputs of each densely
connected block (after depth concatenation), and output of final fully
connected layer

Inception-Resnet-v2 Szegedy et al. (2017) 4.9% 164 55.9 50 key layers: outputs of first five convolutional layers, outputs of each
“Inception-ResNet” module (after addition and ReLU), and output of
final fully connected layer

Mobilenet-v2 Sandler et al. (2018) 9.7% 53 3.5 20 key layers: output of first convolutional layer, output of each residual or
downsizing block (after batch normalization), and output of final fully
connected layer

“Imagenet Top-5 Error” records the percentage of times the correct object label was not in the network’s top five guesses for the public test set of the Imagenet 1000-way object classification database, used
in the ILSVRC. Error rates are as reported for a single model and single crop of each test image for a PyTorch implementation of the models (from pytorch.org/docs/stable/torchvision/models.html), with the
exception of InceptionResnet-v2, which is the single-model error rate reported in the original publication. Note that these error rates may differ from the model’s ILSVRC result, because competition results
are calculated on a confidential test image set and because competition submissions often use ensembles of networks and/or data augmentation at test time. The column “Layers Selected for Evaluation”
briefly describes the criteria we used to select key processing steps within each network, to evaluate their match to neural representations in hIT cortex.
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adopted by different research groups, such as which
methods of data augmentation were used. Object classifi-
cation error of the networks, as quantified by Top-5 error
rate on the ILSVRC validation set, ranged from 20.9% error
rate (Alexnet; Krizhevsky et al., 2012) to 4.9% error rate
(Inception-Resnet-v2; Szegedy et al., 2017). This measure
captures the proportion of test images for which the
correct object category was not one of the network’s
top five guesses. Human Top-5 classification error rate for
this data set is thought to be around 5.1% (Russakovsky
et al., 2015).

In addition to analyzing the trained networks, we also
created untrained randomly weighted versions of the
same architectures, by replacing all weights and biases
in each network layer by random numbers drawn from
a Gaussian distribution with the same mean and standard
deviation as the weights or biases in the trained network
at the same layer. Analysis procedures were identical for
trained and untrained networks.

Image Preprocessing

Before being input to neural networks, the 62 stimuli
used in the fMRI experiment were resampled to the na-
tive input size of each network architecture (either 224 ×
224, 227 × 227, or 299 × 299 pixels), and the mean red,
green, blue pixel value of each network’s training images
was subtracted.

Layer Activations

For each architecture, we selected a subset of key layers to
analyze, generally consisting of the outputs of convolu-
tional or fully connected processing steps, after applying
a nonlinearity. For architectures made up of “modules”
or “blocks” of processing steps within which parallel
branches of processing occurred, or over which skipping
connections passed, we took as key layers the outputs of
each submodule after all its inputs had been concatenated
or added. Table 1 provides further detail on the criteria
for key layer selection within each architecture. Network
activation patterns in response to the 62 stimulus images
were recorded for each of these key layers.

Comparing Human and DNN
Image Representations

Ecologically Driven Principal Component Selection

The number of features in a layer varied by three orders of
magnitude across layers and networks, from over 1 million
unit activations in the early layers of some architectures, to
1000 in the output layers. Before reweighting features, we
therefore used PCA tomatch the dimensionality of the rep-
resentations across all layers and to bring the number of
parameters to be fitted into a feasible range. For each layer
of each network, a PCA was performed to extract the first

100 orthogonal dimensions explaining themost variance in
the responses to a set of independent ecologically repre-
sentative images. For this, a set of 3020 images was drawn
from “Ecoset” (Mehrer, Spoerer, Jones, Kriegeskorte, &
Kietzmann, 2021), a large-scale vision data set that mirrors
the most common concrete nouns in the English language
that describe basic level categories (such as dog, cat, table,
etc.). Ecoset thereby represents categories that describe
physical things in the world (rather than abstract con-
cepts), which are of significance to humans. The image
set used to calculate the PCA had no overlap with the
experimental test set and were natural photographs with
backgrounds (whereas test stimuli were isolated object
images on gray backgrounds).
For each of the first 100 principal components, a prin-

cipal component RDM (PC-RDM) was computed by tak-
ing the Euclidean distance between unit activation
patterns elicited by each image pair, after projecting
those activation patterns onto each principal component
in turn (see Figure 2A). These 100 PC-RDMs, extracted
for each layer of each model, were then fitted to human
IT RDMs by cross-validation over both participants and
images (see Figure 2B). Taking a weighted combination
of RDMs derived from model features captures the rep-
resentational geometry of a model version in which the
strength or prevalence of those different features has
been adjusted (Khaligh-Razavi & Kriegeskorte, 2014).

Cross-Validated Reweighting

We performed a two-stage reweighting procedure to fit
model representations to human IT representations both
within and across layers of a network and evaluated these
fitted representations on held-out subjects and stimuli
(Figure 2B). The first-level (within-layer) fitting linearly
combined the 100 PC-RDMs within each layer of a model
to create a single hIT-fitted RDM for that layer. The
second-level fitting then linearly combined these single-
layer RDMs across all layers of a network, to create a
whole-network hIT-fitted RDM for that model. The
weights for both levels of fitting were estimated within
the same cross-validation procedure, ensuring that all fit-
ting was performed on an independent set of subjects
and stimuli from that used in model evaluation. As a re-
sult, the reported performance of the DNN models is
based on their predictions of data for previously unseen
subjects and images. In addition to model fitting, we cal-
culated the performance of full-dimensionality unfitted
versions of each layer, as well as the lower and upper
bounds of the noise ceiling, all within the same cross-
validation folds to ensure that all estimates were directly
comparable. The noise ceiling is a measure of how well
data from individual participants can predict the data
from other participants. It provides upper and lower
bounds on the expected performance of the true data-
generating model, given the interparticipant variability
in the data (Nili et al., 2014). Its upper bound indicates
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the maximum possible performance for any model, within
the given data set and analysis.
The full sequence of steps, run for all models within a

single bootstrap resampling procedure, is as follows:

1. For each of 1000 bootstrap samples, resample both
stimuli and subjects with replacement:

a. For 200 cross-validation folds:

i. Randomly assign 12 unique stimuli present in this
bootstrap sample to be test stimuli. The test set
always consists of data from exactly 12 unique im-
ages and typically contains repetitions of some.
The training set contains the remaining images
in this bootstrap sample and may include repeti-
tions. Data from the same image never appear in
both training and test sets.

ii. Randomly assign five participants present in this
bootstrap sample to be test participants. As with
stimuli, the test set consists of data from exactly
five individuals and may contain repetitions. The
training set consists of data from the remaining
individuals present in this bootstrap and may
contain repetitions. The same subject never ap-
pears in both training and test sets.

iii. Once data are separated into training and test
sets:

1. Create human target RDM: Average the data
RDMs across training participants for the
training stimuli to create a target RDM to
which models will be fit.

2. First-level (within-layer) hIT fitting: For each
layer of each model, divide each of that layer’s
100 PC-RDMs into separate training-stimuli and

test-stimuli RDMs. Use nonnegative least squares
regression to find the 100 weights that linearly
combine the training-stimuli PC-RDMs to best
predict the human target RDM. This fitted
training-stimuli RDM will be used in the next
step, for across-layer fitting. In addition, create
a reweighted RDM capturing this layer’s predic-
tion for the test images, by combining the test-
stimuli PC-RDMs using the weights obtained
via the training-stimuli fit. This predicted test-
stimuli RDMwill be used to evaluate the perfor-
mance of this layer. Here, we also compute an
unfitted RDM for each layer based on the dis-
tances between test images in the full original
feature space of each layer, with no dimension-
ality reduction or reweighting applied.

3. Second-level (across-layer) hIT fitting: For each
model, take the set of single-layer fitted training-
stimuli RDMs calculated at the previous step.
Use nonnegative least squares regression to lin-
early weight these first-level fitted RDMs to best
predict the human target RDM. Construct a
predicted RDM by using the resulting layer
weights to combine the first-level-fitted test-
stimuli RDMs from all layers. This whole-model
hIT-fitted predicted RDM aggregates represen-
tations across all layers of a network, while
allowing the influence of features to be linearly
scaled both within and across layers to better
match human representations. We also com-
puted a whole-network predicted RDM using
only second-level fitting, by applying the same
across-layer reweighting to the unfitted per-
layer RDMs described in the previous step.

Figure 2. Ecologically driven
dimensionality reduction and
component reweighting. An
independent data set (A) of
3020 images derived from
object categories that are
important to humans was
constructed by sampling
uniformly from the ecoset data
set (Mehrer et al., 2021). We
recorded the activations elicited
by these images in each unit of
each layer of each network. On
the basis of the data obtained
from all units of a given layer,
we then ran a PCA to identify
the first 100 orthogonal
components that explained the
most variance in the layer’s
response to these ecologically
representative images. By projecting activation vectors onto each of the 100 PCs in turn, we constructed 100 PC-RDMs for the 62 experimental
stimulus images, within each network layer, using Euclidean distance. (B) The 100 PC-RDMs in each layer were linearly combined using a
cross-validated reweighting procedure to best predict the hIT fMRI representation (“first-level fitting”). All weights were fitted on data from both
separate subjects and separate image stimuli from those on which they were tested. On each cross-validation fold, one nonnegative weight was
assigned to each PC-RDM via least-squares fitting. Within the same cross-validation folds, an aggregate prediction for the whole network was then
calculated by linearly weighting the per-layer fitted RDMs (“second-level fitting”; not shown).
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This “unfitted” whole-model predicted RDM
treats each layer as a fixed representation but
allows the influence of each layer on the
whole-network predicted RDM to be linearly
scaled to better match human data.

4. Model evaluation: Evaluate the performance of
each of the model predictions as the average
Spearman correlation between the predicted
RDM and each individual test participant’s
RDM for test stimuli. Within a cross-validation
fold, estimate the performance of the first-level
fitted RDMs for each layer of each model, the
unfitted per-layer RDMs for each layer of each
model, and the two second-level fitted RDMs
for each model, one of which combines the
first-level fitted per-layer RDMs and the other
of which combines the unfitted per-layer RDMs.

5. Noise ceiling calculation: Calculate the upper
and lower bounds of the noise ceiling (Nili
et al., 2014) by taking the correlation between
each test participant’s test-stimuli RDM and
the mean test-stimuli RDM averaged over ei-
ther all participants (upper bound) or the
training participants (lower bound). By calcu-
lating the noise ceiling within the model-
reweighting cross-validation folds, we ensure
that the lower bound estimates are correct
for both fitted and unfitted models (Storrs,
Khaligh-Razavi, & Kriegeskorte, 2020).

b. At the end of the 200 cross-validation folds, average
the model performances (first and second levels) as
well as noise ceiling estimates, to create a single
estimate of each, for a given bootstrap sample.

RESULTS

We evaluated how well the representations of object im-
ages in each of nine diverse DNN architectures could pre-
dict those in hIT cortex. We analyzed performance both
for each layer individually and when aggregating across
layers in a network. We tested trained and untrained
versions of each architecture as well as the effects of
allowing linear reweighting of the principal feature com-
ponents within each layer.

Object Recognition Training Modestly Improves
Representational Correspondence with Human IT

First, we compared the hIT correlation of every layer in
trained and untrained versions of each model (Figure 3).
We found that training improved representational simi-
larity to hIT, but by a perhaps surprisingly small degree.
For each layer and model, we tested whether the distri-
bution of differences in bootstrapped performance be-
tween the trained and untrained models contained
zero, using a one-tailed test, with an alpha level of .05,

uncorrected for multiple comparisons. Even using this
liberal criterion, only five of the nine models contained
layers in which trained performance was better than un-
trained, and Mobilenet was the only model to show sig-
nificantly higher performance in most layers after training
(see blue asterisks in Figure 3).
Notably, however, whereas untrained models showed

similar hIT correlation across all their layers, the perfor-
mance of trained models peaked for processing steps
about one half to three fourths of the way from network
input to output. This echoes previous findings of graded
similarity between DNN representations and the human
ventral stream (Xu & Vaziri-Pashkam, 2020; Zeman et al.,
2020; Güçlü & van Gerven, 2015; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins et al., 2014) and suggests that
the learning of natural image features of the correct com-
plexity is responsible for the superior performance of later
layers, rather than inherent architectural properties such
as the spatial scale of the representations. Most models
show a sharp decline in hIT match toward the final output
layers, likely because their training target, a sparse vector
indicating which of 1000 objects possible within the
Imagenet ILSVRC challenge data set is present in an image,
forces late layers not to represent degrees of similarity
between images. There was substantial variation among
models in how well the best layer correlated with the
representation in hIT, but no model explained all of the
explainable variance in the human data. A model could
be considered to explain all explainable variance in a data
set if it predicts human data as well as individual human
participants can predict the data of other participants, as
quantified by the lower bound of the noise ceiling
(Storrs et al., 2020; Nili et al., 2014). For each layer of each
model, we tested whether the bootstrap distribution of
differences between the lower bound of the noise ceiling
and the layer performance contained zero (one-tailed, α=
.05, uncorrected for multiple comparisons). For all layers
of all models, the lower bound of the noise ceiling was sig-
nificantly higher than model performance. Although
object-recognition training improves performance, the
distribution of visual features learned by task-trained
DNNs does not fully mirror those in human IT.

Reweighting Features within Trained Layers
Dramatically Improves Correspondence with hIT

Next, we compared the hIT correlation of each layer of the
trained networks, both in its full unfitted state and after
model fitting, that is, reducing dimensionality via PCA on
natural images and reweighting the principal components
to better predict human representations using held-out
images and participants (see Methods). Reducing and
reweighting the feature space improved the correlation
of a layer’s representations with that in hIT for virtually
all layers of all networks (Figure 4). Five of the ninemodels
contained at least one layer in which hIT correlation, after
fitting, was not significantly lower than the lower bound of
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Figure 3. Object recognition training improves hIT correspondence in some layers of some models. Panels show the hIT correlation of the full
representation in each layer of each architecture, with no dimensionality reduction or feature reweighting, for an object-recognition trained instance
of each network (blue) and for a corresponding untrained instance with randomly initialized weights (gray). Each dot corresponds to one of
the key layers selected for analysis (see Table 1) and indicates the mean of a distribution of 1000 bootstrap estimates of cross-validated layer
performance, bootstrapped over both subjects and stimuli. For comparability across the diverse architectures, the “depth” of each layer is indicated
in terms of the number of unique processing steps up to this point, such as convolution, batch normalization, pooling, or nonlinearity. Shaded
regions indicate the standard deviation of the bootstrap distribution. The horizontal gray bar shows the lower and upper bounds of the noise ceiling,
indicating the expected performance of the true model, given interparticipant variability in the data set. Blue asterisks above the x axis indicate that
the representation in the trained network performs significantly better than that in the untrained network in this layer (α = .05, uncorrected).
All layers perform significantly below the lower bound of the noise ceiling (α = .05, uncorrected).
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Figure 4. Reducing and reweighting the feature space dramatically improves hIT correlation across most layers in all network architectures. Each
panel shows, for one model, the hIT correlation of the unfitted representation in the full original feature space (pale blue lines, same data as shown
in Figure 3) and of the same feature space after reducing to 100 dimensions via ecologically driven dimensionality reduction (see Figure 2) and
linearly reweighting those dimensions to fit hIT representations (cross-validated over both subjects and images). Blue asterisks indicate that the fitted
layer performs significantly better than the original unfitted feature space. Layers in which the fitted representation is not significantly different from
the lower bound of the noise ceiling are indicated by “ns”; all others perform significantly below the noise ceiling (α = .05, uncorrected).
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the noise ceiling (based on the bootstrapped distribution
of differences, one-tailed, α = .05, uncorrected; note that
correcting for multiple comparisons would lower our
threshold for considering a layer statistically indistinguish-
able from the noise ceiling and so would constitute a more
liberal criterion than the test performed here).

Deeper Architectures Are Not Better Models of hIT

Despite the wide range of network depths across the nine
architectures, spanning 25–825 unique processing steps, we
found no compelling evidence that deeper networks were
better models of hIT than shallower ones. Figure 5 shows

the hIT correlation of each of the fitted layers (i.e., dark blue
lines from Figure 4) for all models on the same axes for com-
parability. Although there was a clear improvement in hIT
correspondence across early and intermediate layers within
each model, the peak layer performance was similar across
models of different depths. There was no correlation be-
tween depth of architecture and whole-network hIT match
after combining representations across all layers via second-
level fitting (see Figure 6), for either trained and within-layer
fitted models (r = .20, p = .61, ns) or trained and within-
layer unfitted models (r = −.07, p = .86, ns). Within the
range of deep convolutional neural networks capable of
high object-recognition accuracy, it does not appear that

Figure 5. Depth is not the
answer. Correlation with hIT
representation for all layers of
all networks, after “ecologically
driven” PCA reduction and
reweighting. Although many
models reach representations in
their late intermediate layers
that well match hIT, increasing
depth does not equate to
increased hIT match, either
within or between architectures,
within this range of highly
successful object-recognition
computer vision models.

Figure 6. Training and within-
layer fitting both improve
correlation with hIT. (A) Bars
show an estimate of the
combined performance of
all layers within each of the
networks, obtained by
second-level (across-layer)
fitting in all cases. The fitting
procedure is identical to that
used to reweight principal
components within each layer,
except that it takes as input
per-layer RDMs rather than
PC-RDMs. Pale gray bars show
the hIT match for the raw
(unfitted) feature space of a
randomly weighted instance of
the network, dark gray bars
show hIT match for the same
random feature space after
PCA reduction and within-layer
reweighting, pale blue bars
show hIT match for the unfitted
feature space of the object-recognition-trained network, and dark blue bars show hIT match for the trained network after PCA reduction and
within-layer reweighting. Error bars indicate the standard deviation of the bootstrap distribution. The horizontal gray bar indicates the lower
and upper bounds of the noise ceiling. Models that do not perform significantly below the lower bound of the noise ceiling are indicated by “ns”
within the noise ceiling; for all others, this comparison is significant, α = .05, uncorrected. (B) Data from A averaged across all models. Error
bars indicate the standard error of the mean across models.
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greater depth leads to more brain-like representations
(cf. Kubilius et al., 2018; Schrimpf et al., 2018).

A Combination of Training and Fitting Achieves a
Good Match to hIT for Diverse DNNs

So far, we have considered each layer of each network as
a separate candidate for predicting hIT. However, it is
unlikely that the computational features across large parts
of inferior temporal cortex correspond neatly to those in
any single processing step of an artificial neural network.
We therefore linearly combined the per-layer RDMs of
each network to estimate the hIT correlation of the model
considered as a whole, via a second-level fitting procedure
(see Methods). The inputs to the second-level hIT fitting
were either (i) the unfitted per-layer RDMs calculated
from the full original feature space in each layer, that is,
without dimensionality reduction or first-level (within-
layer) fitting (light gray and light blue bars in Figure 6),
or (ii) the hIT-fitted per-layer RDMs estimated via first-
level fitting (involving both dimensionality reduction
and linear reweighting, dark gray and dark blue bars).
Both levels of fitting were performed within the same
cross-validation loops, so that both within-layer and
across-layer weights were always fitted based on the same
split of training participant and stimulus data and tested
on unseen subjects and stimuli.

This whole network analysis revealed that both object
recognition training and subsequent hIT fitting improved
the correspondence between model representations and
those in hIT (Figure 6B). A 2 × 2 (training × fitting)
ANOVA treating each of the nine DNN architectures as
an independent observation revealed significant main
effects of both training, F(1, 35) = 33.82, p < .0001,
and fitting, F(1, 35) = 43.69, p < .0001. There was a sig-
nificant interaction between training and fitting, such that
within-layer fitting yields a larger benefit when applied to
the features found in layers of trained than untrained
models, F(1, 35) = 6.51, p = .016. This interaction
between training and fitting suggests that training on
the Imagenet object-recognition task causes models to
develop features that capture aspects of real-world images
that are important to their representation in hIT but does
not cause models to learn the relative prevalence of these
features seen in brain data.

To better understand model improvement effect sizes
relative to the total explainable (nonnoise) variance in this
data set, we calculated descriptive statistics by normalizing
squared model correlations by the average squared corre-
lations of the upper and lower noise ceilings (squared
Spearman correlation = .16). On average, trained and
within-layer fitted models explained 48.0% of the explain-
able rank variance in hIT representations (normalized
squared Spearman correlation = .08). Starting from an
untrained, unfitted model as a baseline, on average across
models, task training produced a 57.5% increase in the
proportion of explainable rank variance explained (taking

the noise-ceiling normalized r2 from .12 to .19). Similarly,
hIT fitting of the untrained model produced a 73.4%
increase (normalized r2 from .12 to .21). Although these
are substantial gains, the combination of training and
hIT fitting achieved a superadditive boost. Compared to
trained but unfitted networks, reweighting the features
within each layer of trained networks led to a further
124% increase in the proportion of explainable rank vari-
ance explained (normalized r2 from .21 to .48).
After training networks to classify objects, and linearly re-

weighting their learned features within and across layers, all
nine DNN architectures yielded good models of hIT, ex-
plaining most of the explainable variance in the data (dark
blue bars in Figure 6A). For three architectures (Googlenet,
Densenet, andMobilenet), the trained and hIT-fittedmodel
was not statistically distinguishable from the lower boundof
the noise ceiling, indicating performance on par with the
ability of individual human brains to predict representa-
tional dissimilarities in other human brains (one-tailed test
of whether the bootstrap distribution of differences con-
tained zero, α = .05, uncorrected). This does not mean
that no superior model of the ventral stream can be found
but only that no clear discrepancies can be found between
representational geometries in brains and models, using
the present set of image stimuli and brain data. To evaluate
the relative contributions of architectural differences to
model performances before and after reweighting, we
ran a permutation test comparing all pairwise differences
among trained but only second-level fitted (i.e., within-
layer-unfitted) models to those among fully fitted models.
Differences among the hIT correspondence of unfitted
models were larger than those among the same models
after they had undergone within-layer principal compo-
nent reweighting (Cohen’s d = 1.49, p = .001).
To gauge whether the remaining differences in perfor-

mance among trained and fitted models were likely to be
of theoretical interest, we performed an equivalence test
(Lakens, 2017) in which we defined the variance in esti-
mates of the lower bound of the noise ceiling as a natu-
rally occurring variation in predicting individual human
data. If a difference between two models falls outside
the 95% confidence interval of this distribution, the
models are more different from one another than human
participants are from one another, which could be con-
sidered a threshold for the minimal potentially interest-
ing model difference. For each pair of models, we
tested whether the observed differences between the
hIT correlation of the two models, across bootstrap sam-
ples, were significantly larger than the lower bound of the
95% confidence interval on noise ceiling variation and, at
the same time, significantly lower than the upper bound
of the confidence interval (Lakens, 2017). After training
and hIT fitting, the differences between models proved
statistically equivalent to the differences between human
participants for all models (α = .05, Bonferroni corrected
for 36 pairwise comparisons among models). However,
there were larger differences among pairs of trained but

12 Journal of Cognitive Neuroscience Volume X, Number Y

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_01755/1929774/jocn_a_01755.pdf by guest on 22 July 2021



unfitted models, with differences in 8 of the 36 pairwise
comparisons falling significantly outside the variability in
the lower noise ceiling.
Did these differences point to the superiority of certain

DNN architectures as models of the brain over others? If
we think of each of these models as embodying different
theoretical ideas about the essential properties of visual
processing, some of those ideas are baked into the archi-
tecture of networks (e.g., the required depth, or spatial
scales, of visual processing required), whereas others are
implemented in the training task (e.g., that brain-like fea-
tures emerge from exposure to natural image statistics or
from the need to perform ecologically important tasks
like object recognition). If the architectural components
are the important differentiators of how well this set of
models performs, then we might expect that models with
good architectural properties might better predict brain
data in both their trained and untrained states, which
does seem indeed to be the case when looking at the
unfitted model data. For within-layer-unfitted models,
there was a positive correlation between hIT match be-
fore and after task training (Pearson skipped r = .49,
95% CI [0.16, 0.96], α = .05, using the robust correlation
toolbox for MATLAB [Pernet, Wilcox, & Rousselet, 2013]).
However, this association evaporates after adjusting the
preponderance of different features via fitting. There
was no relationship between the performance of trained
and untrained models after hIT fitting (Pearson skipped
r = .07, ns). Thus, we see little evidence that some
models are able to learn qualitatively better features
thanks to their architectures (e.g., being uniquely able to
learn features of the right spatial scales or complexities).
Our networks differed substantially in their ability to

solve the challenges of object recognition, ranging from
20.9% to 4.9% error rate in object classification on the
ILSVRC benchmark task (see Table 1). Among relatively
shallow neural networks, models with higher object classi-
fication accuracy tend to provide feature spaces that can
better predict the firing rates of neurons in macaque IT
to object images (Yamins et al., 2014). Among deeper,
higher-performing networks, this effect appears to satu-
rate, and further improvements to classification accuracy
no longer translate into higher performance as brain
models (Schrimpf et al., 2018). We found no significant
association, among either unfitted or fittedmodels, between
accuracy on the ILSVRC object classification task and corre-
lation with human IT (Pearson skipped r=−.38 (unfitted)
and .32 (fitted), both ns). The commonalities among
these diverse DNNs appear to matter more than their dif-
ferences, when considered as models of human vision.

Model Dimensions Explaining Most Natural-Image
Variation Better Explain Human IT and a Relatively
Small Number of Dimensions Suffice

Our first-level (within-layer) fitting procedure consists of two
steps, both of which potentially change the representational

geometry: First, the full feature space of a layer is reduced to
the 100 principal components accounting for the most var-
iation in that layer’s responses to ecologically representative
images (Mehrer et al., 2021), and second, those principal
components are linearly reweighted to best predict dissim-
ilarities between images in human IT. To assess the effect of
dimensionality reduction alone, we calculated the perfor-
mance of a version of each model that had undergone the
first (dimensionality reduction) step, but not the second
(hIT-fitting) step. Within the main cross-validation proce-
dure (see Methods), we created an RDM for each layer of
each network by uniformly combining the layer’s 100 PC-
RDMs with equal weights and used these RDMs as a basis
for the second-level (across-layer) fitting procedure. The re-
sulting whole-network hIT correlations are shown by the
central data points in Figure 7A. For comparison, to the left
are shown performances using the “raw” layer representa-
tion, with no dimensionality reduction or reweighting, and
to the right are performances using the reduced and hIT-
fitted representation, both previously shown in Figure 6.

Despite reducing the dimensionality of the feature space
by up to four orders of magnitude for some layers of some
networks (e.g., in the earliest layers of VGG-16, from over
1 million units to only 100 principal dimensions), PCA
improved the hIT correspondence of models (Figure 7A).
A 2 × 2 (Dimensionality Reduction × Training) ANOVA
revealed a main effect of both dimensionality reduction,
F(1, 35) = 6.39, p = .166, and of training, F(1, 35) = 15.14,
p = .0005. Post hoc tests on the effect of dimensionality re-
duction show that uniformly weighting the first 100 principal
components within each layer led to higher hIT match than
taking the full feature space, for both trained networks
(paired-samples t test), t(8) = 15.33, p < .0001, and
untrained networks, t(8) = 3.23, p = .0121. There was no
interaction between training and dimensionality reduction,
F(1, 35) = 1.09, ns. On average, for the trained networks,
the Spearman correlation with hIT could be improved by
25.5% simply by taking dimensions within each layer that
account for the most variation in the network’s responses
to natural images sampled from a set of object categories
that appear frequently in human (visual) experience
(Mehrer et al., 2021).

We also tested how robust model performance esti-
mates were to changing the number of principal compo-
nents used for the analysis. Although we have seen that
dimensionality reduction helped models predict hIT rep-
resentations (Figure 7A), networks with different intrinsic
dimensionalities may nevertheless be differentially im-
pacted when reduced to the same number of principal
components. For example, the effective dimensionality
of trained networks could be systematically lower than that
of their untrained counterparts, which create random (and
therefore approximately orthogonal) high-dimensional
projections of their inputs. We therefore explored, within
one example network, the effect of taking a wide range of
different numbers of principal components for the within-
layer reweighting procedure, ranging from 1 to 3000 (the
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maximum possible was 3020, as determined by the size of
the independent image set used to calculate principal
components). We chose Mobilenet as the example net-
work, because it achieved not only the highest hIT corre-
spondence of all networks in its trained and fitted state but
also the lowest hIT correspondence of all networks in its
untrained and unfitted state. If untrained networks are dis-
proportionately hampered by the limitations of taking 100
principal components, we expected to see improvements
in the performance of untrained Mobilenet when a larger
number was allowed. Figure 7B shows the hIT RDM corre-
lation for trained and untrained Mobilenet, after both first-
level (within-layer) and second-level (across-layer) fitting,
using different numbers of PC-RDMs. Large improvements
are evident when increasing from 1 to 10 dimensions, but
plateau by 50 dimensions for both trained and untrained
networks. One hundred principal components therefore
appear more than sufficient to capture the portion of rep-
resentational variance relevant for explaining hIT re-
sponses within this experimental image and fMRI data set.

The Same DNN Models Can Also Predict
Representations in V1 Well, After Training and
Fitting, by More Strongly Weighting Earlier Layers

Our primary interest is in finding a good model of the
complex object representations in late ventral stream.

However, DNNs contain a hierarchy of features, from
simple to complex, and so also provide candidate models
for earlier visual regions. Some previous research (Cadena
et al., 2019) has reported that randomly weighted,
untrained DNNs perform as well as trained ones in predict-
ing representations in mouse visual cortex. Might object-
recognition training therefore also provide less benefit to
models when evaluated on the “simpler” representations
in human primary visual cortex (V1), compared to hIT?
V1 representational geometry measured during the same
fMRI scanning sessions reveals a substantially different
structure from that in hIT (Figure 8A), although intersub-
ject consistency is similarly high in both regions. The aver-
age Spearman correlation between each participant’s full
V1 RDM and the average V1 RDM of all participants was
r= .381, and in hIT, r= .383, but only r= .163 when trying
to predict average hIT data from individual V1 data, or vice
versa. Yet despite the distinct representational geometries,
we find a strikingly similar pattern of model performances
in both regions (Figure 8B).
Both object-recognition training and V1 fitting (cross-

validated over both images and subjects) improved the
ability of diverse DNNs to predict V1 representations. A
2 × 2 (Training × Fitting) ANOVA treating each of the
nine DNN architectures as an independent observation
revealed main effects of both training, F(1, 35) = 15.40,
p = .0004, and of fitting, F(1, 35) = 20.46, p = .0001.

Figure 7. Finding dimensions of natural-image variation within each layer’s feature space improve hIT match, and a small number of dimensions are
sufficient. (A) Estimates of the whole-network hIT correlation for trained (blue) and random (gray) networks, derived by reweighting layer RDMs
obtained from either (left) the full original feature space; (center) the first 100 components of that feature space, derived via PCA on an independent
natural image set; and (right) after reweighting the principal components within each layer to predict hIT representations. (B) Estimates of the
whole-network hIT correlation for one example network, Mobilenet, in its trained (top) and untrained (bottom) states, after reducing the feature
space within each layer to various numbers of principal components (x axis). Whole-network performance is estimated by reweighting layer RDMs
obtained from either (pale lines) the full original feature space or (dark lines) within-layer hIT-fitted representations using the specified number
of principal components. Note that the x axis is logarithmic.
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Unlike in hIT, however, the interaction between training
and fitting was not significant, F(1, 35) = 3.08, p= .09. As
in hIT, after training networks to classify objects and
linearly reweighting their learned features within and
across layers, all nine DNN architectures yielded good
models of brain representations (dark blue bars in
Figure 8B). For five architectures (Resnet-18, Resnet-50,
Densenet, InceptionResnet, and Mobilenet), the trained
and V1-fitted model was not statistically distinguishable
from the lower bound of the noise ceiling, indicating
similar performance to that of using individual human
brain representations to predict others (one-tailed boot-
strap percentile test of the null hypothesis that the differ-
ence is zero, α = .05, uncorrected). A permutation test
showed that differences in V1 correspondence were
higher among unfitted models than their V1-fitted coun-
terparts (Cohen’s d = 1.05, p = .002).
To evaluate whether differences among models were

larger than the differences among individual participants,
we performed an equivalence test (Lakens, 2017). After
training and V1 fitting, the differences between models
proved statistically equivalent to the differences between
human participants for all models (α = .05, Bonferroni
corrected for 36 pairwise comparisons among models).
This result suggests that the variation among human
RDMs is similar to that among model RDMs, although
these should be interpreted with caution because the
human data are affected by substantial measurement
noise. However, there were larger differences among
pairs of trained but unfitted models, with differences in
10 of the 36 pairwise comparisons falling significantly

outside the variability in the lower noise ceiling. This
representational variance across networks is likely
caused both by architectural differences and by “individ-
ual differences” among networks trained from different
random initializations of the same architecture (Mehrer,
Spoerer, Kriegeskorte, & Kietzmann, 2020). With only a
single trained instance of each architecture, we are not
able to assess the relative contributions of each.

As in hIT, networks differed in their ability to predict
brain representations in their raw states but performed
similarly well after training and fitting. There was no evi-
dence of a relationship between the ability of a DNN to
predict V1 and its ability to predict hIT representations
(Pearson skipped rs = .25 [for trained, fitted models],
.06 [trained but unfitted], −.36 [untrained fitted], and
.55 [untrained unfitted]; all values = ns, using the robust
correlation toolbox for MATLAB [Pernet et al., 2013]).

Although all networks were able to predict both V1 and
hIT representations well after combining representations
across their layers (Figure 8B), we expect substantial
differences in the specific layers that best explain each
region (Zeman et al., 2020; Güçlü & van Gerven, 2015).
To quantify the network depth within which perfor-
mance peaked and compare across models with different
numbers of layers, we first divided layer indices within
each network by the maximum depth of the network,
so that all networks had a nominal depth of 1. We then
fitted piecewise polynomial splines to each network’s
layerwise hIT or V1 correlation, using MATLAB’s smooth-
ing splines function (smoothing factor = 0.999). Figure 9
(leftmost panels) shows the average of the resulting

Figure 8. The same models are able to well explain the very different representations in V1. (A) Representational dissimilarity of the same
62 experimental images in V1 (top) and hIT (bottom; as in Figure 1B) averaged over participants. There was good interindividual consistency within
each region, but there were substantial differences in representational geometry between regions. (B) Bars show an estimate of the combined
performance of all layers within each of the networks, obtained by second-level (across-layer) fitting in all cases. Pale gray bars show the V1 match
for the raw (unfitted) feature space of a randomly weighted instance of the network, dark gray bars show V1 match for the same random
feature space after PCA reduction and within-layer reweighting on V1 data, pale blue bars show V1 match for the unfitted feature space of the
object-recognition-trained network, and dark blue bars show V1 match for the trained network after PCA reduction and within-layer reweighting on
V1 data. (C) Data from C averaged across all models. Conventions are as in Figure 6.
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smoothed layerwise hIT and V1 correlations, before and
after training and fitting. We compared the peaks of the
smoothed layerwise brain correlations between regions.
For trained but unfitted models, there was, surprisingly,
no indication that later layers better predicted hIT data
(mean location of peak layerwise performance, as a pro-
portion of network depth = 0.56) than V1 (mean = 0.59;
two-tailed paired-samples t(8) = −0.10, ns). However,
after fitting each layer of the trained models to the respec-
tive brain region’s representation, peak performance was
reached robustly later in hIT (M = 0.70) than V1 (M =
0.48), t(8)= 3.20, 95% CI [0.06, 0.38], p= .013. To directly
compare the effect of depth on fitting benefit in each
region, we also calculated for each model and region the
layerwise difference between brain-data correlation for a
trained and fitted network, minus its trained but unfitted
counterpart, and fitted a smoothing spline (Figure 9,
rightmost panels). Fitting to brain data yielded larger
benefits for deeper network layers when evaluated on
hIT data (mean peak of smoothed fitting benefit =
0.76), than V1 (M = 0.35), t(8) = 3.73, 95% CI [0.16,
0.67], p = .006.

Together, these results support the intuition that
earlier layers develop features more suited to predicting
early visual cortical representations, whereas later layers
contain features better able to explain representations in
late object-selective inferior temporal cortex, likely
because of differences in complexity, structure, and/or
spatial scale across DNN layers. When we allow the rela-
tive influence of different features within a layer to be
reweighted to better match brain data, earlier layers best
predict V1, and later layers best predict hIT. The corre-
spondence between network depth and cortical region
is perhaps surprisingly subtle in this data set, however,
because it is not evident in trained but unfitted models.

DISCUSSION

In this work, we investigated a diverse set of DNNs for
their ability to predict representations estimated from
fMRI data of hIT cortex. Comparing the predictive perfor-
mance of untrained and object-recognition-trained net-
work variants, we show that task training moderately
improves correspondence with representations in hIT.

Figure 9. Fitting most improves the performance of deeper layers when predicting hIT and earlier layers when predicting V1. (A, Left) Mean and 95%
confidence interval across nine DNNs of smooth splines fit to layerwise hIT correlation, normalized by network depth (raw values are shown in
Figures 3 and 4), for (gray) untrained and unfitted models, (pale blue) trained but unfitted models, and (dark blue) trained and within-layer hIT-fitted
models. (A, Right) Mean and 95% confidence interval of smooth splines fit to the difference in hIT correlation between either (pale blue) trained
unfitted minus untrained unfitted networks or (dark blue) trained and fitted minus trained but unfitted networks. The horizontal gray bar indicates
the lower and upper bounds of the noise ceiling. (B) The same models, evaluated on and fitted to primary visual cortex (V1) representations.
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At a minimum, this suggests that structured visual fea-
tures (e.g., containing spatial correlations) form a better
basis for predicting those in the human brain and may
point to the importance of ecologically relevant tasks in
developing brain-like features. The effect of training is
substantially amplified by model fitting, indicating that
the relative prevalence of different features in hIT does
not automatically emerge from the particular object-
recognition task (ImageNet) used to train the networks.
After task training and two-stage model fitting, the pre-
dictive performance of all networks, irrespective of
depth, on data from unseen stimuli and participants,
was similarly high, explaining 48% of the rank variance
in hIT representations. This is similar to the proportion
of variance DNNs have been found to explain in macaque
electrophysiological data (Bashivan et al., 2019; Cadieu
et al., 2014; Yamins et al., 2014).
Diverse architectures performed indistinguishably well

as models of hIT, after training and fitting. The differ-
ences among trained (but unfitted) architectures did
not correlate with other model metrics, such as network
depth, object-recognition performance, hIT match
before training, or ability to predict V1 representations.
That is, we did not find any factors that caused certain
architectures to be inherently better models of the
ventral stream than others. This is perhaps unexpected,
given that the set of DNNs could be thought of as imple-
menting different computational theories about vision.
For example, Liao and Poggio (2016) demonstrated that
the Resnet architecture is equivalent to a recurrent net-
work with certain constraints and therefore may be more
biologically plausible than the others we consider.
However, the lack of difference still informs theory in
suggesting that the models’ architectural specifics—
depth, numbers of feature maps, sizes of filters, presence
of skipping, or branching connections—matter less than
their shared attributes. All nine networks are deep feed-
forward hierarchies of nonlinear features, with spatially
restricted receptive fields whose size grows across layers.
Although the present results cannot tease apart the con-
tributions of each of these factors, previous work sug-
gests that all are likely required in any successful model
of the visual system (e.g., Khaligh-Razavi & Kriegeskorte,
2014; Riesenhuber & Poggio, 1999; Fukushima & Miyake,
1982; Hubel & Wiesel, 1962).
The evaluation of theories, and their implementations

via computational models, against both brain and behav-
ioral data is a very large endeavor. Our specific goal within
this project was to systematically explore the effects of
training and fitting for a diverse set of computational
models, evaluated against neural representations, mea-
sured via fMRI, for one set of image stimuli. A recent study
evaluating an overlapping set of DNNs against behavioral,
rather than neural, data (Geirhos, Meding, & Wichmann,
2020) found similarly small differences between models.
Convergently, both lines of work suggest that the archi-
tectural differences within the diverse family of modern

supervised DNNs do not strongly impact their perfor-
mance as models of human visual processing. This is a
theoretically important finding that helps direct future
work toward less explored factors, such as the computa-
tional role of recurrence (e.g., Kietzmann et al., 2019) and
the learning objectives of biological brains (e.g., Storrs,
Anderson, & Fleming, 2021; Marblestone, Wayne, &
Kording, 2016).

Injecting Domain Knowledge through Training
Helps Explain Brain Representations

A number of studies have shown that performance-
optimized DNNs can explain representations in high-level
regions of human and nonhuman primate ventral visual
cortex (Xu & Vaziri-Pashkam, 2020; Kubilius et al., 2018;
Schrimpf et al., 2018; Cichy et al., 2016; Yamins & DiCarlo,
2016; Güçlü & van Gerven, 2015; Kriegeskorte, 2015;
Agrawal et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014;
Yamins et al., 2014). Our results here replicate and extend
upon this widely appreciated finding by testing a large
variety of models on the same hIT data set, while at the
same time providing estimates for the relative effects of
task training and model fitting.

Knowing the size of the effect of task training on a
given network’s predictive power serves an important
role in our goal of understanding ventral stream compu-
tations. Following the normative approach, training
models on an external task can help answer the question
of “why” the ventral stream computes what it computes
(Kietzmann et al., 2018). The present results indicate that
encoding statistical structure or redundancy in images is
important for recreating hIT-like representations, as ran-
domly initialized untrained deep architectures performed
significantly worse. Although a larger set of supervised and
unsupervised training objectives must be investigated,
exposure to natural images and the need to derive ecolog-
ically relevant information from those images (e.g., object
identity) may provide important constraints on the kinds
of visual features developed by brains and DNNs. At the
same time, the dramatic benefits of model fitting suggest
that training on the ImageNet ILSVRC challenge does not
lead to the correct relative feature distribution.

In addition to helping answer “why” brain representa-
tions take the form they do, task training allows us to har-
ness large training data sets to instill domain knowledge
into models. Vision, like other feats of intelligence, re-
quires knowledge about the world. In particular, recogni-
tion requires knowledge of what things look like. To
explain task performance and high-level responses,
therefore, a model needs the parametric capacity to store
the requisite knowledge. One benefit of task training is
that it allows experimenters to inject domain knowledge
(e.g., about the structure of visual images) into models in
a way that is entirely unfeasible in more hand-crafted or
analytical models. The features learned through auto-
mated training on big data are “potential candidates” for
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the sorts of features likely represented in biological visual
systems. Yet, the differences in predictive performance
between random and trained versions of the same archi-
tecture are small, suggesting we should be cautious about
interpreting the features learned by trained networks as
being informative about the particular features represented
in the ventral stream.

Reweighting Features Improves Correspondence
to Brain Representations and Reveals Common
Performance across Diverse Models

After finding dimensions of important variance, and re-
weighting to adjust the relative strength of those feature
dimensions, good prediction of representations in either
early (V1) or late (hIT) ventral cortex could be achieved
by all models, with negligible differences in performance
among very diverse architectures ranging from 8 to 201
layers in depth. The fitted and unfitted performance esti-
mates provide us with different information, and experi-
menters may wish to use or not use fitting depending on
their modeling objective.

The substantial benefit of fitting to brain data (124% im-
provement in hIT prediction, for trained models) should
not be surprising, for at least two reasons. First, the object-
recognition-trained networks had as their only require-
ment the classification of 1000 nameable objects, with a
distribution highly unlike that found in the human visual
diet—for example, the ILSVRC categories do not contain
“person” or “face” (Mehrer et al., 2021; Russakovsky et al.,
2015). The human ventral stream, in contrast, must sub-
serve a wide range of behaviors beyond recognition such
as navigation, interaction, andmemory. For some research
questions, we may be most interested in the performance
of models without allowing feature reweighting. Model
fitting (including encoding models and single- or two-
stage RDM reweighting) always deviates models away
from their “native” feature coding, by allowing the preva-
lence of different features to be adjusted (Khaligh-Razavi
et al., 2017). If we are interested in which architectures,
training objectives, and visual diets give rise to distribu-
tions of features similar to those found in the human visual
system, the unfitted performance of models will be most
informative.

A second consideration is that, even if an ideal DNN
model of human IT were to exist, containing exactly the
features and distribution of those features found in the
brain, themeasurement processes giving rise to data would
bias the prevalence of measured features (Kriegeskorte &
Diedrichsen, 2016). This provides one motivation for re-
weighting features—because we know that our measure-
ment processes can introduce bias in feature sampling,
requiring a model to match the measured prevalence
of features might be too strict a criterion. Instead of re-
weighting existing features that emerge via task training,
researchers have recently started using data from the
human ventral stream to directly learn the network features

themselves in end-to-end training on natural stimuli
(Kietzmann et al., 2019; Seeliger, Ambrogioni, Güçlütürk,
Güçlü, & van Gerven, 2019). Such procedures serve the
important function of verifying that a given network archi-
tecture chosen is in principle capable of mirroring the
right representational transitions observed in the brain.

The Future of DNNs as Models in
Visual Neuroscience

The advent of high-performing object-recognition DNNs
in computer vision has provided visual neuroscience with
unprecedentedly good models for predicting visual
responses in the human and nonhuman primate brain
(Lindsay, 2020; Kietzmann et al., 2018; Schrimpf et al.,
2018; Kriegeskorte, 2015; Yamins et al., 2014). Yet despite
the achievements of suchmodels, they are far fromperfect
models of biological vision, exhibiting fragility in the face
of noise and other perturbations (Geirhos, Jacobsen, et al.,
2020; Geirhos et al., 2017 ), an overreliance on textural
information (Geirhos et al., 2018), and limited ability to
predict brain responses to artificial stimuli (Xu & Vaziri-
Pashkam, 2020). As a field, we are only scratching the sur-
face by evaluating off-the-shelf feedforward DNNs trained
on tasks devised by software engineers. Deep learning
offers a powerful and flexible modeling framework based
on biologically motivated elements.
Going forward, deep learning models in visual neurosci-

ence will more broadly explore the space of objective func-
tions, learning rules, architectures (Richards et al., 2019),
and training diets (Mehrer et al., 2021). Recurrent networks
can recycle neural resources to flexibly trade speed for
accuracy in visual recognition and show great promise as
models of temporal dynamics in visual cortex (van
Bergen & Kriegeskorte, 2020; Kietzmann et al., 2019;
Nayebi et al., 2018; Güçlü & van Gerven, 2017; Spoerer,
McClure, & Kriegeskorte, 2017). Unsupervised learning
objectives provide rich and ecologically feasible ways of
getting complex knowledge about the visual world into
the brain (Storrs et al., 2021; Storrs & Fleming, 2020).
One of the central goals of computational visual neurosci-
ence is a model that can predict neural representations in
visual cortex at multiple levels of granularity, from single
neuron responses to the aggregated population signals
measured via fMRI, and can also predict the perceptual
properties of our visual systems, as measured in behavioral
experiments (Funke et al., 2020; Hebart, Zheng, Pereira, &
Baker, 2020; Storrs & Kriegeskorte, 2020; Rajalingham
et al., 2018; Schrimpf et al., 2018; Jozwik, Kriegeskorte,
Storrs, &Mur, 2017). Models will be tested using larger data
sets, with higher noise ceilings, and with stimuli designed
to tease apart the differences between model predictions
(Golan, Raju, & Kriegeskorte, 2019) and to minimize con-
founding low-level visual properties (Bracci, Ritchie, Kalfas,
& Op de Beeck, 2019; Bracci & Op de Beeck, 2016). We
have come a longway but are only just beginning to explore
the full potential of deep learning in visual neuroscience.
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