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Abstract

Deep neural network models (DNNs) are essential to modern Al and provide powerful
models of information processing in biological neural networks. Researchers in both
neuroscience and engineering are pursuing a better understanding of the internal
representations and operations that undergird the successes and failures of DNNs.
Neuroscientists additionally evaluate DNNs as models of brain computation by
comparing their internal representations to those found in brains. It is therefore essential
to have a method to easily and exhaustively extract and characterize the results of the
internal operations of any DNN. Many models are implemented in PyTorch, the leading
framework for building DNN models. Here we introduce TorchLens, a new open-source
Python package for extracting and characterizing hidden-layer activations in PyTorch
models. Uniquely among existing approaches to this problem, TorchLens has the
following features: (1) it exhaustively extracts the results of all intermediate operations,
not just those associated with PyTorch module objects, yielding a full record of every
step in the model's computational graph, (2) it provides an intuitive visualization of the
model's complete computational graph along with metadata about each computational
step in a model's forward pass for further analysis, (3) it contains a built-in validation
procedure to algorithmically verify the accuracy of all saved hidden-layer activations,
and (4) the approach it uses can be automatically applied to any PyTorch model with no
modifications, including models with conditional (if-then) logic in their forward pass,
recurrent models, branching models where layer outputs are fed into multiple
subsequent layers in parallel, and models with internally generated tensors (e.g.,
injections of noise). Furthermore, using TorchLens requires minimal additional code,
making it easy to incorporate into existing pipelines for model development and
analysis, and useful as a pedagogical aid when teaching deep learning concepts. We
hope this contribution will help researchers in Al and neuroscience understand the
internal representations of DNNs.
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Introduction

Deep neural network models (DNNs) have emerged as the dominant class of Al models
for performing many tasks, and as promising, albeit debated, candidate models for how
the brain functions (Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 2015; Xu &
Vaziri-Pashkam, 2021; Yamins et al., 2014). A DNN implements a series of operations
that transform inputs into outputs. For many practical applications it is not necessary to
examine the results of intermediate operations in DNNs. However, probing the
intermediate steps can help us understand the computations used by a particular model
to transform inputs into outputs, illuminating the reasons for its successes and failures
and informing the development of better models. In addition, neuroscientists seek to
evaluate how well DNNs model brain function. This requires comparing not just their
performance on task benchmarks, but also the degree to which their intermediate
representations match those observed in brains.

Advancing the practical goal of improving DNN task performance and the
scientific goal of comparing DNNs to brains often involves comparing many different
models, making it desirable to have convenient methods at hand for extracting the
results of these intermediate operations and understanding their role in the information
processing of each network. Ideally, such a feature extraction method should have the
following qualities. First, it should easily work for any DNN without requiring
model-specific tinkering by the user, such as editing of a model's code, since this
approach can become time-consuming and error-prone when examining many models.
Second, it should be able to extract the results of all internal computations within a
model, rather than just a subset. Third, it should render transparent—for instance,
through visualization or through intuitive metadata—where a given layer fits within the
broader information flow of a network. This is essential because the function of a layer
depends on the other operations performed in a network, and models often include
architectural complexities such as branching or recurrence. Finally, given the infinite
space of possible DNN models that can be constructed, and the rapid pace of model
development, it is desirable to have an automated method for validating the correctness
of the extracted activations for novel models.

None of the currently existing methods of feature extraction fulfills all the above
desiderata (Table 1). We focus here on models implemented in PyTorch (Paszke et al.,
2017, 2019), one of the most popular libraries for implementing DNNs for both
academic and industrial applications. One approach to feature extraction is to simply
edit a model's code to return the results of any intermediate operation. This approach
can be time-consuming and error-prone, especially when we have to edit the code for
many models. Another option is to use PyTorch’s built-in functionality to attach “forward
hooks” that return the results of PyTorch module data structures. PyTorch modules
provide a convenient way of flexibly organizing model code and ensuring that a training
optimizer can access a model's parameters. The user can additionally attach “forward
hooks”: functions linked to a module that are executed when a tensor enters or leaves
that module. This is a popular approach to PyTorch feature extraction because it
requires no direct modification of a model's code. However, it comes with several
limitations. First, there is no universal naming convention for characterizing the modular
organization of DNNs. A user examining a collection of models must become
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acquainted with the nomenclature of all of them. Second, and more importantly, PyTorch
operations not associated with a module cannot be extracted using this approach.
These include many elementary operations (e.g., tensor addition, cosine) that have no
module equivalent (unless the model designer chooses to encode them as such), and
operations that the model designer has implemented as functions rather than modules.
For example, a ReLU operation can be implemented either as a module object (where
its activations can be extracted using the forward-hooking approach), or simply as a
function call (where its values cannot be extracted in this way). Thus, the ability to
extract activations from a given intermediate DNN operation in PyTorch with the forward
hook approach often depends on computationally irrelevant programming choices made
by the model designer, which can complicate the construction of an analysis pipeline
that examines many models. Put differently, while PyTorch modules are indispensable
units of code organization, they do not directly map onto the elementary computational
“‘units” of DNNs—single operations on tensors—-making them suboptimal for the
purpose of exhaustively characterizing the internal operations of a network.

Table 1. Comparison of different PyTorch feature extraction methods

Ease of Use | Model Coverage Layer Coverage Ways of
illuminating
module structure
TorchLens Easy All models All layers Visualization,
layer metadata
Manually Editing Hard All models All layers None
Model Code
Attaching Forward Medium Effectively all Only module None
Hooks to Models outputs
ThingsVision Easy Pre-specified Only module None
model library outputs
Torchvision Models with static
feature_extraction Medium computational All layers None
graph
Surgeon-PyTorch Easy Models with static All layers None
computational
graph

In addition to these manual approaches for extracting intermediate activations
from DNNs, three open-source packages now exist for facilitating this process.
ThingsVision (Muttenthaler & Hebart, 2021) is a Python package with user-friendly
functionality for loading pre-existing DNNs, extracting their activations either to common
image datasets or to user-defined datasets, and performing various common analyses
on the extracted features, such as representational similarity analysis (Kriegeskorte et
al., 2008). While it can extract activations from a large and convenient library of
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pre-existing models, it does not automatically work for arbitrary new models (e.g.,
user-designed models), and can only extract the outputs of PyTorch modules, not every
operation in the model. Another approach is the feature extraction module provided in
Torchvision (Marcel & Rodriguez, 2010), which works on novel models (not just a
predefined library), and can extract the results of non-module operations, but does not
support models with dynamic control flow, where the computational graph of a network
can vary across forward passes (Looks et al., 2017; Yu et al., 2018). Examples of such
models include recurrent neural networks that execute a varying number of loops until a
given criterion is reached (e.g., Spoerer et al., 2020), reinforcement learning models
where the agent’s behavior can vary stochastically or based on model inputs (Mnih et
al., 2015), and graph convolutional networks where the computational graph can vary
across model inputs (e.g., Kearnes et al., 2016). A third package is Surgeon-PyTorch
(Schneider, 2022). Conveniently, this package not only extracts intermediate activations
from both module and non-module operations, but can also isolate subcomponents of
models such that they can be separately trained. However, this approach also does not
work for models with dynamic control flow.

Here, we introduce a new Python package, TorchlLens, that overcomes the
limitations of these approaches: it works for arbitrary PyTorch models (not just
predefined models or models with a static computational graph) and can extract the
results of all intermediate operations (not just module outputs), requiring just a single
line of code from the user. The ability to extract information about every operation in the
model’s computational graph comes with three substantial further benefits. First, it
enables the model’s computational graph to be automatically visualized, revealing the
structure of the model and where a given layer is located within it. The computational
graph provides a valuable aid for understanding a model’s architecture without manually
inspecting its code. This visual representation of the model can also help with layer
selection, especially for architectures containing complexities such as branching or
recurrence, where indexing a layer by an ordinal position (e.g., conv9) may not clearly
convey where a layer is situated in the network. Second, tracing all intermediate
operations of a model enables producing a full characterization of the model's
computational graph—encompassing the child-parent relationships between layers, the
functions executed by each layer, and so on—such that the user can programmatically
select layers meeting certain criteria (e.g., all pooling layers that follow a ReLU layer),
perform analyses that might draw on graph-theoretic properties of the network (e.g., the
number of convolutional layers intervening between two target layers of interest), and
characterize other useful properties of the network, such as the execution time required
for different kinds of layers. Finally, extracting the results of all intermediate operations
enables an automated approach for verifying the correctness of saved activations
without manual troubleshooting. This verification method re-executes the functions
associated with each layer using the saved activations of the inputs to that layer and
checks that the resulting downstream model outputs match the ground-truth outputs.
Given the large space of possible DNN models, and the fact that feature extraction bugs
can easily yield “silent errors” (for instance, if a tensor of the correct dimensions but the
wrong values is saved), verification ensures that feature activations are being correctly
extracted for novel models that may have complex architectures.
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User interface
Example workflow

Figure 1 depicts a simple “minimal use-case” example of how to use TorchLens.
The user simply passes a model and input into the main function of TorchLens,
get_model_activations, and receives a ModelHistory object that encodes information
both about the entire model and about each individual layer, including the saved
activations for each layer. Layer information is retrieved simply by indexing the
ModelHistory object with any valid layer label. If specified, the same function call also
automatically generates a visualization of the model’s computational graph (Figure 2).

Summary of user-facing functions

TorchLens consists of a small handful of user-facing functions, which take as
input any arbitrary PyTorch model and the input to that model. For ease of use, the main
functionality of Torchlens is provided via the “core” function get_model_activations. This
function extracts the activations from either all layers of a model or a desired

Figure 1: Example workflow for TorchLens. The user simply passes in the model as-is and an example
input, and TorchLens returns a ModelHistory object containing information about the model and its layers,
including saved activations.

subset along with metadata about the model and layers, returns a Python object of a
class, ModelHistory, that the user can easily index to retrieve this information, and
optionally produces a visualization of the model’s computational graph (Figure 2). The
next two functions provide subsets of the functionality of get_ model_activations. The
function get_model_structure extracts the metadata about a model and its layers
without saving any activations. This function is useful in cases where the user wishes to
analyze the computational structure of a model without saving the activations, or where
the goal is to programmatically select which layers to save in a subsequent call to
get_model_activations (e.g., all ReLU layers that follow a convolution layer). Another
function, show_model_graph, visualizes the model graph without saving any activations.
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Finally, the function validate_saved_activations runs the model on a specified input, and
executes a procedure, described below, that validates the accuracy of the saved
activations. All TorchLens functions allow the user to supply a random seed as an
argument to ensure reproducible results for models with stochastic components, such
as dropout layers or random noise.

Layer nomenclature

Since there exists no universal nomenclature for referring to DNN layers, and since
PyTorch models often have a nested modular design where each module is assigned a
name by the model’s designer, TorchLens adopts the convention of using a “default”
layer naming scheme that is common across all models, while also allowing the user to
select the results of intermediate layers based on the module of which they are the
output—nhelpful in cases where the model’'s designer has demarcated meaningful
computational “chunks” in the model using modules, or where the user is already
familiar with the modular structure of a given network.

The default name of a layer follows the format {layer_type} {layer type num}
{layer_total_num}; for example, “relu_3 6" refers to the third ReLU layer in the network,
and the sixth layer overall. While providing the layer’s ordinal position both among
layers of the same type and among all layers in the network is informationally
redundant, providing both of these numbers is helpful in getting a quick sense of where
the layer falls within the network. Given the common convention of referring to a layer
with the ordinal position among layers of the same type (e.g., “conv2” is the second
convolutional layer), we adopt the practice that while the full layer label is always
provided in outputs, the user can also refer to layers with a truncated label that only
specifies the first index (e.g., just “relu_3” instead of “relu_3 6”). In cases where a
model has a branching structure (i.e., where a layer may have multiple output layers),
such that layers do not have a unique ordinal position, numbering is based on the
programmatic execution order of the layers in the code, which guarantees that a given
layer always has a lower positional index than any downstream layers (i.e., they are
topologically sorted). In case a model is recurrent and a layer contains multiple passes,
the specific pass of a layer is indicated with a colon; for instance, conv2d 3 7:2 is the
second pass of the third convolution layer (and seventh layer overall). The logic of
assigning operations to the “same” layer is described in the section Handling of
recurrent networks.

In addition to this default naming convention, which provides a way of referring to
layers that is common across models, layers are also labeled based on the module for
which they are an output. To provide a specific example, the PyTorch implementation of
AlexNet (Krizhevsky et al., 2012) consists of a nested design with two top-level
modules: a “features” module containing the convolutional layers, and a “classifier”
module with the fully-connected layers, each of which itself contains a module for each
of the individual operations in that block. The second convolutional layer of AlexNet is
the fourth submodule of the “features” module, so the “module name” of that layer would
be features.3 (following Python’s zero-indexing convention). Under the default naming
convention of TorchLens, the same layer would be indexed as conv_2 4 or conv_2.
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Layers can be fetched with their “module address” at any level of nesting: for instance,
the output of the third pooling layer in AlexNet is the output of module “features.12”, but
also of the higher-level module “features” (of which “features.12” is the last submodule).

The ModelHistory object: a full characterization of the model’s forward pass

The core user-facing data structure used by TorchLens (returned by
get_model_activations and get model_structure) is the ModelHistory object, which
contains both metadata about the entire model, and information about each individual
layer, including both metadata and the saved activations for that layer if specified by the
user. Broadly, the provided metadata includes information about the overall structure of
the network’s computational graph, the tensor returned by a given layer, the function
executed by each layer (including any trainable model parameters associated with that
function, such as convolution weights), and the parent-child relationships between
layers along with further graph metadata (e.g., the number of layers separating a given
layer from the input or output). This metadata also includes useful performance-relevant
data for a network: for instance, it includes the execution time of each layer, the memory
size of the tensor returned by each layer, and the memory size of any trainable model
parameters associated with a layer, facilitating profiling of the execution time and
memory usage of a model. Supplementary Table 1 provides a complete list of the
metadata provided by TorchLens. Simply printing the ModelHistory object provides an
overall summary of the model, with further metadata available by indexing the attributes
of the object. Data about each layer can be retrieved by indexing ModelHistory, using
any of several valid labels for a layer: the “default name” of a layer, such as conv2d 3 7
or conv2d_3, the “module name” of a layer, such as “features.8”, or the overall ordinal
position of the layer in the network, following the conventions of Python list indexing
(e.g., model_history[2] is the third layer, and model_history[-5] is the fifth-to-last layer. If
only a subset of layers is saved, numerical indexing is performed with respect to the
saved layers only.

Visualization

In addition to returning the ModelHistory data structure with information about the
forward pass, TorchLens can also automatically produce a visualization of the model’s
computational graph (Figure 2). The visualization enables the user to easily understand
the structure of the model and a given layer’s place within that structure, aiding in both
the overall understanding of a model, and in the selection of particular layers from which
to extract activations. TorchLens uses the graphviz library (Ellson et al., 2004) to
programmatically draw the computational graph without requiring the user to manually
position the nodes.

The visualization produced by TorchLens is designed to make the overall
organization of the network and the important properties of individual layers visually
salient. Figure 2 depicts the visual code used by TorchLens. Each node is a particular
layer, and the directed edges (arrows) show parent-child relationships between layers
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(i.e., the layers whose output feeds into subsequent layers). Input layers are shown in
green, output layers are shown in red, and layers whose functions have trainable
parameters are shown in gray. Elliptical nodes are single operations that are not
associated with a module, whereas rectangular nodes are associated with a
“bottom-level” module associated with a single operation; for instance, a ReLU
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Figure 2: TorchLens visualization features. A. Code and visualization for a simple example model.
Graph nodes correspond to tensor operations, edges correspond to parent-child relationships between
operations (i.e., that the output of one operation is the input to another). Input operations are shown in
green and output operations are shown in red. Operations in a module are shown as a box; other
operations are shown as ellipses. Nodes for operations that create a new tensor inside of the model (e.g.,
from torch.rand) are rendered with dashed lines. The visualization also shows the name of the model in
the top left, the number of tensors computed in the model and their total file size, and the number of
trainable parameters in the model along with their total file size. B. The node for each layer contains the
label of the layer, the shape and file size of the tensor returned by that layer, the shape of any trainable
parameter tensors involved in that layer, and the module address for that layer (i.e., how it would be
indexed from the Python model object) if relevant. C. For models containing (possibly nested) modules in
which multiple operations are performed, these modules are rendered as boxes surrounding the nodes for
those operations, along with a label giving both the address of that module within the model, and the
class of the module. D. If an operation is non-commutative and takes multiple inputs (e.g., division), these
inputs are marked with their argument position in the function call (e.g., 0 for the numerator and 1 for the
denominator for the PyTorch division function). E. “Buffer” tensors that are stored along with the model,
but do not contain trainable parameters, are rendered in light gray. F. For models containing dynamic
control flow with if-then branching, the operation returning the final Boolean value in evaluating the “if”
statement is marked in yellow, and the full set of operations involved in evaluating the “if’ statement is
labeled with a boldfaced “IF”.
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operation implemented as a function call would be shown as an ellipse, and a RelLU
operation connected with a module is shown as a rectangle. In addition to these
“‘bottom-level” modules that only execute a single tensor operation, PyTorch contains
“higher-level” modules that encompass multiple operations, which are shown as
(potentially nested) rectangles surrounding the nodes corresponding to layers contained
within those modules (Figure 2C).

The visualization includes metadata both about the overall model, and about
each individual layer. For the overall model, the visualization shows the name of the
model class, the number of tensor operations in the model along with the total memory
size of the resulting output tensors, and the number of trainable parameters in the
model, along with the total memory size of these parameters (Figure 2B). The node
corresponding to each layer in the model is marked with 1) the layer’s “default” name
(e.g., conv2d 2 4 for the second convolution layer, and fourth layer overall), 2) the
dimensionality and memory size of the output tensor (useful for choosing which layers
for which to save activations), 3) the shape of any associated parameter tensors for that
layer (if applicable), and 4) the “module address” of that layer if it associated with a
module. The box outlines corresponding to higher-level modules are also marked with
this address.

Finally, TorchLens indicates several other kinds of information to remove
ambiguity about the structure of models that include less common “special case”
components. Some PyTorch models contain internally-generated tensors that are not
computed from the model’s input, but contribute to the model's computations (e.g., if
randomly generated noise is injected at some stage of processing via a function like
torch.rand). These operations are indicated with dashed lines, intended to make it easy
to visually distinguish them from layers whose inputs originate from model inputs, such
that the user can visually trace the path from input to output (Figure 2A). Some PyTorch
models contain hard-coded “buffer” tensors stored along with a model that are not
trainable parameters; these are rendered in greyscale (Figure 2E). In cases where a
layer performs a non-commutative operation (e.g., division) on the outputs of multiple
parent layers (Figure 2D), the function argument number of each edge is explicitly
marked (e.g., “arg 0” for the incoming layer whose output tensor serves as the
numerator, and “arg 1” for the denominator layer) for positional arguments, and the
name of the argument is marked for keyword arguments. In cases where a network
contains conditional control flow, where an if-then statement is evaluated on a tensor to
yield a single Boolean value (e.g., to perform different computations based on the value
of the model’s input), TorchLens marks the node yielding this single Boolean value in
yellow, infers the beginning of the set of computations involved in computing this
Boolean value, and marks the beginning of the branch of the computational graph
involved in computing this Boolean value with a bold “IF” label (Figure 2F).

We include a publicly available collection of visualizations for over 800 commonly
used image, video, audio, and language models, demonstrating the generality of this
automated visualization approach.
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Handling of recurrent operations

Since many DNN models contain recurrent (feedback) processing, TorchLens has
built-in procedures that automatically identify and demarcate recurrent layers, using the
convention of marking passes of a layer with a colon as noted above (e.g.,
conv2d_2 4:3 for the third pass through this layer).

An important conceptual question to address is what counts as a “recurrent
layer”. At a ground-truth level, a DNN is simply a series of tensor operations, some of
which have trainable parameters associated with them. A complete description can be
given of a network in this way without invoking the notions of “feedforward” and
‘recurrent” processing. Nonetheless, distinguishing feedforward and recurrent
operations can be helpful in clarifying the computational structure of a network. We
stipulate that in a “feedforward” network, each layer executes one operation, but in
‘recurrent” networks a layer may execute its associated operation multiple times during
a forward pass. Thus, identifying “recurrent” layers corresponds to finding sets of
operations in the computational graph that can be usefully regarded as belonging to “the
same layer”. The most obviously useful operations to treat in this way are ones in which
functions with the same trainable parameters are executed multiple times during a
forward pass. For example, if a convolution operation with a given set of weights is
executed three times over the course of a network, these operations should be
regarded as being associated with the “same” layer. However, other operations may
also be usefully regarded as “the same”. For instance, if each of the three
aforementioned convolutional layers is followed by an identical ReLU layer and a
pooling layer, it is also sensible to group together these three ReLU operations as
belonging to “the same” layer, and likewise for the three pooling layers. Finally, if a
repeated and contiguous series of operations with no stored parameters is executed
(e.g., XYZXYZXYZ, where X, Y, and Z are different functions), it is also useful to regard
this as a “loop” in the graph, and to mark corresponding operations in the loop as the
same layer.

TorchLens thus adopts the following conventions (illustrated in Figure 3) for
marking layers as “recurrent”:

1. operations with associated trainable parameters that are executed multiple
times in the forward pass are always marked as passes of the same layer,
2. all repeated operations adjacent to these repeated-parameter layers are
marked as passes of the same layer, irrespective of whether the “chunk”
of layers associated with a pass of a parameter layer ends up being
adjacent to a chunk associated with another pass of that parameter layer,
and
3. if there are repeated, adjacent sequences of operations without trainable
parameters, then corresponding layers in these sequences are marked as
the same, but not if these sequences are separate (e.g., XYZXYZXYZ is
recurrent, but XYZAXYZBXYZ is not, since the XYZ operations are not
adjacent).
Note that these are simply conventions to aid in quickly understanding a model, since
whether a layer is “recurrent” is to some degree a matter of definition.
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Figure 3: Definition and visualization of recurrent layers. A. Operations are considered as passes of
the same layer if the same parameters are repeated (e.g., here the same fully-connected operation
parameters are applied twice), or if there are operations that are both identical to each other, and
contiguous to repeated-parameter layers (e.g., here the same cosine operation is applied prior to both
passes of the fully-connected layer, and the same addition operation is applied after both passes). For the
unrolled visualization, each pass of a layer is rendered with a separate node, with the pass number
marked with a colon (e.g., linear_1_3:2 for the second pass of layer linear_1_3). For the rolled
visualization, all passes of a layer are marked with the same node, the number of passes for that layer is
given in parentheses (e.g., “(x2)”), and in cases where a layer has different input and output layers for
different passes, these passes are labeled next to the incoming or outgoing arrows to the node for that
layer. For instance, the layer cos_1_2 takes input from input_1_1 for its first pass, but sin_1_5 in its
second pass. B. Operations are also considered as passes of the same layer if they do not contain
trainable parameters, but repeat as part of an identical sequence. For instance, here the same sequence
of cosine, RelLU, and multiplication operations is repeated twice in a row, so the two repetitions of each
operation are assigned to the same layer. However, the same series of three operations occurring later
(after the intervening tangent operation) are not grouped together with the earlier corresponding layers,

since they are not contiguous with other occurrences of this sequence.
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For visualizing recurrent models (Figure 3), TorchLens also includes functionality
for showing the model in both unrolled format, where separate operations of a recurrent
layer are shown as different nodes, and in rolled format, where separate operations of a
recurrent layer are shown as just one node (Figure 3). In the unrolled format, each node
is marked with the pass of the layer associated with that node: for instance,
linear_1_1:2 is the second pass of the first linear layer. In the rolled-up format, recurrent
layers are marked with the number of passes they perform next to the name of the
layer. For instance, “linear_1_1 (x3)” means the layer has three passes. In some cases,
a layer’s inputs and output layers can vary across passes. For example, perhaps in the
first two passes a layer sends feedback to the beginning of a loop of which it is a part,
but in the third pass it sends activation out of the loop. TorchLens explicitly marks such
cases when they occur by indicating the pass number on incoming and outgoing edges
(e.g., “In 17 next to an incoming edge means that input comes from the associated
parent layer during the first pass, and “Out 2-3” next to an outgoing edge means that
output is sent to that child layer in the second and third passes).

Validation

The approach used by TorchLens (described in the “Implementation” section below) can
in principle be used for any PyTorch model. The space of possible DNN models is
infinite because the number of ways that tensor operations can be assembled into a
computational graph is unlimited. It is important to have confidence that the activations
saved from these models are correct, even for novel models with complex or exotic
architectures that we may not have anticipated while developing TorchLens. This is
especially important because of the possibility of “silent errors”, where a given DNN
operation (e.g., a ReLU operation) may change the values of a tensor without changing
its shape, such that an error in saving the activations would be harder for the user to
detect. Since manually checking the correctness of saved activations for a new model
can be time-consuming and error-prone, TorchLens contains a built-in procedure for
algorithmically validating the accuracy of saved activations. This is achieved by
re-executing the function associated with each layer with the saved tensor values of the
layer’s parents, and verifying that the resulting tensor matches the saved tensor for the
layer. This procedure is described in more detail in the “Implementation” section. The
user can execute this procedure using the validate saved activations function on a
given model and input, which will return True if the saved activations for that input pass
the validation test, and False if they do not.

So far, this procedure has been internally run on a large collection of DNNs,
including 1) all image and video models in the TorchVision model zoo (Marcel &
Rodriguez, 2010), including various visual transformer models, 2) over 700 models in
the TIMM model zoo, 3) the CORNet class of image models inspired by the primate
ventral visual pathway (Kubilius et al., 2018), 4) all models in the TorchAudio model zoo,
and 5) the language models BERT (Devlin et al., 2019) and GPT2 (Radford et al.,
2019). Based on these extensive tests, we believe TorchLens works robustly. In case
any architectural “edge cases” are not currently accounted for by TorchLens, this built-in
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validation procedure will detect such cases and allow them to be corrected in
subsequent updates to TorchLens.

Example full workflow

As a way to summarize the elements of the user interface described above, we briefly
describe an imagined use-case for TorchLens: a user has either designed their own
PyTorch model or downloaded a model, and wishes to extract the activations from a
selected set of layers.

(1) Inspect the model graph. First, to get a sense of how large the model is and which
layers may be interesting to examine, they call the show_model graph function to
visualize the computational graph of a model without saving any activations. They note
that the network is very large, such that saving the activations of all layers may use up a
prohibitive amount of RAM, and selecting only a subset of layers to save may be
desirable. They note that the model is organized into several high-level modules, each
of which contains multiple recurrent feedback loops, and further note that the model
contains many cases where a pooling layer follows a ReLU layer.

(2) Optionally use model structure to find representations of interest. They decide
they wish to extract the outputs of all high-level modules in the model, the end of each
pass of the recurrent loops within the modules, and the results of all pooling layers that
follow a RelLU layer. To identify these RelLU-pooling layer pairs, they call
get_model_structure to extract the metadata of the model, loop through each layer’s
metadata, and find all pooling layers that have a ReLU layer as a parent.

(3) Extract activations for representations of interest. Finally, they call
get_model_activations, specifying the desired layers whose activations they wish to
save, and verify that the activations were accurately saved for this new model by calling
validate_saved_activations for the model and input.

Implementation
Logging the forward pass

We now describe the internal implementation of TorchLens. As laid out in the
introduction, we sought an approach that could automatically extract the results of any
tensor operation from arbitrary PyTorch DNN models without manually editing model
code. As noted earlier, currently existing approaches face various limitations: for
example, they can extract the results of module operations but not the results of
operations that are not linked to modules, or they only work in the case of models with a
static computational graph, but not for models with a dynamic computational graph that
can vary across forward passes (e.g., via if-then branching).

14


https://doi.org/10.1101/2023.03.16.532916
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.16.532916; this version posted March 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

To overcome these limitations, we devised a dynamic tracing approach that relies
upon Python’s built-in decorator functionality in order to transiently modify all built-in
PyTorch functions that return a tensor. These modified functions log information related
to each tensor operation. A decorator is a Python function that wraps another function
with additional code that is executed whenever that function is called. To extract the
results of the tensor operations in a model, we constructed a decorator that inspects the
inputs and outputs of a PyTorch function call, and logs information about the function
and its inputs and outputs to a Python object of a class called ModelHistory that we
implemented for this purpose. Additionally, any output tensors are tagged with a
“barcode” (simply an identifier attribute assigned to the tensor data structure) such that
when any subsequent functions are called on that tensor, the parent layers feeding into
that function can be looked up from ModelHistory, thus establishing the parent-child
relationships in the computational graph. To log the results of the forward pass of a
model, TorchLens applies this decorator to all PyTorch functions that return a tensor as
output, and a forward pass is then run on the model. The model’'s code remains
unchanged, but the functions called within that code now are decorated with the
additional logging functionality, and thus log their results to ModelHistory. Additionally, in
order to log the modules in which operations occur, TorchLens also attaches a forward
hook to each module that tracks whenever a tensor enters or leaves the module and
logs this to ModelHistory. When the forward pass is completed, the logging decorators
are removed from the PyTorch functions, returning them to their original definitions.

The advantage of this approach is that PyTorch contains a limited (though still
substantial) set of elementary operations from which nearly all higher-level functions are
constructed; thus, so long as TorchLens properly handles the logic of logging the results
for each elementary operation, it should in principle be able to work for all models built
from the elementary operations, instead of being limited to a predefined library of
models. We note that this approach sometimes requires dealing with various “special
case” functions. For example, some functions change their input tensors in place and
either return nothing or return the same tensor object (without creating a new tensor),
and some return a list or tuple of tensors rather than a single tensor. Each of these
cases must be specifically dealt with, and it is possible that new elementary operations
with unique programming logic will be added to PyTorch with further updates. However,
PyTorch’s elementary operations will always constitute a finite set, and it should be
straightforward to address them as they arise with further updates to TorchLens.
Furthermore, since TorchLens also contains a built-in validation procedure
(implementation described below), it can detect these special cases when they arise.
Thus, the approach used by TorchLens should be both broadly generalizable to any
PyTorch model, and easily adapted to any potential further additions to PyTorch’s set of
elementary operations.

Post-Processing the Model’s Computational Graph
Following the forward pass, several post-processing operations are applied to the

stored computational graph. First, “orphan operations” that neither arise from the
model’s input nor contribute to the model’s output are trimmed from the graph. Second,
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the number of layers separating each layer from the model’s input and output layers is
computed. Third, TorchLens attempts to infer cases where the model contains
conditional branching via if-then statements. To do this, it identifies and marks
operations whose output is a tensor consisting of a single Boolean value that is not
subsequently fed into any further operations, which is a plausible candidate for an
operation evaluated in an “if’ block. While this is not a bulletproof heuristic, there are
few cases in which a coder would compute a childless Boolean tensor in this way that is
not part of an “if” block. Additionally, TorchLens traces backwards from the layer whose
output is this Boolean tensor until it finds a layer that is an ancestor of the model’s
output, and marks this transition point as the beginning of an “if’ branch. For example, if
an “if” statement consists of “if torch.mean(x-5) > 3”, the “greater than” operation would
be the childless node that returns a single Boolean value, and the subtraction operation
would be the first operation that branches off from the input and leads into the series of
calculations involved in evaluating this if-statement (as in Figure 2F). Tagging
if-statements in this way enables them to be marked on the visualization of the
computational graph produced by TorchLens, clarifying the control flow of the forward
pass.

Fourth, TorchLens corrects the module containment information (i.e., which of the
possibly-nested modules the operation occurs in) for operations performed on internally
generated tensors—for instance, via functions such as torch.ones, or torch.rand. Since
these tensors can be generated inside a module, the module in which they are
generated cannot be inferred on the fly by tracking the modules entered by any
ancestor tensors. To correct this, TorchLens recursively traces the children of these
layers until it finds a layer that descends from the model input—which will have accurate
module containment information—and propagates this information backwards to the
internally generated tensors.

Fifth, TorchLens identifies and marks recurrent layers in the network. While the
question of which layers should count as “recurrent” is a matter of definition, we
stipulate that an operation is associated with a recurrent layer if it meets any of these
conditions:

1. It contains trainable parameters and is executed more than once during
the forward pass.

2. ltis a parent or child of a pass of a layer meeting condition #1, and there
is another operation of the same type adjacent to another pass of that
layer (e.g., a ReLU operation following multiple passes of a recurrent
convolutional layer). This condition is applied recursively (e.g., if the ReLU
operation is in turn followed by a pooling layer in multiple passes), growing
out a block of repeated layers surrounding the repeated-parameter layers,
until no further layers can be added in this manner.

3. ltis part of a sequence of operations that adjacently repeats, signifying a
computational “loop”; corresponding operations in each pass of the loop
are marked as passes through the same layer.

These conditions are illustrated in Figure 3.

To identify these repeated layers, we apply the following algorithm. First,
candidate sets of “repeated layers” are identified in an initial first pass: these include
layers in which the same trainable parameters are applied multiple times during the
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forward pass, and layers with no trainable parameters for which the same function with
the same non-tensor arguments is applied multiple times during the forward pass (e.g.,
a RelLU operation, or scalar multiplication by a certain constant value). Second, the
algorithm checks whether these candidate layers meet any of the above three criteria to
count as “repeated”. To do this, the algorithm applies a procedure where it begins from
any parentless layers (e.g., input layers or layers corresponding to an internally
generated tensor) and steps forward one layer at a time, successively grouping together
repeated sets of operations into blocks. For instance, for a given operation X (e.g.,
scalar multiplication by 10) that recurs multiple times, the algorithm identifies cases
where that operation is also followed by recurring operations Y and Z (e.g., a RelLU
operation and a pooling operation), identifying XYZ “blocks”. Third, after identifying
these repeated blocks, it checks whether these blocks either contain a layer with
trainable parameters, or repeat back to back (e.g., XYZXYZXYZ); if so, the
corresponding operations in each block are marked as different passes of the “same”
layer, completing the process.

Finally, all layer metadata is processed into its user-facing, human-readable form,
and returned to the user.

Validating the accuracy of saved activations
As noted above, it remains possible that unanticipated “edge case” scenarios may
emerge for graphs with unexpected architectures, or that future updates to PyTorch may
introduce elementary tensor functions that raise unique programming peculiarities.
Thus, as a way of detecting such cases when they occur, and of ensuring the accuracy
of any saved activations, TorchLens contains a built-in procedure for validating the
accuracy of saved activations. This procedure works by executing the function (e.g.,
convolution) associated with a target layer on the saved values of the input layer(s) for
that target layer, and verifying that the resulting output of this function call matches the
saved tensor of that target layer. As a further check, it substitutes in random values
instead of the saved values for the parent layers, and verifies that executing the function
on these nonsense activations returns a tensor that differs from the saved tensor of the
target layer (with additional logic that checks for “special case” like multiplying a tensor
by zero, such that changing the input would not change the output). If the values of the
target layer are saved correctly, then this procedure establishes that the parent layers of
this target layer were also correctly saved. Since the final ground-truth outputs of the
model are known, this procedure begins by using the model outputs as the “target”
layer, and checking the parent layers to this target layer. If these parent layers pass the
test, then they each become the new “target layer”, and the same procedure is applied
to the parents of these layers. The procedure is then recursively applied until only layers
with no parents (i.e., input layers and layers producing internally generated tensors) are
left.

This approach has the benefit of requiring no manual troubleshooting, and is fully
automatic. One drawback is that it logically requires saving the values of all intermediate
tensors, which can impose high memory demands for large models.
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Compatibility

TorchLens is compatible with both CPU and GPU processing, and has been validated
for PyTorch versions 1.9.0 and higher. Currently, it has not been tested in the case of
parallel computing, although further updates to TorchLens are intended to address this.

Discussion

TorchLens provides a method for not only automatically and exhaustively extracting the
results of intermediate activations from arbitrary PyTorch DNN models, but also
understanding the structure of these models via visualizations and metadata. We
envision several possible use cases for TorchLens.

First, it can be used to streamline analysis pipelines for extracting and analyzing
the internal representations encoded by DNNs for the purposes of better understanding
their underlying computational principles and comparing these intermediate processing
stages to those of the brain. Uniquely among existing approaches for this goal,
TorchLens works automatically for arbitrary PyTorch models, exhaustively extracts the
results of any desired operations without limitation, and provides metadata and
visualizations to help characterize how a given layer fits into the broader architecture of
the network. Since the ModelHistory object returned by TorchLens constitutes a full and
easily queried representation of the model’s computational graph, it can also facilitate
programmatic graph-theoretic analyses of a network, such as assessing how the
similarity of the representations in two layers varies based on the nature of the
intervening layers.

Second, TorchLens can be used as a prototyping, profiling, and visualization tool
during model development. Since its visualization features provide an intuitive “picture
of the code” for a model, it can provide a helpful visual aid when designing large or
complicated models. Furthermore, the model metadata it provides includes information
about the execution time of the functions in the model, and about the memory space
used by the parameters and output tensors of all operations in the model, revealing
runtime and storage bottlenecks. The automatic visualization functionality may also be
useful when preparing presentations or publications describing a model.

Third, we envision TorchLens being pedagogically useful. For individuals who are
first becoming acquainted with implementing deep learning models, the visualizations
and information it provides can help in translating between model code and underlying
concepts. Even for more seasoned practitioners, the ability to automatically generate a
visual representation of a model can accelerate the process of understanding a new
and complex model, which might otherwise require cumbersome inspection of a model’'s
code.

Fourth, TorchLens can be readily imported and used in other deep learning
analysis pipelines. We note that while TorchLens can readily extract intermediate
activations given a model and input, it does not have functionality for loading models or
inputs, or for performing further analyses on the extracted activations. We make this
design choice because we intend for TorchLens to be applicable in any of the many
domains in which DNNs are used, making it infeasible to implement general
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functionality for loading models and analyzing activations. We note, however, that
field-specific packages already exist for these purposes (e.g., Muttenthaler & Hebart,
2021; Nili et al., 2014).

While we intend for the current functionality of TorchLens to be largely
self-contained, its ability to automatically extract a complete representation of the
computational graph of a model does raise the potential for further applications built
upon the same groundwork. One intriguing possibility is the ability to easily change or
intervene upon an existing DNN model without directly changing the code, making it
easier to apply causal inference methods (Pearl, 2009) to DNNs to evaluate causal
claims about the effect of interventions, or to conduct counterfactual simulations. Since
TorchLens stores the actual functions used in the forward pass of a model, the model
can also be “re-run” from any intermediate stage, potentially with targeted changes
introduced. For instance, if a user wishes to test how using a different nonlinearity
function in a model changes a model’s internal representations, keeping all else the
same, it would be simple to alter these nodes in the computational graph to use the new
nonlinearity. Another example would be to “lesion” parts of a model by zeroing out
particular parameters or values of a layer’s output tensor to examine the causal
contribution of particular DNN units to a model’s behavior.

In summary, we hope that TorchLens will serve the role of removing arbitrary
limitations to extracting and characterizing the results of internal DNN operations,
streamlining both the scientific investigation and engineering of DNNs.

Code and Data Availability: The open-source code for TorchLens is available on
GitHub here. A gallery of visualizations for over 800 pretrained DNNs is available here.
A Colab tutorial for TorchLens is available here.
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Supplementary Information

Supplementary Table 1: Model and layer metadata provided by TorchLens. Entries in
the left column are attributes of the ModelHistory object returned by TorchLens; entries
in the right are attributes of the log entry for each individual operation that can be

fetched from ModelHistory.

Model Metadata

Operation Metadata

model_name: name of model class

random_seed_used: random seed used
during forward pass

model_is_recurrent. whether the model
contains recurrent layers

model_max_recurrent_loops: the
maximum number of recurrent passes for
any layer in the model

model_is_branching: whether the model
contains branching (i.e., a layer has more
than one child layer)

model_has_conditional _branching:
whether the model contains if-then
branching

layer _list: list of layer names
input_layers: list of model input layers
output_layers: list of model output layers
buffer_layers: list of model buffer layers
internally _initialized_layers: list of layers
for which a tensor is generated during the
forward pass (e.g., with torch.rand)
internally _terminated_bool_layers: list of
layers for which the output is a single

boolean value (used to conditional
branching in forward pass)

layer_label: the label for the layer (e.g.,
conv2d_3 5)

layer label_w_pass: the label for the
layer along with the pass number (e.g.,
conv2d_3_5:4 for the 4th pass)

operation_num: how many tensor
operations have been performed up to
that layer (e.g., 6 for the sixth operation)

layer _type: The type of operation
performed (e.g., conv2d)

layer_type num: how many layers of that
type have appeared in the model up to
that layer (e.g., 2 if the layer is the second
convolutional layer)

layer_total_num: how many total layers
have appeared in the model up to that
layer (e.g., 4 for the fourth layer overall)

pass_num: the pass number of the layer
for that operation (e.g., 3 if the operation
is the third pass of a layer)

layer_passes_total: total number of
passes for the layer

lookup_keys: list of valid keys for indexing
the operation (e.g., the layer name, the
module address, the layer’s ordinal
position in the model, etc.)

tensor_contents: the saved tensor for that
operation
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layers_computed_with _params: list of
layers with trainable parameters

num_tensors_total: number of tensors
involved in the forward pass

tensor_fsize_total: total filesize of tensors
involved in the forward pass

tensor fsize saved. total filesize of
tensors saved by the user during the
forward pass

num_tensors_saved:. number of tensors
saved by the user during the forward pass

total_param_tensors: number of tensors
consisting of trainable parameters

total_param_layers: number of layers with
trainable parameters (can differ from
total_param_tensors since a layer can
have multiple parameter tensors; e.g., a
convolutional layer has both kernel
weights and bias terms)

total_params: number of trainable
parameters in the model

total_params_fsize: total filesize of
trainable parameters in the model

module_addresses: list of modules in the
model

module_types: the class of each module
in the model

module_num_passes: the number of
times each module is called

module_pass_children: for each module,
the list of submodules it contains

top_level_module passes: the list of
passes through any module that are not

tensor_shape: dimensions of the tensor
returned by this operation

tensor_dtype: datatype of the tensor
returned by this operation

tensor_fsize: filesize of the tensor
returned by this operation

creation_args: the positional arguments to
the function applied for this operation

creation_kwargs: the keyword arguments
to the function applied for this operation

func_applied: pointer to the function
applied for this operation

func_applied_name: the name of the
function applied for this operation

func_time_elapsed: the amount of time
elapsed during the function call for this
operation

func_rng_states: state of all random
number generators during the function
call (i.e., so that stochastic functions can
be re-run and yield the same outputs)

func_position_args _non_tensor:
non-tensor positional arguments to the
function applied for this operation

func_keyword_args _non_tensor:
non-tensor keyword arguments to the
function applied for this operation

function_is_inplace: whether the function
modifies its input tensor in-place (i.e., as
opposed to creating a new tensor)

gradfunc_name: name of
function for this operation

the grad

is_part_of iterable output. whether the
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contained in another module

pass_start_time: timestamp when the
forward pass started

pass_end_time: timestamp when the
forward pass ended

elapsed_time_total: total elapsed time
during the forward pass

elapsed_time_function _calls: total
elapsed time for the tensor operations in
the model (excluding time that TorchLens
spent performing logging and
post-processing operations)

elapsed_time_torchlens_logging: total
time spent by TorchLens with logging and
post-processing operations

operation returned an iterable (e.g., list or
tuple) of tensors instead of a single tensor

iterable output_index: if the operation
returned an iterable output, the index of
this output for this operation (e.g., 2 for
the third entry, based on 0-based
indexing)

computed_with_params: whether the
operation involved trainable parameters

num_param_tensors: number of trainable
parameter tensors for the operation (e.g.,
2 for a convolutional layer with separate
weight and bias parameters)

parent_param_shapes: shapes of any
parameter tensors involved in the
operation

num_params_total: total number of
trainable parameters for the operation

parent_params_fsize: total filesize of
parameters involved in this operation

same_layer operations: list of operations
corresponding to the same layer as this
one (e.g., if the operation is

conv2d_3 5:2, and the layer conv2d_3 5
has three passes, the other operations
will be conv2d_3 5:1, and conv2d_3 5:3)

parent_layers: layers whose outputs are
inputs to this operation

orig_ancestors: ancestors of this
operation that have no inputs (e.g., input
layers, layers for internally generated
tensors)

child_layers: layers that take this layer’s
outputs as inputs

sibling_layers: layers sharing a parent
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layer with this operation

spouse_layers: layers sharing a child
layer with this operation

is_input_layer. whether the operation is
part of an input layer

has_input_ancestor. whether the
operation has an input layer ancestor
(i.e., whether it is computed from the
inputs, as opposed to being computed
solely from internally generated tensors)

min_distance _from_input. minimum
number of operations separating the
operation from an input

max_distance _from_input. maximum
number of operations separating the
operation from an input

is_output_layer. whether the operation
returns the output of the model

is_output_ancestor. whether the
operation is the ancestor of an output
layer (i.e., as opposed to producing an
internally terminated tensor)

output_descendents: output layers
descended from this operation

min_distance_from_output: minimum
number of operations separating this
layer from the output

max_distance from_output. maximum
number of operations separating this
layer from the output

is_buffer_layer. whether the operation
corresponds to a saved buffer tensor

buffer_address: if a buffer layer, the
address of the layer within the model data
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structure

initialized_inside_model: whether the
operation initializes a new tensor inside
the model with no parent tensors (i.e.,
using torch.ones or torch.rand)

internally _initialized_parents: any parent
layers that are internally initialized

internally _initiailized _ancestors:
ancestors of the model that are internally
initialized

terminated_inside_model. whether the
operation has no children and terminates
inside the model

is_terminal_bool_layer. whether the
operation both has no children and
returns a single boolean value (used by
TorchLens to infer conditional branching)

in_cond_branch: whether the operation is
involved in evaluating a conditional
(if-then) operation

is_computed_inside _submodule: whether
the operation is performed inside a
submodule of the model

containing_module_origin: the module in
which the operation was performed, if any

containing_module_origin_nested: the
nested set of modules in which the
operation was performed

modules_entered: modules entered by
the output tensor for this operation

is_submodule output. whether the output
of the operation exits a submodule

modules_exited: modules exited by the
output tensor for the operation
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is_bottom level submodule output.
whether the operation belongs to a
module containing a single tensor
operation (e.g., a module containing a
single convolution operation)
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