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A central question for neuroscience is how to characterize brain representations
of perceptual and cognitive content. An ideal characterization should distinguish
different functional regions with robustness to noise and idiosyncrasies of individual
brains that do not correspond to computational differences. Previous studies have
characterized brain representations by their representational geometry, which is defined
by the representational dissimilarity matrix (RDM), a summary statistic that abstracts
from the roles of individual neurons (or responses channels) and characterizes the
discriminability of stimuli. Here, we explore a further step of abstraction: from
the geometry to the topology of brain representations. We propose topological
representational similarity analysis, an extension of representational similarity analysis
that uses a family of geotopological summary statistics that generalizes the RDM to
characterize the topology while de-emphasizing the geometry. We evaluate this family
of statistics in terms of the sensitivity and specificity for model selection using both
simulations and functional MRI (fMRI) data. In the simulations, the ground truth
is a data-generating layer representation in a neural network model and the models
are the same and other layers in different model instances (trained from different
random seeds). In fMRI, the ground truth is a visual area and the models are the same
and other areas measured in different subjects. Results show that topology-sensitive
characterizations of population codes are robust to noise and interindividual variability
and maintain excellent sensitivity to the unique representational signatures of different
neural network layers and brain regions.

cognitive neuroscience | computational neuroscience | representational similarity analysis

Geometrical and topological analyses can be applied profitably to the structure and
connectivity of brains, on the one hand, and to neural population code representations
on the other. Let us first consider the realm of brain structure and connectivity in
computational neuroscience and cognitive neuroscience. Geometrical characterizations
have been used to study the physical structure of brains [e.g., the geometry of the
cortical surface (1–4)] and anatomical connectivity (5–7). Topological and graph-based
characterizations have been extensively used in network neuroscience (8–14) to investigate
the anatomical connections and functional correlations between brain regions and how
structural and functional network topology is related to cognition. This paper is not about
either the physical structure or the connectivity of the brain, but about the topology and
geometry of neural representations.

In the realm of the neural representations, geometrical characterizations have been
used to study the relationships between neural population activity patterns: the
representational geometry (15–22) (Fig. 1, Left and Middle). The representational
geometry provides a useful intermediate level of description capturing the information
represented in a neuronal population code, while abstracting from the roles of individual
measured responses (reflecting neurons or voxels) (23). Considering the representational
dissimilarities, rather than the representational patterns, enables direct comparisons of
population-code representations between different individuals and species, as well as
between brains and computational models. The analysis of representational geometries,
known as representational similarity analysis [RSA, (16)], has been successfully applied
to understand diverse functions (17), including perception in the visual (15), auditory
(24) and other modalities (25) and higher cognitive functions such as abstraction
(20, 22), decision-making (26), working memory, social cognition (27–30), and planning
(31). Representational geometries can be visualized by arranging stimuli in two or
three dimensions, such that their distances approximately reflect the corresponding
distances in the high-dimensional neural response space. Representational geometries,
captured by the matrix of pairwise distances (the representational dissimilarity matrix,
RDM), can also be used as a basis for model comparison (16, 32, 33), an approach
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Fig. 1. Comparing representations between brains and models. To understand the degree to which a computational model can account for the cognitive
process of a certain brain region, the same set of stimuli is presented to both the model and the biological system. The response patterns across measured
response channels (e.g., neurons or voxels) are then characterized by a summary statistic, the representational dissimilarity matrix (RDM, center), which defines
the metric configuration of the stimuli in the neural population response space. However, the metric configuration can be sensitive to measurement noise
and idiosyncrasies of individual brains that do not reflect computational function. An alternative summary statistic that captures the topology would be the
adjacency matrix (Right), which defines the unweighted graph of neighborhood relationships in the population response space. This summary statistic promises
to be more robust to noise and idiosyncrasies, but may discard too much information. Considering the geometry (RDM) and topology (adjacency matrix) as
extremes of a continuum suggests that it may be possible to get the best of both (Fig. 2).

that has enabled researchers to adjudicate among competing
models of brain representations (34–37).

When we investigate the representational geometry by consid-
ering distances among neural activity patterns, we abstract from
the roles of individual neurons. The representational topology
provides a further step of abstraction. We may care less about
the precise distances among the points in the high-dimensional
response space that define the geometry than about the way
the points hang together in what is sometimes called the neural
manifold (18, 22, 38). We may hypothesize, for example, that
the overall geometry of the representation in a given cortical
area or layer of a neural network model may vary across
individual people or instances of a neural network model trained
from different random seeds (39). If the corresponding cortical
areas in two people or the corresponding layers in two model
instances served the same computational purpose, however, we
may expect that stimuli that are neighbors in one individual’s
(or model instance’s) representation remain neighbors in the
other individual’s (or instance’s) representation. A graph of
representational neighborhood relationships can be obtained by
thresholding the distance matrix (Fig. 1,Right). The thresholding
operation is well motivated when we care only about whether
two points are in the same neighborhood or not. If they are in
the same neighborhood, we consider them related and do not
care whether they are close or very close. If they are not in the
same neighborhood, we consider them unrelated and do not
care whether they are very far apart or merely far enough not to
count as neighbors. The neighborhood graph characterizes the
representational topology.

An important question is to what extent the further step of ab-
straction involved in going from the distance matrix (geometry) to
the neighbor graph (topology) is desirable or undesirable. It could
be desirable for providing a more robust reduced signature of a re-
gion’s computational function. However, it could be undesirable
if it removes geometrical information important for discerning

regions that implement distinct computational functions. Here,
we address this question empirically, using human functional
MRI data and simulations based on neural network models.

Topological data analysis techniques (40) such as the persistent
homology (41) and the Mapper algorithm (42) are popular in
many fields of biology (43–48) and have also been used to directly
analyze the representational space of the population activity
(49). For instance, a study has discovered that the structure of
spontaneous and evoked activity patterns in V1 can be mapped
onto a manifold that has the topology of a sphere, whose two
dimensions may reflect orientation and spatial frequency (50),
with the population response selective to the extremes of spatial
frequency mapped toward the two poles of the sphere. Similarly,
a recent study applied topological analysis techniques to study the
population activity of grid cells, which are thought to be involved
in spatial navigation and orientation (51). This study found that
the population activity of grid cells has a toroidal topology,
meaning that the manifold wraps around like a donut, whose
two surface dimensions correspond to the 2d space navigated,
implementing a cyclic representation. These examples illustrate
the power of topological data analysis techniques to reveal
the structure of the neighborhood graph of neural population
representations.

These inspiring studies notwithstanding, topological charac-
terizations are more widely used in network neuroscience and
only beginning to impact investigations of the relationships
among neural population activity patterns. Here, we build on the
early topological analyses of neural population activity patterns
(38, 47, 50, 51) and introduce a family of summary statistics
that can characterize the geometry as well as the topology of
neural activity patterns. These geotopological summary statistics
enable researchers to calibrate the geometric and topological
sensitivity of the analysis, so as to define a good signature of the
computational role of each brain region. The representational
signatures can then be used not only for visualization of the
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representational geometry and topology, but also as a basis for
formal inferential model comparison in the framework of RSA
(33), where our geotopological summary statistics can replace the
RDM, which characterizes the geometry.

Consider the example of visual perception (Fig. 1). We begin
by measuring the brain-activity patterns elicited by each of a set of
stimuli in a brain region or computational model. By estimating
the distances among the stimulus representations (with full metric
information), we can gain insights into distinctions the brain
region or model layer emphasizes. Metric distance estimates
promise detailed geometrical information, but are sensitive to
noise and individual idiosyncrasies. Thresholding the distances
provides a graph with binary edges, which captures how the neural
manifold hangs together and also promises to be more resilient
to nuisance variation. The methods we introduce here share a
focus on neighborhood relationships with popular visualization
techniques like Isomap (52), locally linear embedding (53), t-
distributed stochastic neighbor embedding (54), and Uniform
Manifold Approximation and Projection (55). However, while
these techniques aim to visualize a single representation, our
aims are to characterize multiple representations in models and
brains, quantify their similarity, and statistically compare models
in terms of their ability to account for the topology and geometry
of brain representations. To combine the benefits of detailed
metric information and a binary edge description, we seek to
define a representational graph that captures aspects of both the
representational geometry and topology using weighted edges.

To integrate geometric (distance-based) and topological
(graph-based) characteristics, we define the edge weights of the
graph by a nonlinear monotonic transformation of the distances
that 1) emphasizes the distinction between small and large dis-
tances, 2) compresses very small distances, thus disregarding the
distinctions among them, 3) represents a continuum of interme-
diate distances, and 4) compresses very large distances. An exam-
ple of the effectiveness of this transformation is an adaptive gener-
alization of distance correlation based on proposed transformed
distances, which provides a dependence measure with robust
sensitivity to geometric and topological characteristics (56, 57).

There are two motivations for defining the edge weights as
a nonlinear monotonic transform of the distances, one theo-
retical and one data-analytical. From a theoretical perspective,
differences among very large representational distances may not
provide the most useful signature of the computational function
of a brain region. It is the local geometry that determines
which stimuli the representation renders indiscriminable, which
it discriminates, but places together in a cluster, and which it
places in different neighborhoods. The global geometry of the
clusters (whether two stimuli are far or very far from each
other in the representational space) may be less relevant to
computation for two reasons. First, once two stimuli are perfectly
discriminable, moving them even further apart does not improve
discriminability. Second, in a high-dimensional space, a set of
randomly placed clusters will tend to afford linear separability of
arbitrary dichotomies among the clusters (58–60) independent
of the exact global geometry.

Like in a storage room, related things may need to be placed
together in a representational space and unrelated things in
different locations. The requirement of colocalization strongly
constrains the local geometry because there is only one direction
toward a given location. The requirement that two things be far
from each other, by contrast, only weakly constrains the global
geometry, because there are many directions away from a given
location, especially in a high-dimensional space. This argument
suggests the hypothesis that variations among large distances are

idiosyncratic to an individual brain or model instance (39). If this
hypothesis were true, then compressing this variation may help us
focus on more functionally relevant features of the representation
that are less variable across individuals and model instances.

From a data-analytical perspective, conversely, very small
distances may be unreliable given the various noise sources that
affect the measurements. Compressing small distances, thus,
promises to reduce the influence of measurement noise on
visualizations and inferential results. Compressing small and
large distances is achieved by thresholding of the distances.
However, thresholding may be too aggressive in that it completely
removes all continuous information reflecting the geometry. As
illustrated in Fig. 2, on one end, we have the distance matrix
with the full metric information, and on the other, we simply
have an adjacency matrix telling us whether two stimuli are
neighbors in the representational space or not. To get the best
of both worlds, it seems attractive to focus our sensitivity on
a particular intermediate range of distances, so as to maintain
reliable geometric information, while reducing the influence of
noise (by compressing variation among small distances) and the
influence of individual idiosyncrasies (by compressing variation
among large distances). We show that this can be accomplished by
a monotonic transform of the representational distances and that
the resulting geotopological representational summary statistics
robustly reveal the functional distinctions among human brain
regions and Deep neural network (DNN) layers. We introduce
a family of geotopological summary statistics that generalizes
the RDM and provides a basis for topological RSA (tRSA), a
generalization of RSA that balances sensitivity to the topology
and geometry of neural representations.

Materials and Methods

Nonlinear Monotonic Transforms of Representational Dissimilarities
Provide a Family of Geotopological Descriptors. Topological RSA builds
on the literature on topological methods [e.g., persistent homology (61) and
TDA mapping (62)]. In order to suppress noise, we would like to find a lower
threshold l below which we consider stimuli as colocalized (i.e., the distance is
0). In order to abstract from idiosyncrasies of individual brains and highlight
the representational properties that are key to their computational function,
we would like to find an optimal upper distance threshold u above which we
consider stimuli maximally distinct (i.e., we do not consider differences between
larger distances meaningful). Two stimuli whose distance is larger than u are
disconnected in the graph capturing the topology.

Between the two thresholds, we place a continuous transition so as to
retain geometrical sensitivity in the range where it is meaningful (Fig. 3A).
For simplicity, we propose a piecewise linear function as the monotonic distance
transform. Note, however, that alternative monotonic transforms, such as the
logistic function or a cosine transition, could be applied here. Given an original
distance di,j between the two neural signatures of two objects in the represen-
tational space, the piecewise linear geotopological (GT) transform is defined as

GTl,u(di,j) =


0, if di,j ≤ l
di,j−l
u−l , if l < di,j < u

1, if u ≤ di,j

[1]

By varying the lower bound l and upper bound u, we obtain a family of
GT transforms (Fig. 3B). Each member of this family transforms the original
dissimilarity matrix (RDM) into a representational geotopological matrix (RGTM),
which provides a multivariate summary statistic with particular degrees of
topological and geometrical sensitivity (Fig. 3C). The RGTM replaces the RDM
in topological RSA. Note that the RDM is itself a member of the family, where
l = 0 and u are set to the maximum (Upper Left corner in Fig. 3B–D). The RGTM,
thus, generalizes the RDM.
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When applying topological RSA to neural data to understand a brain
representation, we can benefit from considering not only the RDM, but also
other members of the RGTM family to gain an understanding of the geometrical
and topological features of a brain representation. For the particular purpose of
model selection, we aim to choose thresholds l and u, so as to best recover the
true (data-generating) model representation if it is among our models, or the
best approximation among the models we are testing.

The Geotopological Descriptor Family Captures Both Geometric and
Multiscale Topological Information. For interpretation of the family of GT
transforms, we can consider the two diagonal dimensions of the triangular set
spanned by l and u (Fig. 3D): From the Upper Left corner (RDM) toward the
Lower Right, we go from geometrical to topological sensitivity, approaching
the thresholding transforms (l = u) along the diagonal. From the Lower Left to
the Upper Right, we go from local to global distance sensitivity.

For instance, the original RDM is in the Top Left corner (l = 0, u = 1), and
around it, we have a region of RGTMs that is geometry-sensitive where l is small
and u is big. On the Bottom Left corner, where both l and u are small, we have
local extractors, which are RGTMs that are sensitive to whether or not two items
are very close neighbors. On theUpper Right corner, where both l and u are big,
we have global extractors, which are RGTMs that are sensitive to whether or not
two items are on opposite ends of the ensemble. If we go along the diagonal
line from Lower Left to Upper Right, we have a belt zone of RGTMs which are
close to binary (i.e., l and u are close to each other).

Formally, we require l < u, so the diagonal, where the transform is a simple
thresholding function, is excluded from the family. Allowing l = u, so as to
formally include simple thresholding functions, is possible but would complicate
Eq. 1. In either variant, the GT transform approaches a binary thresholding

function for points approaching the diagonal. The thresholding functions along
the diagonal relate our approach here to the mathematical filtration process
used to reveal persistent homology in topological data analysis.

By exploring the choices of l andu, we can identify the GT transforms that best
enable us to match functionally corresponding cortical areas between different
individuals. Similarly, we can generate data (with simulated measurement noise)
from a layer in a deep neural network model, and determine which choices for l
and u best enable us to identify the data-generating layer when using a range
of layers from other instances of the DNN architecture (trained from different
random seeds) as the models in analyses.

One possibility is that the ideal setting is l = 0, u = max, i.e., the original
RDM, which characterizes the geometry. Other settings of l and u remove
information about the geometry. Whether removing information by choosing a
larger l or a smaller u helps or hurts depends on the relative extent to which it
reduces signal and noise (nuisance variation) in the context of a particular
data-analytical objective. If a topology-sensitive summary statistic reduced
the variation caused by measurement noise and individual idiosyncrasies
(i.e., nuisance variation) more than variation reflecting computational roles of
different representations, then inferential comparisons of deep neural network
models would benefit from topological RSA.

Geodesic Distances Provide an Alternative Geotopological Descriptor.
In addition to RGTMs, we propose the use of geodesic distances in the
representation. Let us first consider the theoretical notion of a geodesic and
then the practical analyses it motivates. Theoretically, the “representation” of a
population of possible stimuli can be defined as the set of response patterns the
stimuli elicit. If the stimulus population is a continuous set, we may hypothesize
that so is the set of corresponding neural response patterns in our brain region

A

B

Fig. 2. Intuition of the geotopological
transform of distances. (A) Consider the
five visual stimuli from Fig. 1, whose
representation in a visual cortical area
can be characterized by its represen-
tational geometry. If the response pat-
terns are all affected by isotropic noise
(or the noise has been whitened by a
transform), then the Euclidean distances
monotonically reflect the discriminabil-
ities. Variation among large distances,
however, is not associated with great
differences in discriminability, because
all pairs of well-separated stimuli are
nearly perfectly discriminable (dashed
lines). Similarly, variation among very
small distances is not associated with
great differences in discriminability, be-
cause all pairs of neighboring stimuli
are indiscriminable (thick black edge).
This suggests that variation among small
distances and variation among large dis-
tances can be suppressed in favor of
emphasizing the transition from small
to large distances. (B) To emphasize the
transition from small to large distances
while suppressing variation among small
distances and variation among large dis-
tances, we can threshold the distances,
such that small distances are pushed
to zero and large distances are pushed
to the maximum. We can either use a
hard threshold (Upper row) or a soft
threshold (Lower row). A hard threshold
yields a binary matrix whose comple-
ment is the adjacency matrix of a graph
that connects neighboring stimuli. A soft
threshold creates a continuous transi-
tion, reflecting the graded increase in
discriminability as the distance grows,
and defines a weighted graph, where the
weights reflect distances, but the pairs of
stimuli that are furthest from each other
are not directly connected (dashed lines
in A).
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of interest. This set of neural response patterns is often referred to as the neural
manifold. (Note, however, that the set of response patterns would need to
be locally homeomorphic to a Euclidean space to conform to the definition
of manifold. Whether this is the case for a particular neural population is an
empirical question.) A geodesic distance between two stimulus representations
is the length of a shortest path traversing the representational set from one
to the other. Unless the straight line between the two points is a subset of
the representation, we will traverse a longer, curved shortest path through the
representational set. The length of the geodesic path then will be larger than
the Euclidean distance.

In practice, we will have data for a finite sample from the population of stimuli.
To estimate the geodesic distance on the manifold, we can measure geodesics
in the discrete graph characterizing our representation. In a graph, a geodesic
distance is the length of the shortest path between two nodes. We define a
representational graph for each member of the RGTM family. For each node i,
edges exist only to other nodes j with dissimilarity di,j < u. The edge weights
are defined by the transform GT(l, u) and are interpreted as distances between
nodes. Note that edge weights, thus, can be zero. Zero-distance edges can be
motivated as a correction of small positive distance estimates resulting from
off-manifold noise displacements of patterns whose locations on the manifold
are not significantly distinct. In order to maintain direct comparability of the
edge-weight matrices of different brain and model representations, we do not
collapse nodes with zero distance, but maintain one node for each stimulus.

The geodesic distance between two nodes is defined as the length of the
shortest path that leads from one node to the other, where the length of a
path is the sum of the internode distances (i.e., the edge weights) along it. The
geodesic distance is infinite if there is no path connecting the two nodes through
the edges. The shortest paths for all pairs of nodes (each corresponding to a
stimulus) can be found using Dijkstra’s algorithm (63). The result is a stimulus-
by-stimulus matrix, which we refer to as the representational geodesic-distance
matrix (RGDM). The RGDM can be used in place of the RGTM or the RDM for our
visualization and model-comparative inference procedures. As an alternative
to an RGTM-based graph, we could use a binary graph (edge weights ∈ 0, 1)

to compute the RGDM. For example, we could use the binary graph in which
each node is connected to its k nearest neighbors or the graph containing
connections for the k smallest representational dissimilarities in the RDM. Our
analyses here, however, use RGDMs computed from graphs with continuous
internode distances, based on members of the RGTM family as described above.

Leave-One-Out Evaluation on Human fMRI Data and DNN Models
Can Quantitatively Evaluate the Region Identification Power of the
Summary Statistics. We would like to quantitatively evaluate the power of
topological RSA in the context of model selection, where each model predicts
a representational geometry. We therefore consider cases, where the ground-
truth model is known. This enables us to objectively evaluate the impact of
different choices of l and u on the accuracy of model selection. If conventional
RSA were optimal, then setting l = 0 and u = max would be the best settings.
If other settings afforded equal or better accuracy for model selection, then
topological signatures would deserve consideration in future studies applying
RSA to adjudicate even among models that predict not just representational
topologies, but full representational geometries.
Evaluating topological RSA’s brain-region-identificationaccuracy (fMRI). The
fMRI evaluation was performed on preexisting data from a human fMRI
experiment (64, 65), in which 24 subjects were presented with 62 colored
images depicting faces, objects, and places. We use 8 regions of interests here:
the primary visual cortex (V1), the secondary visual cortex (V2), the extrastriate
visualcortex(V3), thelateraloccipitalcomplex, theoccipital facearea, thefusiform
face area, the parahippocampal place area, and the anterior temporal lobe.

We investigate the brain-region-identification accuracy (RIA), where each
brain region is considered a model. The region labels provide the ground truth:
For data from each brain region in a held-out subject, we would like to identify
which region the data came from on the basis of the data for all the regions from
the other subjects. We therefore perform leave-one-subject-out RIA evaluation.
First, we randomly sample 10 sets of l’s and u’s in each of the five interpretable
RGTM zones: topology-sensitive (TS), geometry-sensitive (GS), local extractor
(LE), global extractor (GE), and intermediate (I). The 10 samples of l and u for

A B

C D

Fig. 3. A family of geotopological
transforms of the RDM. (A) The geotopo-
logical (GT) transform is formulated as a
linear piecewise function, such that any
distances smaller than a Lower bound
l will be mapped to zero, and any dis-
tances bigger than an Upper bound u
will be mapped to 1. Between l and u,
the transition is linear. (B) By varying
the thresholds l and u, we select among
a family of GT transforms. (C) By ap-
plying different GT transforms to the
RDM, we obtain so-called representa-
tional geotopological matrices (RGTMs).
(D) To interpret the way the GT trans-
forms reflect geometric and topological
properties of the representation, we
group the family members in different
zones of the plane spanned by l and u.
The closer a GT transform is to theUpper
Left corner (l = 0, u = max), the more
similar the RGTM is to the RDM. As we
approach the diagonal line (l = u), the
GT transform approaches a hard thresh-
old, emphasizing the topology rather
than the geometry. As we move diag-
onally from the Bottom Left to the Upper
Right, the RGTMs go from emphasizing
the local neighbor relationships among
the stimuli to emphasizing the global
structure of the representation.
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each region define 10 different GT transforms and provide an estimate of the RIA,
averaged across regions and subjects, that reflects the performance at region
identification of different zones of the family of RGTMs.

For each region in a held-out subject, we assign the region label of the average
RGTM from the other subjects that is closest (in terms of Euclidean distance) to
the RGTM being identified. Each subject is held out once in a full cross-validation
cycle and the RIA is the average identification accuracy.

In order to inferentially compare the different zones of the RGTM family,
we perform frequentist comparisons. We would like to consider a difference in
performance as significant if we expect it to generalize to experiments performed
with different samples of subjects and stimuli drawn at random from the same
populations of subjects and stimuli. We therefore perform a 2-factor bootstrap
procedure, resampling both subjects and stimuli simultaneously (32, 33). The
SD of the RIA estimates across 1,000 bootstrap samples of subjects and stimuli
serves as our estimate of the SE of the RIA estimate. Two-sided t tests are
then applied to assess the significance of differences between RIA estimates for
different choices of l and u. The degrees of freedom in this approach correspond
to the smaller factor, which is the number of subjects (24) in this case.
Evaluating topological RSA’s layer identification accuracy (DNNs). The DNN
evaluation was performed on a convolutional neural network architecture
(66) called the All Convolutional Neural Net (67). We investigate the layer
identification accuracy (LIA), where each layer is considered a candidate brain-
computational model. We perform leave-one-instance-out (LOIO) LIA evaluation.
We trained 10 model instances, starting from 10 different random seeds, of the
All-CNN-C network architecture (67), a 9-layer fully convolutional network that
exhibits state-of-the-art performance on a well-known small object-classification
benchmark task [Canadian Institute For Advanced Research (CIFAR-10) (68)].

We used the same numbers of feature maps (96, 96, 96, 192, 192, 192,
192, 192, 10) and kernel dimensions (3, 3, 3, 3, 3, 3, 3, 1, 1) as in the original
paper. The training of All-CNN-C network instances involved 350 epochs using
the ADAM optimizer with a momentum value of 0.9 and a batch size of 128. A
preliminary learning rate of 0.01 was employed, along with an L2 regularization
coefficient of 10−5 and gradient norm-clipping value of 500. Following ref. 39,
we trained the DNNs on the complete CIFAR-10 image dataset (both training and
test sets), which comprises 10 distinct object categories, each represented by
5,000 training and 1,000 test images, implemented with TensorFlow (version
1.3.0) and Python 3.5.4.

Like different individual subjects, these instances differ in their detailed
connectivity, but perform the recognition task at similar levels of accuracy (39).
In addition to evaluating the LIA across instances for different choices of l and u,
we study the effect on the LIA of injecting Gaussian noise of a variety of variances
�2 into the dissimilarity estimates.

The DNN-simulation-based evaluations follow the same procedures as the
human-fMRI-based evaluations: The neural networks were presented with the
same set of 62 object images to define the representational geometries. We
perform LOIO LIA evaluation. Each layer in a held-out instance is identified as
the layer whose average RGTM across the other instances is closest (in terms of
Euclidean distance) to the RGTM being identified. Each instance is held out once
in a full cross-validation cycle and the LIA is the average identification accuracy.
The inference, likewise, employs the same 2-factor (instance and stimulus)
bootstrap method.

Model-Comparative Statistical Inference for tRSA. tRSA can use the well-
developed inferential techniques of RSA for comparison between represen-
tational models (16, 33, 69). The nonparametric inference methods of RSA3
(33) can simply use the geotopological statistics (RGTMs and RGDMs) in place of
RDMs.AsinconventionalRSA,therepresentationalsimilarityofbrainregionsand
model layers can be quantified using various comparators, such as cosine sim-
ilarity or correlation, but applied to geotopological statistics rather than RDMs.

Here we used Euclidean distance as the comparator for the geotopological
summary statistics. The l andu are defined as quantiles (expressed as percentiles
or ranks) relative to the set of dissimilarities in a given RDM. Defining l and u
as quantiles enables matching choices for model and brain representations
whose dissimilarities may have different magnitudes and may lack a common
unit that would render them commensurable. In addition to defining l and u
as quantiles, we use the ranks within each RDM to define the dissimilarities
entering the GT transform. This has the benefit that the resulting RGTMs have

identical distributions of values. In this scenario, the squared Euclidean distance
as a comparator of representational summary statistics is proportional to the
Pearson correlation distance and to the cosine distance. These comparators thus
would have yielded identical model-selection results, rendering the analyses
relevant to the most common choices of RDM comparator in RSA.

Another popular choice for the RDM comparator is a rank correlation
coefficient, such as Kendall’s �a (32) or the more computationally efficient
Spearman-type coefficient �a (33). In the present study, the RDMs are rank-
transformed before computing the RGTMs. Our comparators therefore benefit
from the robustness afforded by the rank transform, obviating the need for
another rank-transform at the level of the RGTMs, as would happen if we chose a
rank correlation coefficient as the comparator. Using a rank correlation coefficient
is closely related (but not mathematically equivalent) to the present analyses.

Results

Proof of Concept: Geotopological Descriptors Can Discern
Topological and Not Just Geometric Distinctions. As a proof
of concept, consider the geometric and topological similarities
among the four hypothetical representations in Fig. 4. We call the
four representations the “flat 8,” the “bent 8,” the “untangled flat
8” and the “untangled bent 8.” Imagine an experiment in which
the idealized continuous representational set is sampled using of
40 stimuli (balls in Fig. 4A). The flat 8 and the bent 8 share the
self-intersection, which creates two holes, rendering the shapes
topologically similar, although the bending of the latter greatly
changes the geometry. Similarly, the untangled flat 8 and the un-
tangled bent 8 are topologically similar (in that neither has a self-
intersection and both have one hole) and geometrically dissimilar
because of the bending. By contrast, the flat 8 and the untangled
flat 8 are geometrically similar (both flat and similar in their
RDM), and topologically distinct (one versus two holes). Like-
wise, the bent 8 and untangled bent 8 are geometrically similar
(both bent) and topologically distinct (double arrows in Fig. 4A).

The different summary statistics reflect the topology and
geometry of these hypothetical neural representations to different
degrees (Fig. 4B). As expected, the RDM reflects the geometric
distinctions but is not very sensitive to the topological distinc-
tions, which are implemented here through minimal metric
displacements that determine whether or not there is a self-
intersection. The multidimensional scaling (MDS) arrangement
of the four RDMs (Fig. 4C ) shows the dominance of the flat
versus bent distinction when characterizing the representations
with RDMs.

The RGTMs were obtained using small values for both l and u,
yielding almost binary matrices with local topological sensitivity,
which reveal whether or not there is a self-intersection. The MDS
shows that the RGTM here balances sensitivity to the topology
and the geometry of the representation. Note the prominent blue
“eyes,” which reflect the self-intersection where the contour of
the 8 crosses itself. The blue “eyes” are present for the two-hole
representations with self-intersection (Left two representations in
Fig. 4B), but absent for the untangled one-hole representations.

Finally, the RGDMs are even more sensitive to the topological
distinctions. The RGDMs were defined on the basis of the graphs
of the RGTMs in the row above. The shortest-path lengths reflect
the existence of “shortcut” routes through the self-intersection.
For many pairs of stimuli, the shortcut (when available) provides a
shorter path than going the straight route around the 8. The small
geometrical distortion causing the self-intersection is therefore
reflected across a large portion of the RGDM. The MDS plots
show that the RGTMs and RGDMs can effectively characterize
both the geometric and topological similarities, whereas the
RDMs mostly reflect the geometry of the representation.
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A

B

C

Fig. 4. The geometric and topolog-
ical similarities between hypothet-
ical neural representations (proof
of concept). (A) We consider four
hypothetical representations of 40
stimuli (balls in Lower row of A).
The response patterns are sam-
pled from idealized continuous sets
of neural response patterns (Top
row in A). Two of these continuous
sets are manifolds (the untangled
shapes) and the other two are not
(the tangled shapes, where the set
self-intersects, forming a neighbor-
hood that is not homeomorphic to a
Euclidean space). From Left to Right,
we label the four representations
the flat 8, the bent 8, the untangled
flat 8, and the untangled bent 8.
The flat 8 and the untangled flat 8
are geometrically similar, while be-
ing topologically dissimilar (with the
former self-intersecting). Their bent
versions, as well, are geometrically
similar and topologically dissimilar.
The flat 8 and the bent 8, on the
other hand, are topologically similar
(with the self-intersection creating
two holes) and geometrically dissim-
ilar (because the twisting substan-
tially changes the metric geometry).
Their untangled versions, as well,
are topologically similar and geo-
metrically dissimilar. (B) The RDMs
(Euclidean distance, Top row) do a
good job characterizing the geomet-
ric relationships but are insensitive
to the topological relationships. The
RGTMs (Middle row) are more sen-
sitive to topology. To achieve local
topological sensitivity, we chose l =
0 and u = 0.075, revealing the self-
intersection in the two leftmost rep-
resentations. The RGDMs (Bottom
row) are exquisitely sensitive to the
topological relationships, while de-
emphasizing geometrical relation-
ships between the representations.
Note the “eyes” in the two leftmost

RGTMs, representing the self-intersections. Each RGDM captures the lengths of the shortest paths in the graph of the RGTM shown Above it. The RGDMs
more prominently reflect the topology as the “shortcut” paths enabled by the self-intersection affect shortest-path lengths for a broad swath of stimuli. (C)
Multidimensional scaling (MDS) on the four representations shows the pairwise similarities among the four matrices of each row, confirming the increasing
sensitivity to topological differences as we go from RDM to RGTM and on to RGDM.

Geotopological Descriptors Reveal What Aspects of Geometry
and Topology Enable Accurate Identification of Brain Regions
Across Subjects (fMRI). Using human fMRI data, we quanti-
tatively evaluated the performance of the RGTM summary
statistics (including the RDM as a special case) at revealing
the correspondences among ventral-stream cortical regions across
subjects. A summary statistic will succeed in this evaluation, if it is
robust to noise and interindividual variability while maintaining
sensitivity to differences between different cortical areas.

We grouped the members of the RGTM family into inter-
pretable zones in Fig. 3D. Results for each zone are shown in
Fig. 5A). We plotted the RIA as a heatmap across choices for l
and u (Fig. 5B). The highest RIA was achieved for l = 0.40 and
u = 0.65 (red square in Fig. 5B). However, other settings yielded
similar RIA. Results suggest that l and u should not be both low or
both high. The RDM is an effective summary statistic. However,
it contains information not needed for region identification.
This result suggests that compressing less informative distance
variation is possible without a reduction in model-selection
accuracy. In this dataset, we did not find that the benefits of
noise reduction significantly outweighed the loss of information.

We inferentially compared RIA between different zones within
the RGTM family using simultaneous bootstrapping of both
subjects and stimuli [2-factor bootstrap, (33)] for frequentist
pairwise comparisons. The 2-factor approach serves to test for
differences expected to generalize across random samples of sub-
jects and stimuli drawn from the same populations. The summary
statistics in the TS and GS zones did not perform significantly
differently (P = 0.434). The TS, GS, and intermediate RGTMs
all performed better than those in the LE zone (P = 4.776e−03,
P = 4.972e−03, and P = 4.454e−02, respectively). We found
no other significant differences. Overall, geometry-sensitive and
topology-sensitive summary statistics performed similarly, but
the latter suffer when the upper bound is in the lower third of
the distribution.

These findings suggest that a substantial portion of the smallest
and largest dissimilarities can be compressed without reducing
the RIA. Using the RGTM to focus on the intermediate
range of dissimilarity variation (perhaps the middle third of the
distribution of dissimilarities) while compressing the lower and
upper third of the dissimilarities yields optimal model selection
in this dataset.
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Geotopological Descriptors Reveal What Aspects of Geometry
and Topology Enable Accurate Identification of DNN Layers
Across Instances. DNNs have emerged as important models of
vision and brain-information processing in recent years (70–74).
DNNs can learn nonlinear representational transformations
through feedforward and recurrent processing, enabling them to
capture the computations underlying task performance. When a
neural network architecture is trained repeatedly, starting from
different random connection weights, the resulting trained model
instances have distinct parameters and distinct detailed unit
tuning, despite performing the same task roughly equally well.
Just like individual humans differ, thus, so do instances of DNNs
trained from different random seeds (39).

Analogously to the brain-region identification analysis in the
previous section, we investigated the usefulness of RGTMs in
identifying which layer of a neural network model a given
RGTM was computed from, given RGTMs for all layers in other
instances of the architecture. Like the human fMRI analysis, this
analysis informs us about the best choice of representational sum-
mary statistic when performing DNN model comparisons using
human data. We are able to objectively evaluate the summary
statistics, because we know the ground-truth data-generating
model. The DNN simulation analyses are complementary to the
human fMRI analyses: On the one hand, they afford complete
knowledge of the computational mechanisms (an advantage). On
the other hand, they are less realistic with respect to the biology
and structure of the noise in the data used as a basis for model
comparison (a disadvantage).

Our layer-identification analysis reveals to what extent dif-
ferent RGTMs (including geometry-sensitive and topology-
sensitive members of the family of GT transforms) abstract

from nuisance variation across the same layer in different model
instances, while capturing computationally meaningful variation
between different layers (which are thought to play distinct
computational roles).

As for the human brain regions, we quantitatively evaluated the
performance of the summary statistics from the RGTM family
(including the RDM). Results are shown in Fig. 6, grouped by
noise level (Fig. 3D). We present results for two types of noise:
Gaussian noise � (added to the dissimilarity estimates, Fig. 6)
and Bernoulli noise � (applied during training as dropout rates,
SI Appendix, Fig. S1).

Statistical comparisons of LIA for GT-transform zones show-
ed that geometry-sensitive statistics outperformed topology-
sensitive statistics at higher noise levels (� ≥ 0.2). The heatmaps
showing LIA as a function of l and u in RGTMs (Fig. 6B) likewise
show that as the noise level increases, the optimal statistics (red
frames) go from more topology-sensitive to more geometry-
sensitive. The LIA heatmaps based on the RGDMs show a
prominent fall-off of accuracy with l (horizontal axis, as in Fig.
3) and little dependence on u: As l grows, more and more pairs of
neighboring points collapse to 0 distance in the RGTM, and thus
more and more shortest-path lengths between points connected
by paths of 0-distance edges collapse to 0 in the RGDM. The
weak dependence of LIA on u reflects the fact that more separated
points can be connected either through a smaller number of larger
steps (when u is large) or a larger number of smaller steps (when
u is small), rendering the RGDM less sensitive than the RGTM
to u. Overall, in RGTMs, there is no significant LIA difference
between the geometry-sensitive and the topology-sensitive zone
when � < 0.2. Selecting a summary statistic that emphasizes only
local neighborhood (local extractor) can be significantly worse

A B

Fig. 5. Brain-region identification accuracy across the family of geotopological descriptors. Our analysis of human brain regions used fMRI data from 24
subjects, collected from 8 regions of interest, including the primary and secondary visual cortices, the lateral occipital complex, the occipital face area the
fusiform face area, the parahippocampal place area, and the anterior temporal lobe. (A) Region-identification accuracy (RIA) is evaluated using leave-one-
subject-out cross-validation, where a classifier (on which we compute RIA) is trained on all available data except for one subject and then tested on that Left-out
subject. This process is repeated for each subject, with the final performance measure being the average across all iterations. We used bootstrapping to obtain
an unbiased estimate of the SE as the error bound for region identification accuracy and used cross-validation to prevent overfitting. We randomly sampled
10 sets of Lower bounds l’s and Upper bounds u’s in each of the five interpretable RGTM zones as defined in Fig. 3 and applied a paired t test to compare the
RIA between different RGTM zones as defined in panel (B) and Fig. 3 (****P < 1e-4, ***P < 1e-3, **P < 1e-2, *P < 0.05). (B) RIA percentile (gray colorscale) as a
function of the combination of Upper and Lower bounds, l and u, defining the RGTM (layout as in Fig. 3) with the best-performing RGTM marked in red.
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than selecting the geometry-sensitive or intermediate statistics,
consistent with what we observed for the human fMRI data. This
suggests that, in a low-noise regime, some of the information
in the RDM is redundant and the extremes of the distance
distribution can be compressed without compromising our
power to distinguish representations of different computational
modules (layers here). In the high-noise regime, having the full
RDM information can better characterize the subtle distinctions
among computational modules.

To further interpret the distributions of representations asso-
ciated with different layers and instances, we performed MDS on
the RDMs, RGTMs, and RGDMs (using the optimal threshold
pairs (l, u) marked in red in the corresponding heatmaps in
Fig. 6B). We used the Procrustes alignment (75) to obtain a
consistent orientation and reflection of the MDS plots (Fig. 6C ).
We observe that the RDMs cluster the representations of several
layers together, whereas the RGTMs and RGDMs manage to
separate out layers in a smoother progression from the early
layers to the later layers. This suggests that the geotopological
and geodesic transforms can help emphasize topological invari-
ants that consistently characterize layer representations across
variation among model instances.

Discussion

Theories about neural codes and computations can predict how
the neural manifold hangs together (i.e., the topology) without
predicting a specific representational geometry. Such theories are
consistent with an infinite number of distinct geometries, and
so do not predict a specific RDM. Topological RSA enables
researchers to evaluate and statistically compare such theories as
expressed by a representational graph and associated RGTM. Our
results do not support the conclusion that topological descriptors
should replace geometrical descriptors in RSA in general. Studies
that aim to adjudicate among brain-computational models
that predict representational geometries can continue to use
geometrical descriptors. Topology may not be needed as a
tool to suppress nuisance variation in RSAs of representational
geometries. However, the topology of neural representations is
interesting in its own right.

For theories and brain-computational models that do predict
geometries, evaluation on the basis of their topological predic-
tions provides an alternative and complementary perspective. If
our models’ RDM predictions do not reach the noise ceiling,
the model that best predicts the geometry may not be the
model that best predicts the topology. We can simply apply a
geotopological transform to the brain RDM before performing
model-comparative RSA inference with a rank-based comparator.
The choice of parameters l and u (which can be defined as
percentiles within the dissimilarities of each RDM) enables
us to calibrate the relative sensitivity to the topological and
geometrical properties of the representation. This approach
enables comparisons of both topology-predicting and geometry-
predicting models within the same tRSA framework. The fact that
region identification and layer identification do not suffer when
we drastically reduce the information in the RDM suggests that
the bulk of the information distinguishing the representations in
brain regions and neural network layers is captured by topological
descriptors.

Characterizing Topology and Geometry Provides a Comprehen-
sive View of Neural Representations. Considering topology-
sensitive representational summary statistics alongside geomet-
rical ones can provide a more comprehensive and nuanced

understanding of the data. We introduced geotopological de-
scriptors as a class of summary statistics for RSA. These descrip-
tors emphasize the topology by compressing variation among
the smallest representational distances and among the largest
representational distances. Variation among small representa-
tional distances is sensitive to noise, and variation among very
large distances may reflect individual idiosyncrasies more than
computationally meaningful information. While tRSA did not
outperform conventional RSA at region or layer identification,
it matched the model-selection performance of RSA while
substantially reducing the information, thus revealing what
range of variation among representational distances captures the
discriminable computational signatures of different representa-
tions. Topological RSA provides a robust way to identify neural
representations in spite of noise and interindividual variation. We
emphasize the synergistic potential of combining the topological
and geometrical perspectives.

Testing Topological Representational Hypotheses Requires
tRSA. From a theoretical perspective, the choice of using topo-
logical or geometrical summary statistics in RSA depends on the
hypotheses about the neural representations that are to be tested.
If the hypothesis is that a neural representation conforms to a
particular topology, then topological RSA provides a straightfor-
ward method to test the hypothesis. Note that a hypothesis about
the representational topology cannot be straightforwardly tested
with conventional RSA because the hypothesis corresponds to a
complex set of RDMs any of which conforms to the hypothesized
topology. This is a major motivation for tRSA independent of
the question of whether it can help reduce nuisance variation in
adjudicating among models that predict geometries.

Do theories about neural mechanisms imply specific pre-
dictions about the representational topology? Investigating the
relationship between brain-computational theories and the
topology of neural population representations is an important
direction for future computational work. Here we focused on
visual representations in both the model-based simulations and
the fMRI dataset, where the representational space has many
dimensions and we do not have simple topological hypotheses
about the structure of the representations. In the absence of
simple topological hypotheses, a data-driven approach can reveal
to what extent the representational topologies are consistent
between individuals and distinct across stages of processing
or across stages of learning or development. The relationships
among brain-representational topologies can be visualized using
MDS of the RGTMs or RGDMs as we show for DNN layers
in Fig. 6C. Such analyses have been performed previously for
RDMs (e.g., refs. 16 and 76) and require independent data
for each region to prevent correlated noise fluctuations from
confounding the RDM estimates as shown in ref. 77. Future
studies could use tRSA to test strong predictions about the
topology of lower-dimensional stimulus sets sampling, e.g.,
orientations and spatial frequencies of gratings, or directions and
velocities of visual motion, which are known to be represented at
different levels of the primate visual hierarchy. Another example
where tRSA could support a strongly theory-driven approach
seeking to adjudicate among alternative topological hypotheses
is the head and traveling direction system in mice and fruit flies
(49, 78–80).

Testing Geometrical Representational Hypotheses May Ben-
efit from tRSA. If the models to be tested predict specific
representational geometries, conventional RSA can be used to
adjudicate among them. Topological descriptors are functions
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Fig. 6. Neural-network-layer identification accuracy across the family of geotopological descriptors. The performance of different RGTMs at neural-network
layer identification with gradually increasing Gaussian noise � on the dissimilarity estimates (columns). Results are for All Convolutional Neural Nets, a simplified
model architecture with many convolutional layers (with 10 separate layers of interest in total). Layer identification accuracy (LIA) was estimated in leave-one-
instance-out cross-validation, where a classifier is trained on all available model instances except for one and then tested on that Left-out model instance.
This process is repeated for each instance, with the final performance measure being the average across all iterations. To enable cross-validated evaluation
similar to the brain-activity data in the previous figure, for each model, we trained 10 instances (analog of individual subjects) from different random seeds.
Cross-validation was performed within a bootstrapping process to estimate LIA and its estimation error. We randomly sampled 10 sets of l’s and u’s in each of
the five interpretable RGTM zones as defined in Fig. 3 and applied a paired t test to compare the LIAs afforded by different RGTM zones. (A) Bar graphs showing
the LIA for each RGTM zone and noise level with statistical comparisons. LIA is similar for topology-sensitive RGTMs and geometry-sensitive RGTMs. (B) The
LIA of RGTMs and corresponding RGDMs across the (l, u) threshold pairs are represented in a percentile heatmap, with the maximum performance marked
in red. (C) The MDS plots of the RDMs (Top row) show geometrical similarities among layer representations. Each dot is the RDM for one layer in one model
instance. For each layer, a convex hull is drawn to group its representations across all instances. MDS plots reflecting geotopological similarities are shown
for the best-performing RGTMs and RGDMs (red in B), revealing the good discrimination of layers these geotopological summary statistics provide (Middle and
Lower rows, respectively).
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of geometrical ones and reduce the information, so may appear
undesirable if geometrical hypotheses are to be tested. Consider
the example of a set of visual gratings covering the entire cycle of
orientations with equal spacing. For a wide variety of hypothetical
representations, we expect the topology to be that of a circle,
whereas the geometry may not be that of a circle, for example,
if the neural code is anisotropic, more precisely representing
cardinal orientations (which are more frequent in natural images)
(18, 81, 82). The topology, in that case, fails to capture an
important feature of the neural code. In other scenarios, however,
a topological descriptor may capture the essential features of
the neural code. If our topological descriptor reduces nuisance
variation in the data more than the representational signatures
that distinguish different models, it can support improved model-
adjudication accuracy. For the visual representations investigated
here in models (deep neural networks) and humans (fMRI), we
did not find evidence for such an advantage. Future studies will
reveal whether a focus on the topology reduces the noise more
than the signal in other circumstances.

However, even if our models make predictions about represen-
tational geometries (as do DNNs) and tRSA does not improve
model-adjudication power, it can still provide complementary
information by revealing to what extent the topology implicit
to the geometrical predictions enables model adjudication and
which model best predicts the representational topology. If the
best model fully explains the geometry, it will also correctly
predict the topology. However, the relative performance of
models that do not fully explain the geometry can change
when we evaluate models by their topological predictions. Our
analyses here showed that tRSA, using reduced topological
summaries, can match the performance of geometrical RSA at
model adjudication. This suggests that topological descriptors
that compress the variation among small and among large
representational distances capture the information essential to
the computational signature of different representations.

Practical Considerations for Implementing tRSA. Topological
RSA model comparison can rely on the RSA3 statistical inference
framework (33), which has been implemented in Python in
the open-source RSA Toolbox). The geotopological descriptors
introduced here and the RSA3 inference methods enable analyses
based on a wide range of brain-activity data, including invasive
neural recordings, fMRI, electroencephalogram, and magnetoen-
cephalography. A topological representational hypothesis can be
expressed directly in a representational graph and associated
RGTM. Alternatively, topological hypotheses can be derived
from representational models that predict geometries, i.e., any
descriptors of the experimental conditions. If the conditions
correspond to visual stimuli, for example, representational models
can be derived from properties of the images or of the objects
depicted and their categories (15). In particular, topological
hypotheses can be derived from brain-computational models,
such as neural network models that implement candidate
hypotheses about the computations performed by the brain and
predict a geometry for each stage of representation (70, 73, 83).

If the theories to be compared predict representational topolo-
gies (RGTMs), then we can avoid having to choose l and u.
We can compare the RGTMs predicted by the theories to the
brain RDM directly using the �a rank correlation coefficient (33).

If the theories to be compared predict geometries (RDMs), but
we intend to compare models in terms of their predictions of
the topology of the brain representation, then we can convert
the brain RDM to a brain RGTM by selecting l and u to
choose the desired calibration of the summary statistic to the
geometry and the topology of the brain representation. The
brain RGTM can then be compared to the model RDMs
using the �a rank correlation coefficient and model-comparative
inference can proceed on this basis. Finally, if the goal is to
assess whether the geometrical predictions of a model (the model
RDM) significantly exceed its topological predictions (model
RGTM, based on a choice of l and u), we can use the �a rank
correlations with the brain RDM to statistically compare the
model’s topological and geometrical predictions.

The values for l and u can be set by a priori considerations, e.g.,
on the basis of the level of graph connectivity predicted by the
theories to be evaluated, or on the basis of results of earlier studies
that use a different dataset (e.g., this study). If different settings
of l and u are to be explored in the analyses, it is important
to avoid biases to the analyses that can result from selecting
these two parameters (84, 85). One approach is to choose a
small number of settings for l and u and add each resulting
RGTM as a separate model in the model-comparative inference,
where standard adjustments for multiple testing can then be
used (controlling the family-wise error rate or the false-discovery
rate as implemented in the RSA Toolbox). Alternatively, an
independent analysis, for layer- or brain-region identification
accuracy, could inform the choice of l and u. Importantly,
whatever exploration or search procedures were employed in
selecting l and u must be fully reported.

It is important to note that both topological and geometrical
descriptors depend on the experimental conditions (e.g., stimuli)
for which activity patterns are included in the analysis. However,
topological descriptors can be even more sensitive to the set of
conditions included. For example, the geodesic distance between
the representations of two conditions depends on the other
conditions included (which determine the shortest path), whereas
the Mahalanobis distance does not.

In conclusion, tRSA is essential for testing topological repre-
sentational hypotheses. Even when testing models that predict
representational geometries, tRSA can reveal to what extent
the models capture, in particular, the representational topology
observed in a neural population. The combination of topological
and geometrical descriptors offers a promising comprehensive
approach for analyzing neural representations.

Data, Materials, and Software Availability. Previously published data were
used for this work (39, 64, 65). The codes necessary to reproduce the analytical
results are available at https://github.com/doerlbh/TopologicalRSA (86).
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